934 research outputs found

    Household saving in developing countries : first cross-country evidence

    Get PDF
    This study uses time-series of household data from eleven developing countries to test several hypotheses about saving behavior. Besides just widening the scope of information being used to test the hypotheses, the data set in this study has the advantage of a consistent definition across countries. With these data the authors test how household saving in developing countries responds to the level of per capita disposable income, the rate of growth of disposable income and its deviation from trend, real liquid wealth at the start of the period, the real interest rate, the inflation rate, foreign saving, government transfers to households, and some demographic variables. The results show that income and wealth variables affect saving strongly and in ways consistent with standard theories. Inflation and the interest rate do not show clear effects on saving, which is also consistent with their theoretical ambiguity. Foreign saving and monetary wealth have strong negative effects on household saving, indicating the importance of liquidity constraints in developing countries.Economic Theory&Research,Inequality,Environmental Economics&Policies,Banks&Banking Reform,Economic Conditions and Volatility

    Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record

    Get PDF
    Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets

    One Money, Many Markets - A Factor Model Approach to Monetary Policy in the Euro Area with High-Frequency Identification

    Get PDF
    We reconsider the effects of common monetary policy shocks across countries in the euro area, using a data-rich factor model and identifying shocks with high-frequency surprises around policy announcements. We show that the degree of heterogeneity in the response to shocks, while being low in financial variables and output, is significant in consumption, consumer prices and macro variables related to the labour and housing markets. Mirroring country-specific institutional and market differences, we find that home ownership rates are significantly correlated with the strength of the housing channel in monetary policy transmission. We document a high dispersion in the response to shocks of house prices and rents and show that, similar to responses in the US, these variables tend to move in different directions

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution

    Get PDF
    Imaging across length scales and in depth has been an important pursuit of widefield optical imaging. This promises to reveal fine cellular detail within a widefield snapshot of a tissue sample. Current advances often sacrifice resolution through selective sub-sampling to provide a wide field of view in a reasonable time scale. We demonstrate a new avenue for recovering high-resolution images from sub-sampled data in light sheet microscopy using deep-learning super-resolution. We combine this with the use of a widefield Airy beam to achieve high-resolution imaging over extended fields of view and depths. We characterise our method on fluorescent beads as test targets. We then demonstrate improvements in imaging amyloid plaques in a cleared brain from a mouse model of Alzheimer’s disease, and in excised healthy and cancerous colon and breast tissues. This development can be widely applied in all forms of light sheet microscopy to provide a two-fold increase in the dynamic range of the imaged length scale. It has the potential to provide further insight into neuroscience, developmental biology, and histopathology

    Temporal evolution of shallow marine diagenetic environments: Insights from carbonate concretions

    Get PDF
    Early diagenesis of marine organic matter dramatically impacts Earth's surface chemistry by changing the burial potential of carbon and promoting the formation of authigenic mineral phases including carbonate concretions. Marine sediment-hosted carbonate concretions tend to form as a result of microbial anaerobic diagenetic reactions that degrade organic matter and methane, some of which require an external oxidant. Thus, temporal changes in the oxidation state of Earth's oceans may impart a first-order control on concretion authigenesis mechanisms through time. Statistically significant variability in concretion carbonate carbon isotope compositions indicates changes in shallow marine sediment diagenesis associated with Earth's evolving redox landscape. This variability manifests itself as an expansion in carbon isotope composition range broadly characterized by an increase in maximum and decrease in minimum isotope values through time. Reaction transport modelling helps to constrain the potential impacts of shifting redox chemistry and highlights the importance of organic carbon delivery to the seafloor, marine sulfate concentrations, methane production and external methane influx. The first appearance of conclusively anaerobic oxidation of methane-derived concretions occurs in the Carboniferous and coincides with a Paleozoic rise in marine sulfate. The muted variability recognized in older concretions (and in particular for Precambrian concretions) likely reflects impacts of a smaller marine sulfate reservoir and perhaps elevated marine dissolved inorganic carbon concentrations. Causes of the increase in carbon isotope maximum values through time are more confounding, but may be related to isotopic equilibration of dissolved inorganic carbon with externally derived methane. Ultimately the concretion isotope record in part reflects changes in organic matter availability and marine oxidation state, highlighting connections with the subsurface biosphere and diagenesis throughout geologic time
    corecore