26 research outputs found

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    2016 WSES guidelines on acute calculous cholecystitis

    Full text link

    2013 WSES guidelines for management of intra-abdominal infections

    Get PDF
    Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Testing the Use of the Water Milfoil ( Myriophyllum spicatum L.) in Laboratory Toxicity Assays

    Get PDF
    Abstract Tests aiming to determine the toxic properties of compounds discharged into aquatic systems have relied more on fish or invertebrates than on primary producers and among a number of producers; algae are the most popular test organisms. Macrophytes are important ecological elements in freshwaters and are therefore potentially key organisms for use in toxicity testing of compounds suspected of acting in primary producers. The most common macrophyte used in toxicity testing is Lemna sp., but as a floating plant, it has the limitation of being exposed to toxic compounds only through its lower leaf surface, including roots and rhizoids. Therefore, it is questionable whether tests with Lemna may accurately predict potential effects on submersed and exposed plant species, which have different routs of exposure and morphology. Few other submersed macrophytes have been tested, notably Myriophyllum. In the Iberian peninsula M. spicatum is the most common species within its genus and has been presented as a good bioaccumulator of heavy metals (Wang et al. 1996) and as being sensitive to several toxicants (e.g. Hanson et al. 2003). The aim of this study was to assess the potential of M. spicatum as a testing organism in laboratory assays, by obtaining axenic cultures of this plant and exposing them to several reference compounds to determine the sensitive endpoints
    corecore