383 research outputs found

    Experimental study of solubility of elemental sulphur in methane

    Get PDF
    International audienceThe chemical engineering department of LaTEP has been working for many years on theproblem of sulphur deposition especially in natural gas network [1, 2]. The solid sulphurappears immediately downstream of a pressure reduction facility. One of the hypothesesproposed to explain the solid formation, based on a thermodynamic approach, is thedesublimation of sulphur. During gas expansion, both pressure and temperature decrease.Consequently the gas may become over saturated in sulphur. Because we are below thetemperature of sulphur triple point, part of the gaseous sulphur can be transformed into solidparticles. Thus, it is important to obtain solubility data of sulphur in natural gases. Methane isthe major natural gas component. So, it is of importance to measure solubility of elementalsulphur in CH4. In this paper experimental measurements up to a pressure and temperature of30 MPA and 363.15 K are presented.The principle of the experimental pilot can be resumed following three steps: saturationof the gas with sulphur, trap of all the dissolved gaseous sulphur and finally quantification.Although the principle is simple, experimental difficulties occur at the three steps. A variablevolume equilibrium cell is used to saturate the gas with sulphur. Since sulphur solubility valueis weak in gas transport conditions, the volume of the cell is necessarily big (0.5 Litre). Thepressure of the equilibrium cell is held constant thanks to a piston during the trapping step. Anoriginal gaseous sulphur trapping method was developed. It is based on the reactiveabsorption of the gaseous sulphur with solvent. Indeed, the gas bubbles into a liquid solutionwhich traps gaseous sulphur. Finally, the solution which contains a standard is analysed bygas chromatography and sulphur is quantified. The total volume of the gas withdrawn isdetermined by a position transducer placed on the autoclave. Then, the sulphur solubilityvalue is calculated

    Extension of ASTEC-Na capabilities for simulating reactivity effects in Sodium Cooled Fast Reactor

    Get PDF
    The EU-JASMIN project (7th FP of EURATOM) has been centred on the development and validation of the new severe accident analysis code ASTEC-Na (Accident Source Term Evaluation Code) for Sodium-cooled Fast Reactors (SFR). The development of such computational tool being able to assist safety analysis of innovative reactor concepts is of crucial importance. One of the challenging issues when modelling SFRs is the neutronic reactivity feedbacks. This paper presents the model implemented in ASTEC-Na for representing the reactivity effects in SFR as well as the benchmarking results of a ULOF transient against SAS-SFR code results. It has been verified that the models are correctly implemented and that ASTEC-Na is now able to calculate reactivity feedbacks not only in the sodium single phase, but also after boiling onset and fuel in-pin relocation

    BMC Nephrol

    Get PDF
    BACKGROUND: To describe the quality of life of adolescents initiating haemodialysis, to determine the factors associated with quality of life, and to assess coping strategies and their impact on quality of life. METHODS: All adolescents initiating haemodialysis between September 2013 and July 2015 in French paediatric haemodialysis centres were included. Quality of life data were collected using the "Vecu et Sante Percue de l'Adolescent et l'Enfant" questionnaire, and coping data were collected using the Kidcope questionnaire. Adolescent's quality of life was compared with age- and sex-matched French control. RESULTS: Thirty-two adolescents were included. Their mean age was 13.9 +/- 2.0 years. The quality of life score was lowest in leisure activities and highest in relationships with medical staff. Compared with the French control, index, energy-vitality, relationships with friends, leisure activities and physical well-being scores were significantly lower in haemodialysis population. In multivariate analyses, active coping was positively associated with quality of life and especially with energy-vitality, relationships with parents and teachers, and school performance. In contrast, avoidant and negative coping were negatively associated with energy-vitality, psychological well-being and body image for avoidant coping, and body image and relationships with medical staff for negative coping. CONCLUSIONS: The quality of life of haemodialysis adolescents, and mainly the dimensions of leisure activities, physical well-being, relationships with friends and energy-vitality, were significantly altered compared to that of the French population. The impact of coping strategies on quality of life seems to be important. Given the importance of quality of life and coping strategies in adolescents with chronic disease, health care professionals should integrate these aspects into care management

    Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli

    Get PDF
    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies

    Statistical HOmogeneous Cluster SpectroscopY (SHOCSY): an optimized statistical approach for clustering of ¹H NMR spectral data to reduce interference and enhance robust biomarkers selection.

    Get PDF
    We propose a novel statistical approach to improve the reliability of (1)H NMR spectral analysis in complex metabolic studies. The Statistical HOmogeneous Cluster SpectroscopY (SHOCSY) algorithm aims to reduce the variation within biological classes by selecting subsets of homogeneous (1)H NMR spectra that contain specific spectroscopic metabolic signatures related to each biological class in a study. In SHOCSY, we used a clustering method to categorize the whole data set into a number of clusters of samples with each cluster showing a similar spectral feature and hence biochemical composition, and we then used an enrichment test to identify the associations between the clusters and the biological classes in the data set. We evaluated the performance of the SHOCSY algorithm using a simulated (1)H NMR data set to emulate renal tubule toxicity and further exemplified this method with a (1)H NMR spectroscopic study of hydrazine-induced liver toxicity study in rats. The SHOCSY algorithm improved the predictive ability of the orthogonal partial least-squares discriminatory analysis (OPLS-DA) model through the use of "truly" representative samples in each biological class (i.e., homogeneous subsets). This method ensures that the analyses are no longer confounded by idiosyncratic responders and thus improves the reliability of biomarker extraction. SHOCSY is a useful tool for removing irrelevant variation that interfere with the interpretation and predictive ability of models and has widespread applicability to other spectroscopic data, as well as other "omics" type of data

    MetaFIND: A feature analysis tool for metabolomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolomics, or metabonomics, refers to the quantitative analysis of all metabolites present within a biological sample and is generally carried out using NMR spectroscopy or Mass Spectrometry. Such analysis produces a set of peaks, or <it>features</it>, indicative of the metabolic composition of the sample and may be used as a basis for sample classification. Feature selection may be employed to improve classification accuracy or aid model explanation by establishing a subset of class discriminating features. Factors such as experimental noise, choice of technique and threshold selection may adversely affect the set of selected features retrieved. Furthermore, the high dimensionality and multi-collinearity inherent within metabolomics data may exacerbate discrepancies between the set of features retrieved and those required to provide a complete explanation of metabolite signatures. Given these issues, the latter in particular, we present the MetaFIND application for 'post-feature selection' correlation analysis of metabolomics data.</p> <p>Results</p> <p>In our evaluation we show how MetaFIND may be used to elucidate metabolite signatures from the set of features selected by diverse techniques over two metabolomics datasets. Importantly, we also show how MetaFIND may augment standard feature selection and aid the discovery of additional significant features, including those which represent novel class discriminating metabolites. MetaFIND also supports the discovery of higher level metabolite correlations.</p> <p>Conclusion</p> <p>Standard feature selection techniques may fail to capture the full set of relevant features in the case of high dimensional, multi-collinear metabolomics data. We show that the MetaFIND 'post-feature selection' analysis tool may aid metabolite signature elucidation, feature discovery and inference of metabolic correlations.</p

    Synchronization in periodically driven and coupled stochastic systems-A discrete state approach

    Get PDF
    Wir untersuchen das Verhalten von stochastischen bistabilen und erregbaren Systemen auf der Basis einer Modellierung mit diskreten Zuständen. In Ergänzung zum bekannten Markovschen Zwei-Zustandsmodell bistabiler stochastischer Dynamik stellen wir ein nicht Markovsches Drei-Zustandsmodell für erregbare Systeme vor. Seine relative Einfachheit, verglichen mit stochastischen Modellen erregbarer Dynamik mit kontinuierlichem Phasenraum, ermöglicht eine teilweise analytische Auswertung in verschiedenen Zusammenhängen. Zunächst untersuchen wir den gemeinsamen Einfluß eines periodischen Treibens und Rauschens. Dieser wird entweder mit Hilfe spektraler Größen oder durch Synchronisation des Systems mit dem treibenden Signal charakterisiert. Wir leiten analytische Ausdrücke für die spektrale Leistungsverstärkung und das Signal-zu-Rauschen Verhältnis für periodisch getriebene Renewal-Prozesse her und wenden diese auf das diskrete Modell für erregbare Dynamik an. Stochastische Synchronization des Systems mit dem treibenden Signal wird auf der Basis der Diffusionseigenschaften der Übergangsereignisse zwischen den diskreten Zuständen untersucht. Wir leiten allgemeine Formeln her, um die mittlere Häufigkeit dieser Ereignisse sowie deren effektiven Diffusionskoeffizienten zu berechnen. Über die konkrete Anwendung auf die untersuchten diskreten Modelle hinaus stellen diese Ergebnisse ein neues Werkzeug für die Untersuchung periodischer Renewal-Prozesse dar. Schließlich betrachten wir noch das Verhalten global gekoppelter bistabiler und erregbarer Systeme. Im Gegensatz zu bistabilen System können erregbare Systeme synchronisiert werden und zeigen kohärente Oszillationen. Alle Untersuchungen des nicht Markovschen Drei-Zustandsmodells werden mit dem prototypischen Modell für erregbare Dynamik, dem FitzHugh-Nagumo System, verglichen und zeigen eine gute Übereinstimmung.We investigate the behavior of stochastic bistable and excitable dynamics based on a discrete state modeling. In addition to the well known Markovian two state model for bistable dynamics we introduce a non Markovian three state model for excitable systems. Its relative simplicity compared to stochastic models of excitable dynamics with continuous phase space allows to obtain analytical results in different contexts. First, we study the joint influence of periodic signals and noise, both based on a characterization in terms of spectral quantities and in terms of synchronization with the periodic driving. We present expressions for the spectral power amplification and signal to noise ratio for renewal processes driven by periodic signals and apply these results to the discrete model for excitable systems. Stochastic synchronization of the system to the driving signal is investigated based on diffusion properties of the transition events between the discrete states. We derive general results for the mean frequency and effective diffusion coefficient which, beyond the application to the discrete models considered in this work, provide a new tool in the study of periodically driven renewal processes. Finally the behavior of globally coupled excitable and bistable units is investigated based on the discrete state description. In contrast to the bistable systems, the excitable system exhibits synchronization and thus coherent oscillations. All investigations of the non Markovian three state model are compared with the prototypical continuous model for excitable dynamics, the FitzHugh-Nagumo system, revealing a good agreement between both models

    Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies

    Get PDF
    Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS regression method with a special binary ‘dummy’ y-variable and it is commonly used for classification purposes and biomarker selection in metabolomics studies. Several statistical approaches are currently in use to validate outcomes of PLS-DA analyses e.g. double cross validation procedures or permutation testing. However, there is a great inconsistency in the optimization and the assessment of performance of PLS-DA models due to many different diagnostic statistics currently employed in metabolomics data analyses. In this paper, properties of four diagnostic statistics of PLS-DA, namely the number of misclassifications (NMC), the Area Under the Receiver Operating Characteristic (AUROC), Q2 and Discriminant Q2 (DQ2) are discussed. All four diagnostic statistics are used in the optimization and the performance assessment of PLS-DA models of three different-size metabolomics data sets obtained with two different types of analytical platforms and with different levels of known differences between two groups: control and case groups. Statistical significance of obtained PLS-DA models was evaluated with permutation testing. PLS-DA models obtained with NMC and AUROC are more powerful in detecting very small differences between groups than models obtained with Q2 and Discriminant Q2 (DQ2). Reproducibility of obtained PLS-DA models outcomes, models complexity and permutation test distributions are also investigated to explain this phenomenon. DQ2 and Q2 (in contrary to NMC and AUROC) prefer PLS-DA models with lower complexity and require higher number of permutation tests and submodels to accurately estimate statistical significance of the model performance. NMC and AUROC seem more efficient and more reliable diagnostic statistics and should be recommended in two group discrimination metabolomic studies
    corecore