422 research outputs found

    3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.

    Get PDF
    Acknowledgments We are indebted to F. Darbyshire and J. von Hunen for useful comments on earlier versions of this work. This manuscript benefited from thorough and constructive reviews by W. Levandowski and an anonymous reviewer. We also thank J. Connolly, M. Sambridge, B. Kennett, S. Lebedev, B. Shan, U. Faul, and M. Qashqai for insightful discussions about, and contributions to, some of the concepts presented in this paper. The work of J.C.A. has been supported by two Australian Research Council Discovery grants (DP120102372 and DP110104145). Seismic data are from the IRIS DMS. D.L.S. acknowledges support from NSF grant EAR-135866. This is contribution 848 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1106 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au).Peer reviewedPublisher PD

    Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)

    Get PDF
    Thanks to the physical strength of diamonds and their relatively unreactive chemical nature, their mineral inclusions may remain exceptionally preserved from alteration processes and chemical exchanges with surrounding minerals, fluids and/or melts following diamond formation. Cr-bearing spinels are relatively common inclusions found in peridotitic diamonds and important oxybarometers providing information about the oxygen fugacity (fO2) of their source mantle rocks. Here, we investigated a magnesiochromite-olivine touching pair in a diamond from the Udachnaya kimberlite (Siberia) by in situ single-crystal X-ray diffraction and energy-domain synchrotron Mossbauer spectroscopy, aiming to constrain the physical-chemical conditions of diamond formation and to explore the redox state of this portion of the Siberian craton when the diamond was formed. The P-T-fO(2) entrapment conditions of the inclusion pair, determined by thermo- and oxybarometric analyses, are similar to 5.7(0.4) GPa and similar to 1015(50) ? (although entrapment at higher T and re-equilibration during subsequent mantle storage are also possible) and fO(2) near the enstatite-magnesite-olivine-diamond (EMOD) buffer. The determined fO(2) is similar to, or slightly more oxidized than, those of xenoliths from Udachnaya, but whilst the xenoliths last equilibrated with the surrounding mantle just prior to their entrainment in the kimberlite at similar to 360 Ma, the last equilibration of the inclusion pair is much older, occurring at 3.5-3.1, similar to 2 or similar to 1.8 Ga before final encapsulation in its host diamond. Hence, the similarity between xenoliths and inclusion fO(2) values indicates that the modern redox state of this portion of the Siberian lithosphere was likely attained relatively early after its formation and may have persisted for billions of years after diamond formation, at least at the local scale. Moreover, the oxygen fugacity determination for the inclusion pair provides direct evidence of diamond formation near the EMOD buffer and is consistent with recent models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds

    2021 Tajogaite eruption records infiltration of crustal fluids within the upper mantle beneath La Palma, Canary Islands

    Get PDF
    The 2021 Tajogaite eruption at La Palma has represented a unique opportunity to investigate the characteristics of the mantle source feeding modern volcanism in the Canary Islands. With the aim of track the fingerprint of carbon in the local oceanic lithosphere-asthenosphere system, we report the isotopic composition of CO2 (δ13C values versus Vienna Pee Dee Belemnite) in olivine- and clinopyroxene-hosted fluid inclusions (FI) from the 2021 Tajogaite lavas and from lavas/ultramafic xenoliths (olivine-clinopyroxenites, clinopyroxenites, dunites and harzburgites) from the nearby 1677 San Antonio eruption cone/lavas, in an attempt to characterize the origin and evolution of carbon within the local mantle source. Our results indicate that the 2021 and 1677 lavas exhibit δ13C values ranging from −4.94‰ to −2.71‰ and CO2/3He ratios from 3.37 to 6.14 × 109. Ultramafic xenoliths fall in a comparable range of values despite showing higher CO2 concentrations. Our δ13C values fall within the range of carbon isotope results previously reported for the Dos Aguas cold spring located in the Taburiente Caldera (northern La Palma), suggesting an apparent carbon isotope homogeneity at the scale of the entire island. The (relatively narrow) δ13C vs. CO2/3He ratio range of La Palma samples is interpreted to reflect either i) variable extents of open-system degassing of a common mantle endmember having δ13C of ∼1.7‰, or ii) mixing between depleted mantle-like carbon (−6‰ < δ13C < −4‰) and crustal carbon (δ13C = 0‰) endmembers. Both models testify a crustal carbon component recycled in the local mantle. This component, also detected in mantle xenoliths from the neighboring island of El Hierro and the easternmost Lanzarote, indicates a regional characteristic of the mantle beneath the Canary Islands, interpreted as a result of infiltration of carbon-rich melts during past metasomatic events in the local mantle

    U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS

    Full text link
    The regional contribution to the geo-neutrino signal at Gran Sasso National Laboratory (LNGS) was determined based on a detailed geological, geochemical and geophysical study of the region. U and Th abundances of more than 50 samples representative of the main lithotypes belonging to the Mesozoic and Cenozoic sedimentary cover were analyzed. Sedimentary rocks were grouped into four main "Reservoirs" based on similar paleogeographic conditions and mineralogy. Basement rocks do not outcrop in the area. Thus U and Th in the Upper and Lower Crust of Valsugana and Ivrea-Verbano areas were analyzed. Based on geological and geophysical properties, relative abundances of the various reservoirs were calculated and used to obtain the weighted U and Th abundances for each of the three geological layers (Sedimentary Cover, Upper and Lower Crust). Using the available seismic profile as well as the stratigraphic records from a number of exploration wells, a 3D modelling was developed over an area of 2^{\circ}x2^{\circ} down to the Moho depth, for a total volume of about 1.2x10^6 km^3. This model allowed us to determine the volume of the various geological layers and eventually integrate the Th and U contents of the whole crust beneath LNGS. On this base the local contribution to the geo-neutrino flux (S) was calculated and added to the contribution given by the rest of the world, yielding a Refined Reference Model prediction for the geo-neutrino signal in the Borexino detector at LNGS: S(U) = (28.7 \pm 3.9) TNU and S(Th) = (7.5 \pm 1.0) TNU. An excess over the total flux of about 4 TNU was previously obtained by Mantovani et al. (2004) who calculated, based on general worldwide assumptions, a signal of 40.5 TNU. The considerable thickness of the sedimentary rocks, almost predominantly represented by U- and Th- poor carbonatic rocks in the area near LNGS, is responsible for this difference.Comment: 45 pages, 5 figures, 12 tables; accepted for publication in GC

    Immunodiagnostic confirmation of hydatid disease in patients with a presumptive diagnosis of infection

    Full text link
    Information obtained from the routine application of hydatid immunodiagnostic techniques in different clinical situations over a seven-year period is presented. The Immunoelectrophoresis test was used until it was replaced by the simpler, more sensitive and equally specific arc 5 double diffusion (DD5) test. Examination of sera from 1,888 patients with signs and/or symptoms compatible with hydatid disease revealed that the presurgical confirmation of Echinococcus granulosus infection is only obtained by detection of anti-antigen 5 antibodies. The latter were not found in 1,539 presumptive hydatidosis patients whose definitive diagnoses corresponded to other disease conditions. However, false positive latex agglutination test results were obtained in two cases. In all patients whose preoperative serum showed three or more uncharacteristic bands in the absence of anti-antigen 5 antibodies, hydatid cysts were found sur gically. DD5 testing of a fluid sample collected by puncture established its hydatid etiology. Post-operative monitoring of hydatidosis patients demonstrated that persistence of DD5-positivity two years after surgery established the presence of other cysts. Further evidence was obtained in patients with hydatid cysts in intrathoracic, abdominal or other locations associating cyst membrane integrity, antigen release and immunodiagnostic test positivity

    MULTIDISCIPLINARY STUDY OF SUBSIDENCE AND SINKHOLE OCCURRENCES IN THE ACQUE ALBULE BASIN (ROMA, ITALY)

    Get PDF
    Abstract We present the results of a combined analysis of remote sensing and geophysical‐geotechnical data carried out in the Acque Albule Basin, a sinkhole prone area located close to the city of Roma, where a wide travertine wedge is present. We carried out geophysical measurements and borehole drillings over two test areas to image the subsoil where paroxysmal surficial dynamics occur. One site is marked by subsidence occurring at least since the early 2000s, whereas the other site hosts the "La Regina" and "Colonnelle" sinkhole lakes, which discharge sulfur‐carbonated waters. The stability of these two sites threatens highway, railway, and airport facilities, and this study helps to assess the geological hazard. For example, InSAR and LiDAR data helped define wide scale subsidence over the last 20 years and previously undetected small‐scale morphologies. Geophysical measurements of the latter revealed shallow and deep dissolution affecting the travertine and driving surficial paroxysmal events. Both study sites were found to lie inside a large depression located at the junction between Jurassic carbonate and Plio‐Pleistocene units in association with paleo karst morphologies in the travertine deposits and affected by the present‐past spillage of sulfurous waters. Given these elements, multidisciplinary geophysical observations are crucial for assessing and mitigating the geological risk and guiding land use planning and management

    The Variscan subduction inheritance in the Southern Alps Sub-Continental Lithospheric Mantle: clues from the Middle Triassic shoshonitic magmatism of the Dolomites (NE Italy)

    Get PDF
    Although often speculated, the link between the Middle Triassic shoshonitic magmatism at the NE margin of the Adria plate and the subduction-related metasomatism of the Southern Alps Sub-Continental Lithospheric Mantle (SCLM) has never been constrained. In this paper, a detailed geochemical and petrological characterization of the lavas, dykes and ultramafic cumulates belonging to the shoshonitic magmatic event that shaped the Dolomites (Southern Alps) was used to model the composition and evolution of the underlying SCLM in the time comprised between the Variscan subduction and the opening of the Alpine Tethys. Geochemical models and numerical simulations enabled us to define that 5–7% partial melting of an amphibole + phlogopite-bearing spinel lherzolite, similar to the Finero phlogopite peridotite, can account for the composition of the primitive Mid-Triassic SiO2-saturated to -undersaturated melts with shoshonitic affinity (87Sr/86Sri = 0.7032–0.7058; 143Nd/144Ndi = 0.51219–0.51235; Mg # ~ 70; ~1.1 wt% H2O). By taking into account the H2O content documented in mineral phases from the Finero phlogopite peridotite, it is suggested that the Mid-Triassic SCLM source was able to preserve a significant enrichment and volatile content (600–800 ppm H2O) for more than 50 Ma, i.e. since the slab-related metasomatism connected to the Variscan subduction. The partial melting of a Finero-like SCLM represents the exhaustion of the subduction-related signature in the Southern Alps lithosphere that predated the Late Triassic-Early Jurassic asthenospheric upwelling related to the opening of the Alpine Tethys
    corecore