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Abstract: We provide a holographic evaluation of novel contributions to the drag force

acting on a heavy quark moving through strongly interacting plasma. The new contri-

butions are chiral in the sense that they act in opposite directions in plasmas containing

an excess of left- or right-handed quarks. The new contributions are proportional to the

coefficient of the axial anomaly, and in this sense also are chiral. These new contributions

to the drag force act either parallel to or antiparallel to an external magnetic field or to

the vorticity of the fluid plasma. In all these respects, these contributions to the drag force

felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks.

However, the new contribution to the drag force is independent of the electric charge of the

heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel

effects do not in fact contribute to the CME current. We show that although the chiral

drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest

frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this

frame, the heavy quark at rest sees counterpropagating momentum and charge currents,

both proportional to the axial anomaly coefficient, but feels no drag force. This provides

strong concrete evidence for the absence of dissipation in chiral transport, something that

has been predicted previously via consideration of symmetries. Along the way to our prin-

cipal results, we provide a general calculation of the corrections to the drag force due to the

presence of gradients in the flowing fluid in the presence of a nonzero chemical potential.

We close with a consequence of our result that is at least in principle observable in heavy

ion collisions, namely an anticorrelation between the direction of the CME current for light

quarks in a given event and the direction of the kick given to the momentum of all the

heavy quarks and antiquarks in that event.
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1 Introduction and summary

The analysis of how a heavy quark moving through the strongly coupled liquid quark-gluon

plasma produced in ultrarelativistic heavy ion collisions loses energy is motivated by heavy

ion collision experiments, in which these heavy quarks are used as probes of the plasma

and, for those that lose enough energy, as tracers that follow its flow. If one assumes

that the interactions between the heavy quark and the plasma are weak, then perturbative

methods that were first introduced in ref. [1] can be employed to analyze heavy quark

energy loss. However, the discovery that the plasma produced in heavy ion collisions is

itself a strongly coupled liquid has raised the question of how to understand the real-time

dynamics of heavy quarks in a strongly coupled non-Abelian plasma. Treating all aspects

of the dynamics as strongly coupled is of value first as a benchmark and second because

it means that rigorous calculations of novel effects become tractable in plasmas with a

gravitational dual.

The simplest plasma in which one can calculate the rate of energy loss of a heavy

quark is that in strongly coupled N = 4 supersymmetric Yang-Mills (SYM) theory in the

large number of colors (large Nc) limit, whose plasma with temperature T is dual to classi-

cal gravity in a 4+1-dimensional spacetime that contains a 3+1-dimensional horizon with

Hawking temperature T and that is asymptotically Anti-de Sitter (AdS) spacetime [2, 3].

In the dual gravitational description, the heavy quark is represented by a string moving

through the AdS black hole spacetime, trailing behind its endpoint that follows the tra-

jectory of the infinitely heavy quark along the boundary of the AdS [4–7]. The earliest
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work on heavy quark dynamics in the equilibrium plasma of strongly coupled N = 4 SYM

theory [5–7] yielded determinations of the drag force felt by a heavy quark moving through

the static plasma and the diffusion constant that governs the subsequent diffusion of the

heavy quark once its initial motion relative to the static fluid has been lost due to drag.

This work has been generalized in many directions since then. We will in particular need

the modifications of the spacetime metric that describe a flowing, hydrodynamic, plasma

in which there are gradients of the fluid properties as a function of space and time [8–10].

The corresponding modifications of the drag force were worked out to leading order in the

fluid gradients in ref. [11]. However, in this calculation the possibility of a nonzero density

of some fermion species, and a corresponding nonzero chemical potential, was not taken

into account.

We begin in section 2 by introducing the dual gravitational description of a strongly

coupled plasma with both a chemical potential and fluid gradients, working to leading non-

trivial order in both µ/T and the fluid gradients. At the same time, we introduce the dual

gravitational description of the axial anomaly, relevant if the chemical potential is either

that for left-handed quarks or for right-handed quarks. In section 3 we turn off the anomaly,

for example as appropriate if µ is the chemical potential for baryon number, and calculate

the corrections to the drag force in powers of µ/T , working to first order in fluid gradients.

This yields the (straightforward although laborious) extension of the results of ref. [11] to

the case of a plasma with nonzero µ. The results of this section constitute quantitative

modifications to the drag force, but they do not introduce qualitatively new effects.

In section 4 we analyze a chiral plasma. That is, we take µ to be the chemical potential

for either left-handed or right-handed quarks, and turn on the anomaly. In the dual

gravitational theory this means we turn on the Chern-Simons term in the holographic

action that we introduced in section 2. This term gives rise to novel chiral contributions

(contributions that change sign if the plasma contains right-handed quarks as opposed to

left-handed quarks) to the charge and entropy currents and to the stress-energy tensor [9,

12], reproducing the chiral magnetic effect (CME) and chiral vortical effect (CVE) that

had already been introduced without the use of holography [12–15]. These anomalous

contributions to the hydrodynamic motion of a chiral fluid have been discussed widely [9,

12, 16–43]. These effects originate in topological aspects of the gauge theory [12, 14, 15,

33, 36, 37], as is of course the case for the axial anomaly itself [44].

All the previously analyzed consequences of the axial anomaly in a chiral plasma — the

CME and its cousins — concern the motion of light quarks; in fact the quarks are usually

assumed to be massless. We show in section 4 that there are anomalous contributions

to the drag force on an infinitely heavy quark that finds itself in a chiral plasma. The

standard CME and related effects involve the generation of anomalous currents parallel or

anti-parallel to an external magnetic field or the angular velocity vector of the fluid [12–15].

The anomalous contributions to the drag force that we compute, order by order in µ/T ,

have the same feature. This means that in the presence of a nonzero density of heavy

quarks that are initially at rest in the local fluid rest frame, the chiral drag force that

we compute can yield a new contribution to the CME electric current, even though the

heavy quarks themselves do not participate in the CME. Note, however, that if the plasma
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features equal and opposite number densities of some heavy quark and its antiquark, or

densities of two species of heavy quarks with opposite electric charges, all the heavy quarks

and antiquarks feel a chiral drag force acting in the same direction, and no electric current

is generated. For example, the fluid produced in a heavy ion collision is seeded with equal

numbers of charm and anti-charm quarks, and equal numbers of bottom and anti-bottom

quarks. Since in any volume of the plasma in which there is an excess of, say, right-

handed light quarks all the heavy quarks and antiquarks feel a chiral drag force in the

same direction, the chiral drag force does not result in an electric current. Of course,

if there were a nonzero chemical potential for some species of heavy quark, meaning an

excess of those heavy quarks relative to their antiquarks, the push on all heavy quarks and

antiquarks from the chiral drag force would result in a heavy quark contribution to the

electric current. This would be an example of a correction to the CME or CVE currents,

as has been found in other contexts [35, 38, 40–43].

It at first seems odd to find a nonvanishing chiral drag force on a heavy quark even when

the heavy quark is at rest in the local fluid rest frame. We show in section 5 that (as long

as we neglect the gravitational anomaly) the resolution is related to the previously known

fact that in the local fluid rest frame there are anomalous contributions to the entropy

current, since if we go instead to a frame in which the local entropy current vanishes at

the location of the heavy quark we find no chiral drag force on the heavy quark. In this

frame, the heavy quark at rest is immersed in a flowing fluid, with nonzero momentum

and charge currents that are both proportional to the axial anomaly coefficient, but the

heavy quark feels no drag force. If we think of the heavy quark as a defect placed in these

propagating anomaly-induced streams, the fact that the heavy quark feels no drag force is

a direct consequence of the dissipationless nature of the CME current. The nondissipative

character of the chiral magnetic effect has been discussed before [24]. Our calculation of

the chiral drag force provides direct evidence for this fundamental attribute of the chiral

magnetic effect.

In section 6 we discuss possible phenomenological consequences of the chiral drag force.

The basic effect is that the heavy quarks and antiquarks in a heavy ion collision in which

there has been a fluctuation resulting in an excess of right-handed (left-handed) light quarks

will feel a force that pushes them in a direction perpendicular to the reaction plane that

is antiparallel (parallel) to the direction of any magnetic field or fluid angular velocity

vector. We shall show that the effects are small. Furthermore, they will average out in

an ensemble of events. And, mesons containing heavy quarks are not so numerous in any

single heavy ion collision. For all these reasons, it will be difficult to separate the effects

of a small force that acts in the same direction on all the heavy quarks and antiquarks

in one event from random forces that act differently on different heavy quarks. Perhaps

clever correlation observables can be found. One possibility is to utilize the fact that in

each event the direction of the kick that all the heavy quarks and antiquarks in that event

receive, regardless of their electric charge, is opposite to the direction of the CME electric

current in the light quark sector.

– 3 –



J
H
E
P
1
0
(
2
0
1
5
)
0
1
8

2 Holographic fluid

To compute the drag force on a heavy quark moving through the strongly coupled plasma

of N = 4 SYM theory with a nonzero chemical potential and with spatial and temporal

gradients in the fluid velocity, temperature and chemical potential we need to start with the

perturbations to the dual gravitational theory that correspond to hydrodynamic flow [9, 10].

We shall present the corresponding 4+1-dimensional bulk metric in this section, delaying

the introduction of the heavy quark that we are interested in to section 3. The dual

gravitational theory is described by the 4+1-dimensional Einstein-Maxwell action

S = − 1

16πG5

∫

d5x
√
−G

(

R+ 12− 1

4
F 2

)

− κ

48πG5

∫

d5xǫMNOPQAMFNOFPQ (2.1)

whose equations of motion are

RMN + 4GMN +
1

2
F K
M FKN +

1

12
GMNF 2 = 0

∂N

(√
−GFNM

)

+ κǫMNOPQFNOFPQ = 0 . (2.2)

Here, G5 is the 4+1-dimensional Newton constant which according to the holographic

dictionary, see e.g. ref. [9], is related to the number of colors in the boundary gauge theory

by G5 =
π

2N2
c
. Furthermore, AM and FMN are a 4+1-dimensional vector potential and the

corresponding field strength and κ is the 4+1-dimensional Chern-Simons coupling, which

is dual to the axial anomaly coefficient in the boundary gauge theory. In the case of N = 4

SYM theory at strong coupling,

κ = − 1

4
√
3
. (2.3)

(See e.g. refs. [12, 45, 46]). We should mention that we have chosen units in which the AdS

radius RAdS has been set to 1, meaning that our holographic dictionary coincides with that

in ref. [9]. The equations of motion (2.2) have a static black hole solution that corresponds,

in the boundary theory, to a plasma with some nonzero temperature T and some nonzero

density of right-handed fermions with chemical potential µ. Note that κ is the bulk Chern-

Simons coupling constant and it gives the boundary theory the axial anomaly. If we want

a model for a theory like QCD in which there are both left- and right-handed quarks, we

need to introduce two bulk vector potentials, one with κ = − 1
4
√
3
corresponding to µR and

the other with κ = + 1
4
√
3
corresponding to µL. If we then wish to consider only the case

µL = µR, we could define µV ≡ (µR + µL)/2, set the two bulk vector potentials equal

to each other, and ignore κ. Of course, κ becomes relevant in any circumstance in which

µA ≡ (µR − µL)/2 6= 0.

In Eddington-Finkelstein coordinates, the metric and bulk gauge field that describe a

static black hole of mass M and charge Q take the form

ds2 = −r2f(r)uµuνdx
µdxν + r2Pµνdx

µdxν − 2uµdx
µdr

Aµ = −
√
3Q

r2
uµ (2.4)
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with

f(r) ≡ 1− M

r4
+

Q2

r6
, (2.5)

where uµ is a constant vector satisfying uµu
µ = −1, where Pµν ≡ ηµν + uµuν , and where

we are working in axial gauge Ar = 0. The energy density, charge density, entropy density,

temperature and chemical potential of the boundary theory strongly coupled plasma can

be related to the M and Q of the dual black hole as follows [45, 46]. µ and T are given by

µ =

√
3QRAdS

r2+
, T =

r+
2πR2

AdS

(

2−
(

r−
r+

)2

−
(

r−
r+

)4
)

, (2.6)

where r+ and r− are the larger and smaller real solutions of the equation f(r) = 0, and

where we have temporarily restored the factors of RAdS. These relations can be rewritten as

r+
R2

AdS

≡ πT

2

(

1 +

√

1 +
2µ2

3π2T 2

)

and r2− ≡ 1

2
r2+











−1 +

√

√

√

√

√

9− 16
(

1 +
√

1 + 2µ2

3π2T 2

)











.

(2.7)

The energy density, charge density and entropy density are given in terms of µ and T by [9]

ε =
3N2

c

8π2

r3+
R6

AdS

(

3
r+

R2
AdS

− 2πT

)

, ρ =
µN2

c

4π2

r2+
R4

AdS

, s =
N2

c

2π

r3+
R6

AdS

, (2.8)

where Nc is the rank of the gauge group and we are working throughout in the large-Nc

limit. The boundary theory plasma is conformal, meaning that it has Tµ
µ = 0, and so has

an equation of state ε = 3P , and has bulk viscosity ζ = 0. Its shear viscosity can be

calculated via gauge/gravity duality and is given by η
s = 1

4π [47, 48].

Analogously to the way that hydrodynamics is usually derived, the way to find a bulk

metric that is the dual gravitational description of a flowing strongly coupled plasma is to

look for a solution to the bulk Einstein-Maxwell equations in which T , µ and uµ are all

slowly varying functions of space and time, and to organize the calculation via a gradient

expansion. The metric is expanded in powers of boundary gradients

Gµν = G(0)
µν +G(1)

µν +O(∂2) , (2.9)

where G
(0)
µν is defined in (2.4) and where G

(1)
µν contains all possible gradient structures of

first order, with unknown coefficient functions. The solution has been obtained up to first

order in gradients and is given by [9]

ds2 = −r2f(r)uµuνdx
µdxν + r2Pµνdx

µdxν − 2uµdx
µdr + r2F (r)σµνdx

µdxν

+r2jσ
(

P σ
µ uν + P σ

ν uµ
)

dxµdxν +
2

3
r(∂ · u)uµuνdxµdxν (2.10)

where

σµν ≡ PµαP νβ (∂αuβ + ∂βuα)−
2

3
Pµν∂ · u (2.11)
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and

jσ ≡ −1

r
(u · ∂)uσ +

2
√
3Q3κ

Mr6
ℓσ + J(r)∂σ

µ

T
, (2.12)

where ℓµ ≡ ǫµναβu
ν∂αuβ is the four-vector containing the vorticity of the fluid, and where

the functions F (r) and J(r) are, up to leading nontrivial order in µ, given by

F (r) ≡ 1

4πT

[

2 arctan

(

πT

r

)

− log

(

r4

(r + πT )2(r2 + π2T 2)

)]

+
µ2

24π2T 2

[

− 3

T
+

4πT

r2
+

2

r + πT
+

4(r + πT )

r2 + π2T 2

+
6

πT

[

arctan

(

r

πT

)

+ log

(

r2

r2 + π2T 2

)]]

+O
(

µ4
)

(2.13)

and

J(r) ≡ µ

24π3r4T 2

[

2π2T 2r(3r − 2πT ) (2.14)

−3(r4 − π4T 4)

[

2 arctan

(

πT

r

)

− log

(

(r + πT )2

r2 + π2T 2

)]]

+O
(

µ3
)

.

Note that since Q ∝ µ the anomalous term in jσ that is proportional to κℓσ is of order

µ3, while the leading µ-dependence in the metric (2.10) coming from F (r) and J(r) is of

order µ2. We will see the effects of the terms of order µ2 in section 3 and shall introduce

the effects of order µ3 that originate from the axial anomaly in section 4. In section 4 we

shall also introduce effects that originate from the axial anomaly that are proportional to

an external magnetic field, rather than to the fluid vorticity. Doing so will require adding

an additional term in jσ, a term that is of order µ2, and that is proportional to κ and the

magnetic field. Note that, as in ref. [9], we are using the Landau definition of the fluid

velocity uµ, such that the Lorentz frame in which uµ = (1,~0) corresponds to the frame in

which the fluid momentum T 0i vanishes. In this local fluid rest frame, there can still be

nonzero charge currents or entropy currents, as we shall see later.

To the same order in µ/T and gradients as above, the bulk gauge field now takes

the form

Aµ = −
√
3Q

r2
uµ +

6κQ2

Mr2
ℓσ + a(r)∂σ

µ

T
(2.15)

where we are still in Ar = 0 gauge and where a(r) is a known function that can be found

in ref. [9]. However, the bulk gauge field does not affect the string that we will introduce

in the next section that constitutes the dual description of the heavy quark, and for this

reason we do not require Aµ for our considerations.

In most contexts relevant to heavy ion collisions, µ/T is small. If µ represents an

excess of µR over µL or vice versa, these only arise due to fluctuations or anomalous effects

and are certainly small compared to T . If, as in section 3, we treat a nonchiral plasma

and think of µ as representing the chemical potential for quark number (which in turn is

one-third that for baryon number), µ/T can be as large as ∼ 1 in the lowest energy heavy

– 6 –
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ion collisions possible at RHIC but in higher energy collisions it is substantially smaller

than 1. We will see in section 6 that the effects of interest are suppressed by powers of

µA/(πT ) or µV /(πT ); even if the quark number chemical potential µV can get as large as

∼ T it is always small compared to πT . We will therefore work perturbatively in powers

of µ/T .

3 Drag force

In this section we shall only consider µL = µR and shall therefore set κ = 0 and think of

µ as representing the quark number chemical potential (µL + µR)/2.

The drag force has been calculated in a static plasma with µ = 0 and no gradients

in refs. [5–7]. The basic picture of heavy quark dynamics that emerges, with all but the

initially most energetic heavy quarks being rapidly slowed by drag and then becoming trac-

ers diffusing within the (moving) fluid, is qualitatively consistent with early experimental

investigations [49]. For a review, see ref. [50]. Subsequently, the holographic calcula-

tional techniques were generalized to any static plasmas whose gravitational dual has a

4+1-dimensional metric that depends only on the holographic (i.e. ‘radial’) coordinate in

ref. [51] and heavy quark energy loss and diffusion has by now been investigated in the

equilibrium plasmas of many gauge theories with gravitational duals [52–66]. In partic-

ular, the drag force on a heavy quark in a static plasma with µ 6= 0 was calculated in

refs. [51, 52]. We reproduce these results in section 3.1. More recently, the drag force

on a heavy quark moving through the far-from-equilibrium matter present just after the

collision of two sheets of energy density [67] has been calculated and compared to that

in static strongly coupled plasma in equilibrium [68]. Motivated initially by the need to

understand these results, in ref. [11] the drag force was computed in a fluid with µ = 0 in

which there are spatial and temporal gradients in the fluid temperature and flow velocity,

to leading order in these fluid gradients. In section 3.2, we shall reproduce these results

and shall compute the leading order effects of fluid gradients in a strongly coupled N = 4

SYM plasma with µ 6= 0. (As an aside, we note that the effects of fluid gradients on photon

emission have also been investigated [69].)

3.1 Fluid at rest

According to refs. [5, 6], the dual picture of an (infinitely) heavy quark or antiquark mov-

ing through the strongly coupled plasma of N = 4 SYM theory corresponds to a string

whose endpoint moves on the boundary of AdS along the trajectory of the heavy quark or

antiquark of interest. The string trails “downward” into the bulk spacetime, toward the

black hole horizon. It also trails behind the moving quark or antiquark. The drag force

is defined as the force needed to move the heavy quark with constant velocity v through

the plasma, so we take the endpoint of the string to move along the AdS boundary with

constant velocity v. The drag force is determined in the dual gravitational description

by the shape of the trailing string. Because the string trailing behind a heavy quark or a

heavy antiquark moving with the same velocity through the same fluid has the same shape,

they feel the same force. This conclusion applies throughout: the introduction of gradients

– 7 –
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in the fluid, magnetic fields, and anomalous effects later in this section and in section 4

does not change the fact that heavy quarks and antiquarks feel the same force. We shall

therefore henceforth refer only to heavy quarks.

Without loss of generality one can consider the heavy quark velocity ~v to be directed

along the x-direction and because we are considering a static plasma it makes sense to

work in the rest frame of the medium, generalizing this only later. In this setup the probe

string is described by the Nambu-Goto action

SNG = −
√
λ

2π

∫

dτdσ
√

−g(τ, σ), (3.1)

where λ is the ’t Hooft coupling, which we are assuming is large, and with g(τ, σ) the de-

terminant of the induced worldsheet metric. The worldsheet metric is defined as gab ≡
GAB∂ax

A∂bx
B with xA(τ, σ) the string profile. Here, upper case Latin indices corre-

spond to 4+1-dimensional spacetime indices and lower case indices correspond to the

1+1-dimensional worldsheet metric indices. We also have freedom in the choice of the

parametrization of the worldsheet and it is convenient to take

t(τ, σ) = τ , r(τ, σ) = σ .

For a quark whose trajectory in the boundary theory is x = vt, the ansatz for the shape

of the string in the bulk that corresponds to the word “trailing” is

x(τ, σ) = vτ + ξ(σ), (3.2)

with y(τ, σ) = z(τ, σ) = 0.

The string profile ξ(σ) is found by extremizing the Nambu-Goto action and solving

the resulting Euler-Lagrange equation

∂τ

(

δL
δ∂τ~x

)

+ ∂σ

(

δL
δ∂σ~x

)

=

(

δL
δ~x

)

. (3.3)

We shall solve this for the string profile order-by-order in powers of µ/T . The µ = 0 (or

equivalently zero quark number) solution was obtained in refs. [5, 6]. We can write the

expansion about the µ = 0 solution in Eddington-Finkelstein coordinates as

~x0,2 = ~v τ + ~v
π − 2 arctan

(

σ
πT

)

2πT
+ ~ξ0,2(σ) +O

(

µ4
)

, (3.4)

where the 0, 2 superscript refers to zeroth order in gradients and second order in µ/T and

where the direction of ~ξ0,2 is the same as the direction of ~v, which we are taking to be the

x direction. From the Euler-Lagrange equation (3.3), we find that the equation of motion

for ξ0,2x (σ) takes the form

∂σ(σ
4 − π4T 4γ2)∂σξ

0,2
x (σ) = r.h.s. (3.5)

where the left-hand side that we have given explicitly has the same form also at higher

orders in µ/T while the right-hand side, an expression involving no derivatives with respect
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to σ, is different at each order. Since the string endpoint is constrained to move along the

constant velocity trajectory x = vt, we require ξ0,2x (∞) = 0. Upon solving the equation

of motion, we find that the string profile to order µ2/T 2 and to zeroth order in gradients

takes the form

~x = ~vτ +
~v(π − 2 arctan

(

σ
πT

)

)

2πT

+
~v

12π3T

(µ

T

)2
[

π

(

−3− 1

γ5/2
+

2T (1 + γ2)

γ2σ
+

4Tσ

π2T 2 + σ2

)

+6arctan
( σ

πT

)

+
2

γ2
√
γ
arctan

(

σ

πT
√
γ

)]

(3.6)

where γ = 1/
√
1− v2. In the zero chemical potential limit, (3.6) is the solution obtained

in refs. [5, 6]. In solving the equations of motion to obtain (3.6), we fixed the integration

constants by requiring that the worldsheet must be regular at the worldsheet horizon, to

zeroth order in µ located at σ = πTγ
1

2 , and by requiring that the string endpoint follows

the desired trajectory, as already mentioned.

With the string profile in hand, we can now compute the drag force. The drag force is

defined as (see e.g. refs. [5, 6, 11])

fµ(τ) ≡ − lim
σ→∞

ηµνΠσ
µ(τ, σ) (3.7)

where the string momentum is

Πσ
µ ≡ −

√
λ

2π
GµN

1√−g

[

gτσ∂τX
N − gττ∂σX

N
]

(3.8)

and we are interested in the instantaneous drag force at τ = 0. (Note that fµ is not

a Lorentz 4-vector but one could introduce the proper force γfµ which has appropriate

transformation properties.) Upon substituting the string profile (3.6) into the definition of

the string momentum we have

lim
σ→∞

Πσ
µ(0, σ) = −T 2

√
λ

12π

[

6π2γ − (1− 3γ)
(µ

T

)2
](

1− 1

γ2
, ~v

)

(3.9)

from which we find that the drag force is given by

fµ
(0) =

T 2
√
λ

12π

1

γ2
(γwµ − δµ0 )

(

6π2γ − (1− 3γ)

(

µ

T

)2)

(3.10)

where wµ = γ(1, ~v) is the four velocity of the quark. This result was first obtained in

ref. [51]. Note that this force, conventionally called the drag force, is defined as the force

that an external agent must exert on the heavy quark in order to keep it moving at constant

velocity ~v. We see from the result (3.10) that ~f points in the same direction as ~v. The

force that the fluid itself exerts on the heavy quark is −~f , in the −~v direction.

We have obtained the drag force in the fluid rest frame, where uµ = (1,~0). We can

now Lorentz-transform γfµ to a general frame, and upon doing so we find

fµ
(0) = −

√
λ

2π

π2T 2

γ
(swµ + uµ)

(

1 +
(1 + 3s)

6s

(

µ

πT

)2)

(3.11)
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where s ≡ u · w is the only Lorentz scalar that can arise at zeroth order in gradients. It

also can be shown by direct calculation, starting from the definitions of the drag force and

the string momentum, that wµf
µ(τ) = 0. Note that in the nonrelativistic limit γ → 1

we have s = −1 and the µ-dependence of the drag force is ∼
(

1 + 1
3(

µ
πT )

2
)

whereas in the

ultra-relativistic limit γ → ∞ we have s = −∞ and the µ-dependence of the drag force

is ∼
(

1 + 1
2(

µ
πT )

2
)

. This means that in the presence of a nonzero chemical potential, the

force required to move the heavy quark through the strongly coupled plasma is strictly

speaking no longer a drag force, since the magnitude of the force is no longer proportional

to the momentum of the heavy quark. This is also the case in the presence of nonzero

fluid gradients, as shown in ref. [11]. By convention, we will nevertheless continue to refer

to the force needed to move the heavy quark through the fluid as a drag force. As a side

remark here, but a side remark that we will need in eq. (5.14) in section 5, note from (2.7)

that r+ ∼ πT
(

1 + 1
6(

µ
πT )

2
)

, indicating that in the nonrelativistic limit the drag force is

proportional to r2+.

3.2 Corrections to the drag force due to fluid gradients

The drag force was calculated to first order in fluid gradients at zero µ in ref. [11]. We

can follow the same logic. We must first obtain the string profile to first order in fluid

gradients. Since the string profile at zeroth order in gradients that we obtained in (3.6)

above contains τ only at linear order one can make the following ansatz, which satisfies

the equation of motion:

~x1,n = ~x0,n + τh1,n(σ) + ~ξ1,n(σ) . (3.12)

Here, the expression for the string profile to zeroth order in fluid gradients in a general

frame can easily be obtained from our previous results and is given by

~x0,0(τ, σ) = ~vτ − 1

πT

(

u0~v − ~u
)

(

arctan
( σ

πT

)

− π

2

)

. (3.13)

~x0,1 vanishes, and ~x0,2 can also easily be obtained from our previous results. It can then

be shown that choosing h1,n(σ) = Dt~x
0,n|τ=0, with the medium derivative defined as Dt ≡

∂t + vi∂i, cancels the τ -dependence in the equation of motion. Next, we expand about the

zeroth-order-in-gradients solution, see the τ -dependent terms cancel against contributions

introduced by h1,n(σ), and find that ~ξ1,n satisfies an equation of the form

∂σ(σ
4 − π4T 4γ2)∂σξ

1,n
i (σ) = r.h.s. (3.14)

where the right-hand side depends only on σ, not on derivatives of σ, and where the right-

hand side is the same for i = y and i = z but is different for i = x. We shall not provide

the expressions for the right-hand side here as they are lengthy. In solving the equations

of motion (3.14), the boundary conditions are the same as at zeroth order and again we

require regularity at the worldsheet horizon. The full solution for ~ξ1,0(σ) can be found in

ref. [11]. We have obtained ~ξ1,2(σ), but again these expressions are very lengthy and we

will not give them here, focussing instead on presenting results for the drag force.
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To first order in gradients and zeroth order in µ, we reproduce the gradient corrections

to the drag force on the heavy quark that were first obtained in ref. [11] and that take

the form

fµ
(1,0) = −

√
λ

2π

πT

γ

[

c1(s)
(

uµ(w · ∂)s− s∂µs− s(suα + wα)∂αU
µ
)

+c2(s)U
µ(∂ · u)−

√
−s(u · ∂)Uµ

]

(3.15)

where s ≡ uαwα as before and where we have defined

c1(s) ≡ π/2− arctan
(√

−s
)

− πTF 0(s)

c2(s) ≡ 1

3
(
√
−s+ (1 + s2)c1(s))

and introduced the projector Uµ ≡ uµ + swµ. Here, the function F 0(s) is obtained by

setting µ = 0 in the function F defined in (2.13).

Turning now to the corrections that are leading nonzero order in both gradients and

µ/T , following the logic set out above we expand the equations of motion for the string

profile in a double expansion in gradients and µ/T , solve them, and obtain the force from

the string profile as we did at zeroth order. We find no contribution that is first order in

µ/T . To second order in µ/T and first order in gradients, the correction to the drag force

is given by

fµ
(1,2) = −

√
λ

48γπ2

µ2

T
×
[

−c3(s)
(

uµ(w∂)s− s∂µs
)

− Uµc4(s)(∂ · u)

−2c5(s)

s

(

(w · ∂) log µ

T

)

uµ + Uµ

(

16− 4π

(−s)
3

2

+ 2
c5(s)

s

)

(w · ∂) log µ

T

+Uµ

(

4c1(s)

s
+

8− 2π

(−s)
5

2

)

(suα + wα)∂αs+
10− 3π

(−s)
5

2

Uµ(w · ∂)s

+

(

s2c3(s) +
6s3 + (3π − 10)s2 + 4− π

(−s)
5

2

)

(u · ∂)Uµ

+

(

sc3(s)−
4(π − 4)

(−s)
3

2

)

(w · ∂)Uµ + 2c5(s)∂
µ log

µ

T

]

(3.16)

where we have defined

c3(s) ≡ 1

(−s)
5

2

[

4− π + 6(−s)
3

2 − 6s2 + 4(−s)
3

2 c1(s) + 3(−s)
5

2 log

(

1− 2
√−s

−1 + s

)]

c4(s) ≡ 1

3(−s)
3

2

[

2
(

3
√
−s+ s

(

2 + 3s(−1 +
√
−s+ s)

)

)

+
√
−s

(

8c1(s)− 3s(1 + s2) log

(

1− 2
√−s

−1 + s

))]

(3.17)

c5(s) ≡ 1√−s

[

4− 3s(
√
−s+ 2s) + 6

√
−s(s2 − 1)

(

c1(s) + log

(

1 +
1√−s

))]
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To a large extent, all of these contributions to the drag force can be considered corrections to

the µ = 0 results (3.15) from ref. [11]; they introduce quantitative changes to the gradient

corrections to the drag force, but do not change the story in qualitative ways beyond

introducing ∂µ(µ/T ) terms that describe the contributions to the drag force on the heavy

quark due to gradients in the chemical potential, and the corresponding charge currents.

4 Anomalous contributions

In the previous section, we have computed the complete correction to the drag force to first

order in fluid gradients up to order µ2 in the absence of κ, which is to say in the absence of

any chiral anomaly, as for example for the case where µL = µR and the µ in the previous

section represents (µL + µR)/2. In this setting, the next order contributions to the drag

force would either be of order µ4 or second order in gradients, and as far as we can see

would not introduce any qualitatively new effects.

We now allow µR and µL to differ and hence we turn on κ, the Chern-Simons coupling

in the bulk gravitational theory that describes the axial anomaly in the boundary gauge

theory. Upon doing so, we shall find contributions to the drag force on a heavy quark that

are qualitatively new, arising in two ways. First, we find new effects that arise at order µ3

because the contribution to the metric (2.10) proportional to κ is proportional to µ3. These

effects are proportional to ℓµ = ǫµναβu
µ∂αuβ and hence are first order in gradients. And,

they only arise when µ represents a chiral chemical potential like µL or µR, meaning that

the effects we shall consider in this section should be smaller in magnitude than those in the

previous section. Second, we find new effects that arise at order µ2 and are proportional

to κ that arise only in the presence of a magnetic field.

We shall also describe the contributions to the drag force that are introduced when we

include the gravitational anomaly in the boundary theory.

As is by now well studied [9, 12, 19, 20, 35], introducing the Chern-Simons coupling in

the bulk corresponds to introducing anomalous contributions to the hydrodynamic equa-

tions for a chiral plasma (a plasma with µL 6= µR) in the boundary theory, contributions

that arise because of the axial anomaly in the gauge theory [44]. The corresponding anoma-

lous transport phenomena have been studied at weak coupling [13, 15, 23] as well as at

strong coupling [9, 12, 19, 20, 23, 30, 35, 70]. These anomalous effects can be summa-

rized by noting that in a chiral fluid in the presence of an external magnetic field ~B or

of nonzero fluid angular momentum ~Ω the axial anomaly causes both vector and axial

currents to flow [12, 13, 20, 23]:

~JV (x) =
µA

2π2
~B +

µV µA

π2
~Ω

~JA(x) =
µV

2π2
~B +

(

µ2
V + µ2

A

2π2
+

T 2

6

)

~Ω , (4.1)

where µV ≡ (µR+µL)/2 and µA ≡ (µR−µL)/2 are the vector and axial chemical potentials.

The first and second terms in the vector current have been named the chiral magnetic

effect (CME) and the chiral vortical effect (CVE), respectively. The expressions (4.1) are
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valid for a U(1) gauge theory; in section 5 we will generalize them as appropriate for

N = 4 SYM theory. We note also that in (4.1) we have left out terms that are higher order

in chemical potentials (order µ2 in the CME and order µ3 in the CVE) that we will need,

and introduce, later in (5.4). The contribution to ~JA that is proportional to T 2 arises due

to the gravitational anomaly (see e.g. refs. [23, 71, 72]).

We shall introduce the four-vector Bµ ≡ 1
2ǫµναβu

νFαβ . Note that in the limit in which

the fluid velocity is nonrelativistic, Bµ and ℓµ take the form Bµ = (0, ~B) and ℓµ = (0, 2~Ω)

in the local fluid rest frame, with ~B and ~Ω being the (externally applied) magnetic field

and the local angular velocity of the fluid.

4.1 Chiral vortical drag force

In this section, we shall compute the anomalous contributions to the drag force required

to pull a heavy quark through a chiral plasma, in which currents like (4.1) are flowing. We

begin by setting the external magnetic field ~B = 0, considering only the effects of vorticity

in the chiral fluid. We derive and solve equations of the form (3.14) and find that at order

µ3 the string profile contains no term proportional to τ and confirm that a contribution at

order µ3 can only come from the presence of the Chern-Simons term in the bulk metric.

Direct calculation then yields a contribution to the string profile given by

~ξ ℓ
1,3(σ) = − 2κT

3π2γ

(µ

T

)3 π4T 4γ2 + π2T 2γ2(1 + γ)σ2 + σ4

σ4(π2T 2γ + σ2)(π2T 2 + σ2)
~ℓ (4.2)

and a vorticity-induced contribution to the drag force in a generic frame given by

(f ℓ)µ1,3 =
κ
√
λ

3γπ3

µ3

T 2

ℓµ + (ℓ · w)wµ

s
. (4.3)

This chiral contribution is directly proportional to the anomalous coefficient κ, as expected.

In the calculation above, µ represents µR. We now repeat the calculation for µL, flipping

the sign of κ, and find that when µL and µR are both nonzero the result is obtained by

replacing µ3 in (4.3) by µ3
R − µ3

L = 6µAµ
2
V + 2µ3

A.

4.2 Chiral magnetic drag force

Next, we are interested in the anomalous contribution to the drag force due to the presence

of a magnetic field. (We will not attempt the analysis for the more generic case of back-

ground electric and magnetic fields.) First, we need to modify the gravitational metric in

a way that corresponds to introducing an external magnetic field in the boundary gauge

theory, see e.g. ref. [39]. This is done by adding a term to the static metric (2.4) that

corresponds to adding a new term to jσ in (2.12) given by

jBσ ≡ κ

π2T 2

( µ

πT

)2
CB(r)Bσ, (4.4)

where

CB(r) ≡
2π2T 2

r2
− π4T 4

r4
+ 2

(

1− π4T 4

r4

)

log

(

r2

r2 + π2T 2

)

. (4.5)
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The full consideration of hydrodynamics with external electric and magnetic fields can be

found in ref. [39]. We shall follow the same procedure as above. And, as we are interested

only in the effects due to the presence of the magnetic field we can work to zeroth order in

fluid gradients. Since there is no contribution in it that is linear in µ/T the string equation

of motion (3.14) simplifies as in the vortical case above and we find a correction to the

string profile given by

~ξ B
1,2(σ) = − κ

π4T 2

(µ

T

)2 σ2(π2T 2γ2 + σ2)CB(σ)− π2T 2γ2(π2T 2 + σ2)CB(πT
√
γ)

(π4T 4γ2 − σ4)(π2T 2 + σ2)
~B ,

(4.6)

where we are considering the magnetic field itself to be first order in gradients. This results

in a magnetic-field-induced correction to the drag force given by

(fB)µ1,2 = −κ
√
λ

2π3γ

(µ

T

)2
s2 CB(πT

√
−s) (Bµ + (B · w)wµ) . (4.7)

We have excluded the term corresponding to the Lorentz force on the quark, as this does

not depend on the medium or on the chiral anomaly and is not of interest to us here.

We then repeat the calculation for µL, flipping the sign of κ, and hence replace µ2

in (4.7) by µ2
R − µ2

L = 4µAµV . Note also that we have assumed that the magnetic field

is a perturbation; it could be interesting to perform a similar calculation in the case of a

strong magnetic field.

We defer speculating about possible phenomenological consequences of the vortical and

magnetic contributions to the drag force that we have found in (4.3) and (4.7) to section 6.

We note, however, that both effects are small both because they are proportional to µA,

which arises only due to topological fluctuations in the plasma, and because they are

proportional to µV /T (chiral magnetic drag force) or µ2
V /T

2 (chiral vortical drag force).

This suppression is less severe in lower energy heavy ion collisions in which the quark

number chemical potential is higher, but of course the lower the collision energy the rarer

it is to produce heavy quarks.

4.3 Contributions to the drag force arising from the gravitational anomaly

Before we continue, we introduce a further generalization. The T 2 term in the anomalous

axial current in (4.1) raises the question of whether there is an analogue of this term in the

drag force. Such a term could be substantially greater in magnitude in any phenomenolog-

ical consideration, since T 2 is greater than µ2
V in heavy ion collisions, and is much greater

than µ2
A. The T

2 contribution to JA in (4.1) is connected to the presence of a gravitational

Chern-Simons term in the bulk metric (see e.g. ref. [23]), namely a contribution to the bulk

action that we have neglected up to this point that takes the form

δS = − κg
16πG5

∫

d5x
√
−GǫMNPQRAMRA

BNPR
B
AQR . (4.8)

Here, κg fixes the coefficient in front of the gravitational axial anomaly in the boundary

theory. If, following ref. [26], we add a single chiral fermion transforming under U(1)L to
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the holographic theory, we then have

κg =
κ

24
. (4.9)

We will use this expression when we make estimates. The value of the ratio (4.9) for the

axial quark number current in two-flavor QCD is κg/κ = 3/20 while in the three-flavor

case it is κg/κ = 3/16. Introducing κg 6= 0 adds two new terms to the expression for jσ
in (2.12) that appears in the bulk metric (2.10), one in the direction of the fluid angular

momentum and one in the direction of the external magnetic field. Working to zeroth

order in gradients and in each case keeping the lowest two nonzero terms in the expansion

in µ/T we find

jBg,σ = κgBσ

(

8π4T 4

r6
− 4µ2

(

r2 − π2T 2
)2

π2T 2r8

((

r2 +
3π2T 2

2

)

+
r4

(

r2 + π2T 2
)

π2T 2 (r2 − π2T 2)
log

(

r2

r2 + π2T 2

))

+O(µ4)

)

jℓg,σ = κgℓσ
4µ

(

2π2r6T 2 − π4r4T 4 + 2r4
(

r4 − π4T 4
)

log
(

r2

r2+π2T 2

)

+ 3π8T 8
)

π2r8T 2

−κgℓσ
32
√
2µ3π2T 2

27r6

(

3
(

6r6 − 3π4r2T 4 − π6T 6
)

π6T 6
log

(

r2

r2 + π2T 2

)

+
1

r4π4T 4

(

18r8 − 9π2r6T 2 + π4r4T 4 − 18π6r2T 6 + 8π8T 8
)

)

+O(µ3) .

(4.10)

Note that κg flips sign for left-handed quarks, which means that in a theory in which there

are both left- and right-handed quarks the term in jBg,σ that is of order κgT
4 will cancel, and

we drop it henceforth. This means that the jBg,σ is only a quantitative correction to the jBσ
in (4.4) that, given (4.9), is small in magnitude. In contrast, because jℓg,σ includes a term

that is linear in µ it can be substantially greater than the jℓσ term in (2.12), as anticipated.

Completing the calculation, for the gravitational axial anomaly contribution to the

drag force we find two terms, one in the ~B direction and one in the ~ℓ direction, given by

(fB
g )µ1,2 = −2κg

κ
(fB)µ1,2 +

√
λκgµ

2

3π3s3T 2γ

(

5sBµ + (B · w)(−2uµ + 3swµ)
)

(f ℓ
g)

µ
1,1 = −

√
λ

2π

4κgµs
2

γ

(

CB

(

πT
√
−s

)

+
3

s4

)

(

ℓµ + (ℓ · w)wµ
)

, (4.11)

where we have only kept the lowest order terms in µ that are nonzero in each case, and

in particular have dropped the O(µ3) term in f ℓ
g that could be obtained from the O(µ3)

term in jℓg,σ.

The new contribution to the chiral magnetic drag force does not introduce any qual-

itative change. The new contribution to the chiral vortical drag force, however, is linear

in µ/T whereas what we had found previously in (4.3) was of order (µ/T )3, meaning that

the new contribution (4.11) is the leading one. At present no observational evidence of
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the T 2 term in (4.1) has been reported (except on the lattice, see refs. [42, 73, 74])). So,

if it is ever possible to see the chiral vortical drag force, in which (4.11) is the leading

contribution, this could be a way to probe the physics of the gravitational axial anomaly

in the gauge theory.

5 The dissipationless character of the chiral magnetic and vortical effects

It was pointed out some time ago [24] using a symmetry argument that the charge currents

induced by the chiral magnetic and chiral vortical effects must be dissipationless. The

argument in its essence is that these chiral effects are time-reversal invariant, and so cannot

result in the production of entropy. In this section we show that our results for the chiral

drag force on a heavy quark provide an example of an explicit calculation that confirms the

dissipationless character of the CME and CVE. We do so by finding a particular setting in

which we can place a heavy quark at rest within momentum and charge currents induced

by either the CME or the CVE, much like placing a defect in a current-carrying wire or

placing a rock in a flowing stream, and see that in the setting that we construct the CME-

or CVE-induced current flows past the heavy quark defect without exerting any drag force

upon it.

Throughout this section we shall largely neglect effects arising from the gravitational

anomaly, in effect setting κg = 0. In order to achieve our goals in this section, we need

not include spatial or temporal gradients in the fluid other than vorticity. Gradients can

also be added, again at the expense of adding complication, and again without affecting

the conclusion.

We shall make our argument in three steps. First, we begin by noting that a heavy

quark that is at rest in the local fluid rest frame feels a chiral drag force in a chiral fluid, in

the presence of either a magnetic field ~B or a fluid vorticity ~Ω. The local fluid rest frame

is the frame in which the fluid momentum T 0i vanishes at the location of the heavy quark.

If the heavy quark is at rest in this frame, then in this frame uα = wα = (1,~0), γ = 1 and

s = −1 and the leading contributions to the chiral drag force due to ~B and ~Ω that we have

calculated in (4.7) and (4.3) simplify to

~fB,ℓ
rest = −κ

√
λ

2π3

µ2

T 2
~B − 2κ

√
λ

3π3

µ3

T 2
~Ω , (5.1)

where we have used the fact that CB(πT ) = 1. Recall that µ here represents µR. When µL

and µR are both nonzero, µ2 is replaced by 4µAµV and µ3 is replaced by 6µAµ
2
V +2µ3

A. It is

striking that a heavy quark at rest in a stationary chiral fluid with µA > 0 (µA < 0) feels a

force exerted on it by the chiral fluid in a direction antiparallel to (parallel to) the direction

of a magnetic field or fluid vorticity. (Recall that κ = − 1
4
√
3
is negative for µ = µR, and

recall that ~f is the force that some external agent must exert to keep the heavy quark at

rest while −~f is the force that the heavy quark feels from the fluid.)

Second, we ask what we expect will happen if we release the heavy quark at rest and

allow it to move under the action of the force −~f , with ~f as in (5.1). The heavy quark

will start to move through the fluid with some initially increasing velocity ~v. As long as
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~v is small in magnitude we can neglect the resulting change in the chiral drag force (5.1),

but because the heavy quark is now moving it will feel an ordinary drag force (3.10) (as

calculated in refs. [5, 6]) in addition, which for small v is given by

~fdrag =

√
λ

2π
π2T 2~v . (5.2)

This means that the heavy quark will accelerate until it reaches a terminal velocity

~vterminal = κ
µ2 ~B

(πT )4
+

4κ

3

µ3~Ω

(πT )4
(5.3)

at which it experiences no further net force. We therefore reach the remarkable conclusion

that in the local fluid rest frame a heavy quark at rest feels a force (5.1) while a heavy

quark moving through the fluid with velocity ~vterminal feels no force.1

Third, we boost by a velocity ~vterminal to a new frame in which the heavy quark that

was moving with velocity ~vterminal in the original frame is now at rest. In this new frame, the

fluid at the location of the heavy quark is flowing with velocity −~vterminal, the heavy quark

is at rest, and the heavy quark feels no force. The fluid momentum current is proportional

to κ and is entirely due to the CME and CVE, and the heavy quark placed in the flowing

fluid feels no force. This is an explicit demonstration of the dissipationless character of the

chiral magnetic and vortical effects.

In the remainder of this section, we will generalize this conclusion in two steps. First,

we will show that the frame in which a heavy quark at rest in the flowing fluid feels no force

is, in fact, the frame in which the local entropy current vanishes. This seems reasonable

since if a heavy quark at rest feels no force even though the fluid is moving past it that

means that the heavy quark is in equilibrium with the moving fluid. We will then use

holography to demonstrate that this conclusion generalizes.

The full expressions for the charge current Jµ and the entropy current including the

chiral magnetic and chiral vortical effects are [12, 13, 20, 23]

Jµ = nuµ + C

(

µ− 1

2

nµ2

ε+ P

)

Bµ +
1

2
C

(

µ2 − 2

3

nµ3

ε+ P

)

ℓµ , (5.4)

sµ = suµ − 1

2

Cµ2s

ε+ P
Bµ − 1

3

Cµ3s

ε+ P
ℓµ , (5.5)

where n is the number density of right- or left-handed quarks and s is the ordinary entropy

density. In these expressions, C is the coefficient of the chiral anomaly, ∂µJµ = C ~E · ~B,

and is given by C = 1/(4π2) in a U(1) gauge theory as in (4.1) while here, in N = 4 SYM

theory, we have

C ≡ −N2
c κ

π2
=

N2
c

4π2
√
3
. (5.6)

1Note that if there were a chemical potential for heavy quarks, meaning an excess density of heavy

quarks compared to the density of heavy antiquarks, then once all the heavy quarks and antiquarks are

moving at vterminal there would be a resulting heavy quark current in the local fluid rest frame.
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We see that when the fluid is at rest there are nonvanishing charge and entropy currents.

However, if we boost to a new frame in which the new (primed) fluid velocity is related to

the original uµ by

u′µ = uµ − 1

2

Cµ2

ε+ P
Bµ − 1

3

Cµ3

ε+ P
ℓµ (5.7)

then in this frame the charge and entropy currents are given by

J ′
µ = nu′µ + CµBµ +

1

2
Cµ2ℓµ , (5.8)

s′µ = su′µ , (5.9)

meaning that we have boosted to a frame in which u′µ = (1,~0) means no entropy current.2

Note, of course, that when u′µ = (1,~0) there is a nonzero momentum current, T 0i 6= 0; the

fluid momentum vanishes when uµ = (1,~0). In the nonrelativistic limit, the boost velocity

needed to accomplish (5.7), namely to boost from the local fluid rest frame to the local

entropy rest frame, is

~vboost = −1

2

C

ε+ P

(

µ2 ~B +
4

3
µ3~Ω

)

(5.10)

where we have used the nonrelativistic approximation ~l ≃ 2~Ω. Upon using (5.6), noting

that ε+ P = N2
c π

2T 4/2, and comparing to (5.3) we see that

vboost = vterminal . (5.11)

We conclude that the frame in which a heavy quark at rest in the flowing fluid feels no

force is in fact the local entropy rest frame.

The generality of this conclusion will become apparent after it is recast holographically,

in terms of the dual gravitational description of the fluid. In particular, upon so doing we

will see that although in the derivation above we only used the contributions to the chiral

magnetic and chiral vortical drag force and to the ordinary drag force that arise at the

lowest nontrivial order in µ/T in each case, the conclusion that we have reached in fact

holds to any order in µ/T .

The authors of refs. [28, 32, 76, 77] have shown that in the holographic description

of a flowing strongly coupled plasma with κg = 0 with the 4+1-dimensional metric (2.10)

the local entropy rest frame is the frame in which the metric function jσ in (2.10) vanishes

at r = rh, where rh is the location of the outer horizon, namely the largest solution of

f(r) = 0, with f(r) also being a metric function in (2.10). For the case of a static fluid

with µ = 0, rh is given simply by rh = πT . In a static fluid with µ 6= 0, we have instead

rh = r+ where r+ is given in terms of µ and T in (2.7). We must therefore compute the

force on a heavy quark at rest in the frame in which j(rh) = 0. This computation turns

out to be sufficiently tractable that we can push it far enough without expanding in µ/T .

We shall include a nonzero magnetic field and vorticity. As throughout this section, we

neglect the gravitational anomaly and fluid gradients. In this case, jσ takes the form

jσ = WB(r)Bσ +W ℓ(r)ℓσ (5.12)

2In the presence of the gravitational anomaly, i.e. if κg 6= 0, the entropy current (5.5) includes additional

terms and, consequently, does not vanish in the “no drag frame” [75].
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where the effects of the chiral anomaly enter through the functionsWB(r) andW ℓ(r) whose

form we obtained explicitly to leading nontrivial order in µ/T in (4.4) and (2.12), respec-

tively. The force on the heavy quark at rest can be calculated following the procedures

developed in previous sections, and one finds

~f = −
√
λ

2π

(

r2hW
B(rh) ~B + r2hW

ℓ(rh)~ℓ
)

. (5.13)

It can be also verified that if one expands this answer for the anomalous drag force in

powers of µ/T , it does indeed coincide with (4.7) and (4.3). If we balance this force against

the drag force on a slowly moving quark, which in this general context is given by

~f =

√
λ

2π
r2h~v , (5.14)

we see that the terminal velocity of the heavy quark is given by

~vterminal =
(

WB(rh) ~B +W ℓ(rh)~ℓ
)

. (5.15)

Comparing this result with (5.12), we see that in the local entropy rest frame in which

jσ(rh) = 0, the terminal velocity vanishes: vterminal = 0. This means that in the local

entropy rest frame, a heavy quark at rest feels no force. Note that in obtaining this result

via this holographic calculation we did not need to expand WB(r) or W ℓ(r) in powers of

µ/T . This means that the result (5.15) is valid to all orders in µ/T . Of course, in (4.4)

and (2.12) we have explicit expressions for WB(rh) and W ℓ(rH) only to lowest nontrivial

order in µ/T ; at higher orders, WB(rh) and W ℓ(rH) receive corrections but the form of

the expression (5.15) for the terminal velocity of the heavy quark remains unchanged.

Note also that although we have not given the resulting more complicated expressions

here, if one adds the effects of fluid gradients into the expressions for jσ, the entropy

current, and the drag force, while keeping κg set to zero, the conclusion that a heavy quark

at rest in the local entropy rest frame feels no force remains unchanged.

Let us close this section by restating this general result in its simplest form. In a

strongly coupled fluid in which µR > µL, in the presence of a magnetic field ~B and for

simplicity in the absence of any fluid gradients including vorticity, we have analyzed the

chiral drag force on heavy quarks with two different velocities:

• If the first heavy quark is at rest in the local fluid rest frame, meaning that it sees

around it a fluid with no momentum flow, this heavy quark feels the fluid around

it exerting a chiral drag force on it pushing it toward the direction of − ~B. It also

sees around it a charge current in the direction of ~B and an entropy current in the

opposite, − ~B, direction. (All signs are reversed if instead the fluid has µL > µR.)

• If a second heavy quark is released and allowed to accelerate under the influence of the

chiral drag force, it does so until it reaches a terminal velocity in the − ~B direction. If

we now boost to the rest frame of this heavy quark, we find a heavy quark that feels

no force. This heavy quark sees a charge current in the ~B direction that is larger in

magnitude than that seen by the first heavy quark. This heavy quark also sees the
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fluid around it flowing, with fluid momentum in the ~B direction. (Again, all signs

are reversed if instead the fluid has µL > µR.)

The second heavy quark provides an example of a “defect” at rest in a flowing chiral fluid,

with both fluid momentum and charge flowing past it, and yet feels no force. Thus, it

provides an explicit example of the dissipationless character of the chiral magnetic and

chiral vortical effects.

This becomes particularly important now that the chiral magnetic effect has been

seen [78] in a condensed matter system, namely the Dirac semi-metal ZrTe5, since we

can assume that the zirconium pentatelluride crystals used in the experiment contain

some defects.

6 Outlook and potential phenomenological consequences

In section 3.2, we obtained the contributions to the drag force on a heavy quark that are

second order in µ/T and first order in fluid gradients in a fluid in which µL = µR, meaning

that there are no contributions to the drag force coming from the chiral anomaly. These

results generalize the µ = 0 results of ref. [11] to nonzero µ. In ref. [11], the analytic

results for the contributions to the drag force that are first order in gradients were used

to obtain an understanding of a variety of curious features of the drag force on a heavy

quark caught between two colliding sheets of energy density, features that were discovered

numerically in the holographic calculation of ref. [68]. We look forward to seeing our results

from section 3.2 used similarly, in conjunction with some future calculation of the collision

of two sheets of energy and charge density.

We have calculated the anomalous contributions to the drag force on a heavy quark

in a chiral plasma to lowest nontrivial order in µ/T in section 4. These contributions to

the drag force change sign in a chiral plasma with µR > µL relative to that with µL > µR.

This parity-odd symmetry makes the chiral drag force novel, qualitatively different from

all contributions to the drag force on heavy quarks that have been calculated previously.

Its unique features — namely that it is a force that pushes all heavy quarks and antiquarks

in the same direction, either parallel to or antiparallel to the magnetic field vector ~B or the

fluid vorticity vector ~Ω, with the direction of the force being opposite in a chiral plasma

with µR > µL relative to that with µL > µR — make it detectable at least in principle via

suitable observables defined for this purpose. In practice the effect is likely to be small in

quantitative terms. We shall provide a rough estimate of the magnitude of the chiral drag

force, before describing a possible observable.

The full leading order expressions for the chiral drag force are given in section 4 for a

quark moving through a chiral plasma with any velocity. Here we recapitulate our result

for the anomalous force on a heavy quark at rest in the local fluid rest frame

2π√
λ
~f = −(3κ− 16κg)µ

2

3π2T 2
~B − 32κgµ~Ω− 4µ3(κ− 16κg)

3π2T 2
~Ω , (6.1)

where we have restored the effects due to the gravitational anomaly, proportional to κg,

that we dropped in (5.1). We can compare this result for the chiral drag force on a heavy
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quark with v = 0 to the result for a heavy quark in the v → 1 limit, where we find

2π√
λ
~f = −4(κ− 2κg)µ

2

3π2T 2
( ~B · ~v)~v − 32κgµ

3
(~Ω · ~v)~v − 4µ3(3κ− 40κg)

9π2T 2
(~Ω · ~v)~v . (6.2)

There are certainly differences between (6.2) and (6.1), for example the fact that in the

ultrarelativistic limit the force is in the ~v direction rather than in the ~B or ~Ω direction,

although its magnitude is greatest when ~v is parallel or antiparallel to ~B or ~Ω. The principal

message coming from (6.2), however, is that the anomalous drag force on a heavy quark

with v → 1 is comparable in magnitude to that on a heavy quark at rest. All heavy quarks

and antiquarks feel a chiral drag force whose magnitude is only weakly dependent on their

velocity. Given that, it seems clear that the fractional effects of the chiral drag force are

largest when v ∼ 0 rather than when v → 1. Although in principle there are anomalous

forces on acting on the ultrarelativistic b-quarks that become b-jets, it seems a better bet

to focus on b-quarks that are almost at rest relative to the fluid. We shall see that even in

this case the effects are small.

Let us consider a heavy quark with mass m that is initially at rest in the local fluid

rest frame in a chiral plasma in the presence of a magnetic field ~B. This quark feels a chiral

drag force

~fB = −κ
√
λ

(

1− 16κg
3κ

)

µ2

2π3T 2
~B . (6.3)

As we described in section 5, this heavy quark starts to move due to this force and as it

moves it begins to feel the standard drag force (5.2) also, meaning that the heavy quark

accelerates until it is moving with a terminal velocity

~vterminal = κ

(

1− 16κg
3κ

)

µ2

(πT )4
~B . (6.4)

How long does it take for the heavy quark to accelerate from rest to a velocity that is close

to vterminal? This timescale is parametrically of order m|~vterminal|/|~fB| ∼ 2πm/(
√
λ(πT )2),

meaning that for charm (bottom) quarks it is of order 1 fm/c (a few fm/c). For our rough

purposes we can therefore estimate that the chiral drag force gives all heavy quarks a

momentum that is aroundm~vterminal. Bottom quarks produced at rest in the fluid therefore

pick up a contribution to their momenta arising from the chiral anomaly that is of order

~pterminal ≡ mb ~vterminal

= mb κ

(

1− 16κg
3κ

)

µ2 ~B

(πT )4

= −0.449mb
µV µA

~B

(πT )4

≃ −3 MeV
mb

4.2 GeV

µV

0.1 GeV

µA

0.1 GeV

~B

(0.1 GeV)2

(

0.5 GeV

πT

)4

, (6.5)

where we have used (2.3) and (4.9), and replaced µ2 by 4µAµV . For concreteness, we have

used the N = 4 SYM values in evaluating the purely numerical factor κ(1− 16κg

3κ ); in QCD
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all components of this coefficient — namely κ, κg/κ and the 16/3 — will take on different

values. There will certainly also be other places where our N = 4 SYM calculation differs

from QCD by factors of order unity. Note, finally, that we have throughout used units in

which a factor of e has been absorbed into ~B and ~E. Restoring this means replacing ~B by

e ~B in (6.5).

Reading the final expression (6.5) from left to right, we see that:

• The effect is small.

• The effect can be enhanced by lowering the collision energy, as doing so increases µV ,

but one should not lower the collision energy too far since doing so makes heavy quark

production rarer and also reduces the initial temperatures reached in the collision.

Generating the chiral effects we are discussing requires the presence of quark-gluon

plasma. Recent measurements [79] indicate that the observables that are sensitive

to the chiral magnetic effect that were seen previously in high energy heavy ion

collisions [80–83] persist robustly down to collision energies corresponding to baryon

chemical potentials µB > 0.3GeV, meaning µV > 0.1GeV.

• It is difficult to estimate the magnitude of the fluctuations in µA in heavy ion col-

lisions. The authors of ref. [84] have recently estimated that µA can locally be as

large as 0.1GeV in heavy ion collisions at top RHIC energies. Estimating this more

reliably will require the development of a relativistic viscous chiral magnetohydrody-

namic code for heavy ion collisions.

• In heavy ion collisions with a nonzero impact parameter, a magnetic field is created

initially by the charged spectators. The conductivity of the quark-gluon plasma

slows the decay of the magnetic field, delaying the decay of the magnetic field in the

plasma to long after the spectators are gone. Reliable estimates here also await a

future magnetohydrodynamic analysis of heavy ion collisions, but perhaps | ~B| can
remain as large as (0.1 GeV)2 for a few fm/c [85–88], although this is more likely to

be an overestimate than an underestimate.

• Taking the average temperature seen by the heavy quark as πT = 0.5GeV is on the

low side for a benchmark value with which to make an estimate, although maybe not

unreasonable for heavy ion collisions with µV > 0.1GeV.

Our estimates suggest that the chiral magnetic drag force on bottom (charm) quarks and

antiquarks pushes them all to the extent that it gives them all a common momentum that

might be as large as ∼ 3MeV (∼ 1MeV), although it should be clear that this estimate is

first of all at present very crude and second of all is more likely to be an overestimate than

an underestimate.3 Furthermore, in events in which there are some regions of the plasma

3From (6.1) we see that there is a chance that the chiral vortical drag force could be larger than the

chiral magnetic drag force since although κg ≪ κ the chiral vortical drag force is larger by some purely

numerical factors and because it is not suppressed by µV /(πT ). However, at present the magnitude of ~Ω in

the droplets of fluid produced in heavy ion collisions is poorly constrained and we have also only just seen

the first measurements of observables that can receive a contribution from the chiral vortical effect [89]. We

will therefore not attempt an estimate of the magnitude of the chiral vortical drag force.
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with µR > µL and other regions with µR < µL, some heavy quarks will be pushed in the

direction antiparallel to ~B while others will be pushed parallel to ~B, reducing the net effect

in the event as a whole.

Although the effects of the chiral drag force are small, we do not wish to underesti-

mate the ingenuity of our experimentalist colleagues. Perhaps they can devise sufficiently

sensitive correlation observables to see the small effects of the chiral drag force on heavy

quarks. For example, it is worth constructing event-by-event observables that can see

whether the B and D mesons in an event have picked up a net momentum perpendicular

to the reaction plane in the “downward” (“upward”) direction in those events in which

the chiral magnetic effect has resulted in an electric current “upwards” (“downwards”)

with positive light hadrons pushed “upwards” (“downwards”) and negative light hadrons

pushed “downwards” (“upwards”). A correlation observable like this uses the CME cur-

rent to define the direction in which the heavy quarks should be pushed by the chiral drag

force, and then checks whether a net push on all the heavy quarks and antiquarks in the

event in this direction is seen. A nice feature of such a correlation observable is that the

observable effects of both the CME current and the chiral drag force should each be equally

suppressed by the partial cancellation between regions of the plasma with µR > µL and

regions with µR < µL.

Given the estimates that we have made, it is certainly our impression that the chiral

drag force is of interest principally from a theoretical perspective, rather than as a phe-

nomenon that experimentalists should expect to observe in heavy ion collisions. Even if

they are only observable in principle, though, it is remarkable to see effects due to the chiral

anomaly giving all the heavy quarks and antiquarks in a chiral plasma a kick. In section 5

we have also used our calculation of the chiral drag force to provide explicit evidence for

the dissipationless character of the chiral magnetic and chiral vortical effects, showing that

the currents that they describe can flow around defects without any dissipation.
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