10 research outputs found

    The impact of statins on health services utilization and mortality in older adults discharged from hospital with ischemic heart disease: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) carries a high burden of morbidity and mortality and is associated with significant utilization of health care resources, especially in the elderly. Numerous randomized trials have established the efficacy of cholesterol reduction with statin medications in decreasing mortality in high-risk populations. However, it is not known what the effect of the utilization of these medications in complex older adults has had on mortality and on the utilization of health services, such as physician visits, hospitalizations or cardiovascular procedures.</p> <p>Methods</p> <p>This project linked clinical and hospital data from the Improving Cardiovascular Outcomes in Nova Scotia (ICONS) database with administrative data from the Population Health Research Unit to identify all older adults hospitalized with ischemic heart disease between October 15, 1997 and March 31, 2001. All patients were followed for at least one year or until death. Multiple regression techniques, including Cox proportional hazards models and generalized linear models were employed to compare health services utilization and mortality for statin users and non-statin users.</p> <p>Results</p> <p>Of 4232 older adults discharged alive from the hospital, 1629 (38%) received a statin after discharge. In multivariate models after adjustment for demographic and clinical characteristics, and propensity score, statins were associated with a 26% reduction in all- cause mortality (hazard ratio (HR) 0.74, 95% confidence interval (CI) 0.63-0.88). However, statin use was not associated with subsequent reductions in health service utilization, including re-hospitalizations (HR, 0.98, 95% CI 0.91-1.06), physician visits (relative risk (RR) 0.97, 95% CI 0.92-1.02) or coronary revascularization procedures (HR 1.15, 95% CI 0.97-1.36).</p> <p>Conclusion</p> <p>As the utilization of statins continues to grow, their impact on the health care system will continue to be important. Future studies are needed to continue to ensure that those who would realize significant benefit from the medication receive it.</p

    Molecular Processes that Regulate Class Switching

    No full text

    Antihistaminica

    No full text

    Kolon und Rektum

    No full text

    Physics of neutrinos

    No full text

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore