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Abstract

We investigate the behavior of stochastic bistable and excitable dynamics based
on a discrete state modeling. In addition to the well known Markovian two state
model for bistable dynamics we introduce a non Markovian three state model
for excitable systems. Its relative simplicity compared to stochastic models of
excitable dynamics with continuous phase space allows to obtain analytical results
in different contexts.

First, we study the joint influence of periodic signals and noise, both based
on a characterization in terms of spectral quantities and in terms of synchroniza-
tion properties with the driving signal. We present expressions for the spectral
power amplification and signal to noise ratio for renewal processes driven by weak
periodic signals. Applying these results to the discrete model for excitable sys-
tems allows to estimate signal frequencies which are optimally amplified by the
stochastic system. Stochastic synchronization of the system to the driving signal
is investigated based on diffusion properties of the transition events between the
discrete states. We derive general results for the mean frequency and effective
diffusion coefficient which, beyond the application to the discrete models consid-
ered in this work, provide a new tool in the study of periodically driven renewal
processes. Applied to the dichotomically driven Markovian two state model for
bistable system exact analytical results are obtained. While this system only ex-
hibits one to one synchronization the three state model for excitable system shows
different m : n synchronization regimes. The very same discrete model for ex-
citable systems can also be considered as a simple model for a molecular motor.
We show that an appropriate periodic modulation of the concentration of the fuel
molecules can lead to a very regular motion of the motor.

Finally the behavior of globally coupled excitable and bistable units is investi-
gated based on the discrete state description. In contrast to the bistable systems,
the excitable system exhibits synchronization and thus coherent oscillations. A
non vanishing refractory period as well as an excitatory coupling are shown to be
necessary conditions for synchronous firing to occur.

All investigations of the non Markovian three state model are compared with
the prototypical continuous model for excitable dynamics, the FitzHugh-Nagumo
system. They reveal a good agreement between both models, rendering the non
Markovian discrete state model for excitable systems an appropriate simplification
of continuous phase space dynamics commonly used in the modeling of excitable
dynamics.
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Zusammenfassung

Wir untersuchen das Verhalten von stochastischen bistabilen und erregbaren Sy-
stemen auf der Basis einer Modellierung mit diskreten Zuständen. In Ergänzung
zu dem bekannten Markovschen Zwei-Zustandsmodell zur Beschreibung bistabi-
ler stochastischer Dynamik stellen wir ein nicht Markovsches Drei-Zustandsmodell
für erregbare Systeme vor. Seine relative Einfachheit im Vergleich zu stochasti-
schen Modellen erregbarer Dynamik mit kontinuierlichem Phasenraum ermöglicht
es, analytische Ergebnisse in unterschiedlichen Zusammenhängen zu erzielen.

Zunächst analysieren wir den gemeinsamen Einfluß eines periodischen Treibens
und Rauschens. Dieser wird entweder mit Hilfe spektraler Größen oder durch Syn-
chronisationseigenschaften des Systems mit dem treibenden Signal charakterisiert.
Wir leiten analytische Ausdrücke für die spektrale Leistungsverstärkung und das
Signal-zu-Rauschen Verhältnis für schwach periodisch getriebene Renewal-Prozesse
her. Angewand auf das diskrete Modell für erregbare Dynamik, lassen sich damit
Frequenzen abschätzen, die optimal verstärkt werden. Stochastische Synchronizati-
on des Systems mit dem treibenden Signal wird auf der Basis der Diffusionseigen-
schaften der Übergangsereignisse zwischen den diskreten Zuständen untersucht.
Wir leiten allgemeine Formeln her, um die mittlere Häufigkeit dieser Ereignisse
sowie deren effektiven Diffusionskoeffizienten zu berechnen. Über die konkrete An-
wendung auf die untersuchten diskreten Modelle hinaus stellen diese Ergebnisse
ein neues Werkzeug für die Untersuchung periodischer Renewal-Prozesse dar. Die
analytischen Ausdrücke für das dichotom getriebene Markovsche Zwei-Zustands-
modell zeigen nur 1 : 1 Synchronisation mit dem treibenden Signal. Im erregba-
ren Modell findet man dagegen verschiedene m : n Synchronisationsregime. Eben
jenes System kann auch als ein einfaches Modell für molekulare Motoren verstan-
den werden. Wir zeigen, dass eine periodische Veränderung der Konzentration der
Treibstoff-Moleküle zu einer sehr regulären Bewegung des Motors führt.

Schließlich betrachten wir noch das Verhalten global gekoppelter bistabiler und
erregbarer Systeme, wiederum auf der Grundlage der diskreten Modelle. Im Ge-
gensatz zu bistabilen System können erregbare Systeme synchronisiert werden und
zeigen kohärente Oszillationen. Wir demonstrieren, dass eine nicht verschwinden-
de Refraktärperiode sowie eine anregende Kopplung notwendige Bedingungen für
synchrones Verhalten ist.

Alle Untersuchungen des nicht Markovschen Drei-Zustandsmodells werden mit
dem prototypischen Modell für erregbare Dynamik, dem FitzHugh-Nagumo Sy-
stem, verglichen. Wir finden eine gute Übereinstimmung zwischen beiden Model-
len, so dass das diskrete Modell für erregbare Systeme eine geeignete Vereinfachung
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kontinuierlicher Phasenraumsysteme, die man gemeinhin zur Modellierung stocha-
stischer erregbarer Dynamik verwendet, darstellt.

Schlagwörter:
Anregbare Systeme, Renewal Prozesse, nicht Markovsche diskrete Modelle,
Synchronisation
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Chapter 1

Introduction

Nous devons envisager l’état présent de l’univers comme l’effet de
son état antérieur et comme la cause de celui qui va suivre. Une intel-
ligence qui, pour un instant donné, connaîtrait toutes les forces dont
la nature est animée et la situation respective des êtres qui la com-
posent, si d’ailleurs elle était assez vaste pour soumettre ces données à
l’analyse, embrasserait dans la même formule les mouvements des plus
grands corps de l’univers et ceux du plus léger atome; rien ne serait
incertain pour elle, et l’avenir, comme le passé, serait présent à ses
yeux.

At the latest since the discovery of quantum mechanics this deterministic point
of view formulated by Laplace [70] is obsolete. The outcomes of measurements
are in general not deterministic and under the assumption of locality, which a
physicist reluctantly abandons, we cannot assign this randomness to an insufficient
knowledge of the present state, known under the keyword local hidden variables
[4, 7, 28]. Instead, we have to abandon the principle of realism, stating that any
measurable quantity has some value which is independent of the measurement.

Despite this principle probabilistic element due to the quantum mechanical
nature of the world, there are three prerequisites mentioned in the citation of
Laplace which are hardly fulfilled in the majority of physical or biological problems
we face. The demand of knowing both the complete initial state and all the
interactions between the constituents of the system and at the same time being
able to process this information in order to predict the future evolution is in the
majority of cases unsatisfiable. In addition to the impossibility of predicting the
complete detailed evolution it is in many cases undesirable to deal with such a
huge amount of information. Just think of a volume filled with a gas, where one
is not interested in the precise velocities and positions of the gas molecules but
rather in some macroscopic properties like pressure or temperature.

1



2 1. INTRODUCTION

These restrictions led to the development of different concepts. The lack of
knowledge of the precise microscopic state in systems consisting of a huge amount
of identical particles is treated in thermodynamics and statistical physics. The
theory of stochastic dynamics deals with the randomness in the description of
a system, which might be caused by the influence of an incompletely specified
environment or the description of the system in terms of mesoscopic variables,
ignoring again the precise microscopic state. Finally, to deal with complex systems,
whose constituents and interactions are not known in detail and by far too complex
to be microscopically treated, phenomenological models are set up.

The present work touches the last two points just mentioned. But let us first
take a little look at these topics from the historical point of view.

All processes occurring in real, non idealized systems, which are never perfectly
isolated, are influenced by the environment. As the environment is too complex,
consisting of a huge amount of degrees of freedom its state and thus the precise
interaction with the system considered cannot be specified exactly. Due to the lack
of this information, the influence of the environment is often modeled as a stochas-
tic force. A paradigmatic example where this random impact of the environment
can be observed is the erratic motion of a small particle submersed in a fluid. This
Brownian motion, termed after the Scottish botanist Robert Brown (1773-1858)
who discovered it when observing pollen swimming in water, attracted a lot of
attention. His first conjecture that the motion is due to the pollen being alive was
quickly rejected as also clearly non animated objects like dust showed this motion.
A sound explanation of Brownian motion was not given until 1905, when Albert
Einstein [27] investigated this phenomenon within a thermodynamical framework.
Shortly thereafter, Langevin [69] considered the problem from a different point
of view, explaining the fluctuations in the position of the particle by a zero av-
erage random force describing the random impact of the molecules in the liquid.
Langevin’s approach, leading to the same results Einstein has obtained, proved to
be very useful to describe random fluctuations in various dynamical systems. A
differential equation with a stochastic force term, which he set up to describe the
Brownian particle’s velocity, is therefore called Langevin equation.

Despite this external random impact, due to the interaction of the small system
with the environment, randomness can also be present in the system itself for
different reasons. On the one hand the considered system can be a mesoscopic or
macroscopic object, whose coarse grained description in terms of a few macroscopic
variables, may induce a stochastic element due to the lack of a precise specification
of the microscopic state. On the other hand also the quantum character of the
constituents generates randomness.

Nowadays the term noise is well established to name the random forces influ-
encing a dynamical system. It stems from early investigations of random forces in
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electrical circuits [58,93], where noise limited the sensitivity of amplifiers and thus
constitutes the chief obstacle to further improvement of technical devices. In this
field the aim was to understand the effects of noise in order to minimize its influ-
ence. However, despite this self-evident property to produce disorder in a system’s
behavior, it was later discovered that noise can sometimes also have an ordering
influence in nonlinear dynamical systems. A paradigmatic example is the noise
assisted amplification of week signals, termed stochastic resonance. This effect
was originally proposed to explain the periodicity of ice ages [9, 10, 91]. These ice
ages recur periodically with a period of about 100000 years, which coincides with
the period of the change in the earth’s orbit’s eccentricity due to the motion of the
other planets. This induces a periodic modulation of the solar irradiation1, which
however is much too weak to generate cold or warm periods by itself. Why the
switching between warm and cold periods nevertheless happens regularly with this
very same frequency can be explained using a simple bistable model of the earth:
Either it is cold and there is a large coverage of the polar caps with ice, leading
to a strong reflection of the incoming radiation from the sun, and thus it remains
cold; or it is warm, there is less coverage of the polar caps with ice, more heat from
the sun is absorbed and thus it remains warm. The switching between these two
stable states cannot be caused by the very weak periodic modulation of the sun’s
radiation alone. However due to random fluctuations of earth’s atmosphere, think
of the weather or climate, volcanic eruptions etc., a switching becomes possible,
occurring most likely from a warm period to an ice-age if the sun’s radiation is a
little bit less intensive and vice versa if it is more intensive.

In the example above we already touched the second concept mentioned in
the beginning, namely to simplify the description of a complex system to such an
extent that from the resulting model one can understand and explain the system’s
behavior. Generally when modeling something which happens in nature, like a
solid body sliding down an inclined plane or a protein being cut into pieces in a
cell by some protease, one has to map a part of the real world into a mathematical
description. This is done by assigning mathematical objects to measurable quanti-
ties and describing their evolution by some equations. There are different levels of
abstraction, ranging from very complex precise models which capture every detail
of the system, to very simple restricted models which probably describe only a cer-
tain aspect of the system. At first glance one is tempted to judge the most complex
models the best, as they cover more aspects of the system with higher accuracy.
However the price paid is often too high. Consider for example a neuron in the
brain. Such a neuron consist of a certain number, say 1023, different atoms whose
dynamics to the present knowledge is governed by quantum mechanics and thus

1Actually the situation is a little bit more complex, as there are three superposed periodic
modulations of the motion of earth involved, which all affect the solar irradiation.



4 1. INTRODUCTION

described by a Schrödinger equation. A very accurate description of this neuron is
thus obtained by prescribing an appropriate 1023 particle Schrödinger equation to
it. However, despite computational problems and the principal question to which
extent it makes sense to describe macroscopically interacting objects by means
of quantum mechanics, the understanding of the functioning of a neuron gained
from such a description converges to zero. The aim therefore is to obtain sim-
plified models amenable to interpretation and mathematical and computational
treatment. Sticking to the neuron there is a whole zoo of different models start-
ing from the detailed Hodgkin Huxley (HH) model [54]. This model is based on
the physiological characterization of a neuron in terms of ion currents and the
membrane potential which evolve according to the complex opening dynamics of
some ion channels. Investigating the behavior of this model with the appropriate
parameters taken from measurements of real neurons, there is one fast relaxing ion
channel gating variable, which can be eliminated by a quasi steady state approxi-
mation. The two remaining gating variable can be lumped into one, finally ending
up with a two variable model, the famous FitzHugh-Nagumo (FHN) model (see
e.g. [45]). There already the physiological significance of the variables is vague
and one would expect this model to be less predictive than the more complex
Hodgkin-Huxley model. However many features of the behavior of real neurons
are still captured within this model, which on the other hand has the advantage
of being mathematically easier to handle. A further simplification is the leaky
integrate and fire (LIF) neuron model [122]. It captures the fact, that (as seen in
real neurons, the HH and FHN model) has some rest membrane potential which
is changed due to incoming signals until it reaches a threshold. This leads to the
generation of a spike, after which the neuron is insensible to signals during some
refractory period. This model is quite simple and easy tractable and describes
some general aspects of a neurons spike train, however nobody would expect it to
reproduce for example the exact membrane potential in the course of time. Focus-
ing on different aspects, though, like for example the behavior of coupled neurons,
the LIF model probably reproduces as well as any other more complex model the
collective behavior like global oscillations or waves.

There are two types of dynamics which we have already mentioned. The expla-
nation of the periodic recurrence of ice ages was based on a bistable model, while
a neuron exhibits a so called excitable dynamics. This was not coincidental but
due to the fact that these types of dynamics are quite generic; they can be found
throughout a variety of different fields. A bistable system, as already suggested by
its name, has two stable states. Transitions between these states occur due to some
external influence, a signal or external noise, or they may spontaneously occur due
to fluctuations present in the system. Examples of bistable systems range from
the above mentioned ice age – warm period model of earth [9,10,91] to electronic
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circuits like a Schmitt-Trigger [31, 84] and chemical reactions like the detonation
of explosives (although in this example the two states are not very symmetric) and
so on thus probably covering the whole spectrum of nature.

In contrast to bistable systems, an excitable system has only a single stable
state. Small perturbations of the system are damped. However, if the perturbation
exceeds a certain threshold, the systems responds with an excitation, i.e. a drastic
change of its state, from which it finally relaxes back to its stable rest configura-
tion. Apart from the already mentioned spiking dynamics of neurons, excitable
behavior can be found in many different fields, including lasers, chemical reactions,
climate dynamics and cardiovascular tissues to name but a few (see [73] and refer-
ences therein). The above mentioned FHN model has gained importance beyond
the description of neurons. It has been applied to model miscellaneous excitable
systems and can be considered as the archetypal model of excitable behavior.

Because bistable and excitable dynamics are ubiquitous in nature, as is noise,
their interrelation has attracted a lot of research. One paradigmatic example of a
counterintuitive effect of noise is the amplification of weak signals at optimal noise
levels, stochastic resonance, which we already mentioned as an explanation for the
periodic recurrence of ice ages. After this first discovery, stochastic resonance has
been found in a variety of systems on very different levels of complexity, ranging
from physical (ring lasers [82]) and electronic (Schmitt trigger [31]) systems to
chemical and complex biological systems (prey capture of the paddlefish [37, 39,
114]). Apart from bistable dynamics [10,35], stochastic resonance can also be found
in excitable [73] and monostable [123] system as well as in chaotic systems [2]. In
stochastic excitable systems a different, intrinsic ordering effect of noise can be
observed which is termed coherence resonance [43, 90, 100]. Due to the different
dependencies on noise strength of the two time scales which govern on the one hand
the excitation from the rest state and on the other hand the time the system stays
in the excited state and thereafter needs to recover its rest state, there exists an
optimal finite noise level at which these excitations happen most regularly. Beside
these two paradigmatic effects there exist a variety of other constructive noise
induced effects like noise induced phase transitions [12, 13], noise induced pattern
formation [44] or the rectification of fluctuations leading to directed motion [6,52].

Although being already simplified models, the above mentioned FHN system
as well as the standard model for stochastic bistable dynamics, an overdamped
particle in a double well potential subjected to noise, are both still challenging
concerning mathematical and computational treatment. One possibility to further
simplify such a model, consist in the reduction to a few discrete states. While
for stochastic bistable systems a discrete state modeling is well known and widely
used [83], it is less evident how to discretely model stochastic excitable systems, as
a model for excitable dynamics with a few discrete states can no longer be Marko-
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vian. In the introductory chapter 2 we recapitulate the mentioned Markovian two
state model for bistable systems and propose a non Markovian discrete state model
for excitable dynamics. In both models the transition times between the discrete
states constitute a renewal process. The concept of renewal processes is outlined
as well as different quantities to analyze these processes, like the spectral power
density and the effective diffusion coefficient. In the next two chapters the influ-
ence of external periodic signals on bistable and excitable systems is investigated,
based on the introduced discrete state models. While in chapter 3 the charac-
terization is given in terms of spectral based quantities in chapter 4 stochastic
synchronization is considered. We derive general concepts, to investigate periodi-
cally driven discrete state systems. These results are then applied to the discrete
state models for bistable and excitable dynamics and compared with numerically
obtained results from the archetypal model for excitable systems, the FHN system,
and the bistable double well system respectively, showing good agreement. Finally
in chapter 5 the behavior of globally coupled bistable and excitable systems is in-
vestigated. The reduced description in terms of discrete states allows for a partly
analytical treatment. Again we find a good agreement between the behavior of the
discrete systems and the respective continuous systems. Many of the calculations
are presented in detail in a series of appendices.



Chapter 2

Bistable and Excitable Systems – A
Discrete State Approach

Dynamical processes can be modeled on different scales of complexity. Going from
very detailed models to more simplified models there are two opposed tendencies.
On the one hand the more complex the model is the more precise it describes the
underlying system. On the other hand, the simpler models, although being not
able to reproduce all different possible aspects of the original process, may explain
and illustrate some concrete features of the system, leading to an understanding,
which otherwise remains hidden beneath the complexity of the model.

One possibility to simplify a continuous stochastic system is the reduction to
a description in terms of a few discrete states. The system’s behavior is then
specified by the transition times between these discrete states. For example when
investigating a neurons behavior, the important aspect are often only the times
when a spike is emitted and not the complex evolution of the membrane potential
[111]. In a double well potential system, depending on the questions asked, it may
be sufficient to know in which of the two wells the system is located, neglecting
the fluctuations in the wells as well as the actual dynamics when crossing from
one well to the other. In these cases a reduction to a discrete description can be
considered as an appropriate simplification. In this chapter we first review the two
state description of bistable systems [83] and introduce a three state model for
excitable dynamics. Both models are examples of so called renewal processes, for
which the concepts of spectral power density and the effective diffusion coefficient
are reviewed. These quantities will be used in the later chapters to measure some
important aspects of the stochastic processes considered, like the regularity of the
transitions between the discrete states or synchronization of the process to an
external signal.

7



8
2.1. DISCRETE DESCRIPTION AND RENEWAL DYNAMICS FOR CONTINUOUS STOCHASTIC

PROCESSES

2.1 Discrete Description and Renewal Dynamics
for Continuous Stochastic Processes

In this section we consider a discrete description for double well potential systems
and excitable systems. While it is known that the coarse grained description
of a stochastic double well potential system in terms of the two discrete states
right and left well ist still Markovian, leading to an ordinary master equation for
the discrete probabilities, the description of excitable dynamics in terms of a few
states is no longer Markovian. This implies that the discrete probabilities can
not be described by an ordinary master equation, but one has to resort to semi
Markovian master equations. We introduce a special type of master equation,
which exploits some concrete features of the excitable dynamics and is well suited
to generalize the model, making it possible to consider e.g. the influence of a time
dependent external signal.

2.1.1 Bistable systems – Rate processes and master equa-
tions

Let us consider a particle in a symmetric double well potential driven by white
noise Fig. 2.1. The dynamics of this system is described by a stochastic differential

���������	��
����� �������������
������

V (x)

x

−

√

a

b

√

a

b

Figure 2.1: A bistable system as described by eq. (2.1). The reduced two state
description is illustrated by the two differently colored half planes.

equation, called Langevin equation [69]

ẋ = −V ′(x) +
√

2Dξ(t), V (x) = −a
2
x2 +

b

4
x4 (2.1)

where ξ(t) is white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t+ τ)〉 = δ(τ). An equivalent
description of the system can be given in terms of its conditioned probability
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density P (x, t, x0|t0) to find the system at x at time t given that it was at position
x0 at time t0. This probability density is governed by the Fokker-Planck equation
[34,101]

Ṗ (x, t|x0, t0) =
∂

∂x
[V ′(x)P (x, t|x0, t0)] +D

∂2

∂x2
P (x, t|x0, t0).

with initial condition P (x, t0|x0, t0) = δ(x − x0). A comprehensive overview on
Langevin and Fokker-Planck equations may be found in [1, 26,63,112,124]

If we consider the output (position) x(t) in the course of time (see Fig. 2.2) we
notice that the particle is jiggling most of the time in one of the two wells, only
occasionally jumping from one well to the other.

t

x
(t

)

t
(2)
i

t
(1)
i+1 t

(2)
i+1 t

(1)
i+2 t

(2)
i+2

5. 1054. 1053. 1052. 1051. 105

�

�

�
�

Figure 2.2: The output x(t) of a bistable system as described by eq. (2.1) with
a = b = 1 and D = 0.025. The reduced two state description is illustrated by the
gray line.

In order to simplify the description on this system one neglects the fast relax-
ation dynamics in the potential wells and considers only the transitions from one
well to the other which happen on a much slower time scale. It is known that
under the assumption that the potential barrier ∆U between the two wells is large
compared to the noise strength D, implying that the relaxation in the wells is fast
compared to the timescale of the jumps between the wells, the transitions can be
considered as a rate process. Such a rate process has a probability per unit time
to cross the barrier, which is independent on the time which has elapsed since the
last crossing event. The resulting dynamics in the reduced discrete phase space
which consists just of two discrete states namely left and right is still a Markovian
one, i.e. the present state determines the future evolution to a maximal extent
and knowledge about the past does not lead to additional knowledge about the
future.
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The transition rates γ1→2 from the left to the right well and γ2→1 from the right
to the left well, which are both equal for the symmetric double well potential, are
Kramers rates for the excitation over a potential barrier due to white noise. They
can be calculated as [53,67]

γ2→1 =
ω0ω2

2π
exp(−V0 − V2

D
) (2.2)

γ1→2 =
ω0ω1

2π
exp(−V0 − V1

D
) (2.3)

where ω0, ω1 and ω2 are the frequencies (square roots of the modulus of the second
derivatives of the potential) at the potential barrier and the left and right mini-
mum respectively, while V0,1,2 are the corresponding values of the potential. The
resulting waiting time distributions w(1)(τ) and w(2)(τ) in the left and right well
are exponentially distributed (see Fig. 2.3),

w(1/2)(τ) = γ1/2→2/1 exp(−γ1/2→2/1τ).

w
(1)(τ ) = γ1→2 exp(−γ1→2τ )

.

τ

lo
g
w

(1
) (
τ
)

����������������

w
(2)(τ ) = γ2→1 exp(−γ2→1τ )

.

τ

lo
g
w

(2
) (
τ
)

����������������

Figure 2.3: Waiting time distributions (non normalized) in the left and right well
of the double well system taken from simulations of eq. (2.1) with D = 0.1.

The state of this discrete system is described by the two probabilities p(1)(t)
and p(2)(t) to be in state 1 (left well) or state 2 (right well) at time t, respectively.
Knowing the transition probability per unit time to cross the barrier from left to
right or from right to left to be γ1→2 and γ2→1 respectively, we can express the
probability current j(1)(t) from state 1 to 2 and j(2)(t) from state 2 to 1 in terms
of the probabilities as

j(1)(t) = γ1→2p
(1)(t) and j(2)(t) = γ2→1p

(2)(t). (2.4)

The change in time of the probability to be in a certain state is given by the
difference of the probability current into this state and the probability current out
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of this state, resulting in the well known Master equation

ṗ(1)(t) = j(2)(t)− j(1)(t) = γ2→1p
(2)(t)− γ1→2p

(1)(t) (2.5a)
ṗ(2)(t) = j(1)(t)− j(2)(t) = γ1→2p

(1)(t)− γ2→1p
(2)(t). (2.5b)

with the additional normalization condition p(1)(t) + p(2)(t) = 1. The possibil-
ity to obtain such an ordinary Master equation for the discrete description relied
on the fact that the probability current (2.4) between the discrete states can be
expressed in a simple manner in terms of the probabilities. This, in turn, is a
consequence of the fact that the discrete description is still Markovian. Generally,
if the noise induced transition between the different basins of attraction of a con-
tinuous stochastic system described by a Langevin equation, or a corresponding
Fokker-Planck equation, happen on a much longer time scale then the relaxation
within the basins one can assign an appropriate Markovian master equation to the
discrete probabilities to be in one of the different basins of attraction1. In subsec-
tion 3.3.2 we investigate a bistable system, namely the bistable FitzHugh-Nagumo
system, for which this assumption is no longer true, i.e. the transition times and
relaxation times become comparable, and thus a Markovian discrete description
can no longer be applied.

2.1.2 Excitable systems – Renewal processes and non Marko-
vian master equations

In contrast to bistable systems an excitable system is monostable, i.e. its dynamics
has one stable rest state. Small but sufficiently large perturbations, which may
occur due to noise or an external signal, lead to a strong change in the system’s
state before it relaxes again to the rest state. Modeling excitable dynamics on
a continuous plane phase space, the resulting system has to be at least a two
dimensional non potential systems, which already points out some difficulties in
the analytic treatment. However excitable dynamics can also be modeled as a
dynamics on a circle [137] or as a one dimensional dynamics, with a superimposed
threshold and reset condition, like the integrate-and-fire or leaky-integrate and-fire-
model [122]. In this section we propose a different approach, modeling excitable
dynamics as a discrete state system.

A prototypical system exhibiting excitable dynamics is the two dimensional
FitzHugh-Nagumo system (FHN) which was independently proposed by FitzHugh
[33] and Nagumo, Arimoto and Yoshizawa [87]. The FHN system is a simplified
model of the famous four dimensional Hodgkin-Huxley model (HH) [54], which
describes the dynamics of a neuron in terms of its membrane potential and ion

1The problem to obtain, for a more than one dimensional system, the transition rates between
the different states is another story.
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currents. However the FHN system has also obtained some relevance beyond the
description of neurons [29, 80, 81]. The FitzHugh-Nagumo dynamics is governed
by the Langevin equations

ẋ = x− x3 − y +
√

2Dξ(t) (2.6a)
ẏ = ε(x+ a0 − a1y) (2.6b)

where ξ(t) is white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t+ τ)〉 = δ(τ). In passing from
the physiological HH model to the FHN model the physiological variables of the
HH model are somehow mixed together. However the x-variable still represents the
membrane potential of the neuron while the y-variable is a recovery variable with
no direct physiological significance. The nullclines ẋ = 0 and ẏ = 0 together with a
typical trajectory are shown in Fig. 2.4. Due to the small parameter ε in eqs. (2.6)

−a0

���������
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�

y
a0

a1

� ��	�
�	�
��
�
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�
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Figure 2.4: The FitzHugh-Nagumo system

the x-dynamics happen on a much faster time scale than the y-dynamics, leading
in the limit ε → 0 to a one dimensional dynamics on a topological circle. Let us
look in more detail onto the behavior of the FHN system: From the stable fixed
point at the intersection of both nullclines, which is also called rest state in the
neuronal context, the system is excited by a sufficiently large perturbation, leading
to a fast transition onto the right branch of the cubic x-nullcline. On the right
branch the system assumes a high x-value, which at the neuronal level represents
a high membrane potential, This state is called firing state. After having moved
along the right branch the system returns back to the left branch. There the
output (x variable) assumes again a low value like in the rest state, however the
system cannot be directly re-excited, it first has to relax back to the rest state.
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Figure 2.5: Output x(t) of the FHN system eqs. (2.6) with a0 = 0.41, a1 = 0.5,
D = 0.0001 and ε = 0.01.

Therefore this state is called refractory. A typical output of the noisy FHN system
showing the spiking behavior is presented in Fig. 2.5,

The strong timescale separation leads to a well defined distinction between
rest and refractory state and firing state, because the transition from negative to
positive x-values happens almost instantaneously, compared to the slower motion
along the stable branches of the cubic nullcline. Therefore the exact position of
the boundary which separates the discrete states in phase space does not matter
when evaluating the waiting time distributions in these states. Using x = 0 as
the boundary those distributions have been evaluated numerically ( Fig. 2.6).
In contrast to the double well system, where the transitions between the two

.
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) (
τ
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Figure 2.6: Waiting time distributions (non normalized) in the firing (sharp peak
at about τ = 65) and rest and refractory state (right graph). The noise level is
D = 0.0001. Other parameters (cf. eqs. (2.6)) are a0 = 0.41, a1 = 0.5, ε = 0.01.

states were rate processes, implying an exponentially distributed waiting time,
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the situation is more complex. The reduced description of the FHN system in
terms of two (firing state and rest and refractory state) or three (firing state,
refractory state and rest state) is no longer Markovian. Knowing the time when
the system has entered the firing state, gives additional information on the future
evolution, namely on the time when the firing state is left, then just knowing
that the system is currently in the firing state. Specifying the state of the system
by the two probabilities p(1)(t) to be in the firing state at time t and p(2)(t) to
be in the refractory or rest state, a simple description in terms of an ordinary
master equation is no longer possible, due to the fact that the probability current
between the discrete states cannot be related to the probabilities in a simple way
as it was possible in the Markovian case. Therefore we have to resort to the theory
of so called semi Markovian or time convoluted master equations [47, 64]. These
generalized master equations describe the evolution of a discrete state system with
arbitrary waiting time distributions w(i)(τ) in the discrete states i. The term semi
Markovian stems from the fact that although the description is not a Markovian
one (the future evolution of the system does not only depend on the present state
but also on the time of entering this state, i.e. on its past) however once the
system has switched to a new state, the time it has waited in the former one no
longer plays any role, i.e. it completely looses its memory. As semi Markovian
master equations, although known for a long time, are not so familiar we briefly
review their derivation following [47], however restricting ourselves to the case of
two states.

Let us assume that the system has entered state 1 at time t0 = 0. After having
waited a time τ (1) in this state, which is drawn from a waiting time distribution
w(1)(τ) the system switches into state 2. There again, it waits for a time τ (2)

distributed according to w(2)(τ) before it returns to state 1 and so on. Denoting
the probability current from state 1 to 2 at time t by j(1)(t) and from state 2 to 1
by j(2)(t) we obtain the relation

j(1)(t) =

∫ t

t0

dt′j(2)(t′)w(1)(t− t′) + δ(t− t0) and (2.7a)

j(2)(t) =

∫ t

t0

dt′j(1)(t′)w(2)(t− t′). (2.7b)

These relations express the fact that the probability current out of state i at time
t, j(i)(t) is given by the probability current j(j)(t′) into this state at some time t′ in
the past, i.e. between t0 and t, times the probability w(i)(t− t′) that the systems
waits the appropriate time t − t′ in this state in order to leave it at time t. The
additional term δ(t−t0) in the first equation accounts for the initial condition that
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the system entered state 1 at time t0. Introducing the survival probability

z(i)(τ) := 1−
∫ τ

0

dτ ′w(i)(τ ′) (2.8)

to stay at least the time τ in state i before leaving it, we can further relate the
probabilities p(1)(t) and p(2)(t) to be in state 1 or 2 at time t to the probability
currents by

p(1)(t) =

∫ t

t0

dt′j(2)(t′)z(1)(t− t′) and (2.9a)

p(2)(t) =

∫ t

t0

dt′j(1)(t′)z(2)(t− t′). (2.9b)

These equations arise from the fact that the probability p(i)(t) to be in state i at
time t is given by the probability current j(j)(t′) into this state at some time t′
in the past between t and t0 times the probability z(i)(t − t′) to stay at least the
time t − t′ in this state, i.e. at least until time t. Having motivated eqs. (2.7)
and (2.9) the missing steps to arrive at the semi Markovian master equation are
straight forward. Laplace transforming eq.(2.7), (2.9) and (2.8), setting t0 = 0 for
the sake of a simplicity one obtains

ĵ(i)(u) = ĵ(j)(u)ŵ(i)(u) + δi,1, (i, j) = (1, 2) or (2, 1) (2.10)
p̂(i)(u) = ĵ(j)(u)ẑ(i)(u) (2.11)

and

ẑ(i)(u) =
1− ŵ(i)(u)

u
, i = 1 or 2, (2.12)

Here

f̂(u) :=

∫ ∞

0

dt exp(−ut)f(t)

denotes the Laplace transform of a function f(t). Replacing ĵ(i)(u) and ĵ(j)(u) in
eq. (2.10) with the help of eq. (2.11) one ends up with

up̂(i)(u)− δi,1 =
uŵ(j)(u)

1− ŵ(j)(u)
p̂(j)(u)− uŵ(i)(u)

1− ŵ(i)(u)
p̂(i)(u) (2.13)

Eventually, taking into account the initial condition p(i)(t0) = δi,1 one obtains by
backward Laplace transforming eq. (2.13) the final result

d

dt
p(1)(t) =

∫ t

t0

dτφ(2)(t− τ)p(2)(τ)−
∫ t

t0

dτφ(1)(t− τ)p(1)(τ) (2.14a)

d

dt
p(2)(t) =

∫ t

t0

dτφ(1)(t− τ)p(1)(τ)−
∫ t

t0

dτφ(2)(t− τ)p(2)(τ) (2.14b)
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The memory kernels φ(i)(τ) are related to the waiting time distributions w(i)(τ) in
terms of their Laplace transforms as

φ̂(i)(u) =
uŵ(i)(u)

1− ŵ(i)(u)
.

Eqs. (2.14) are valid under the assumption that state 1 (or 2) was entered at time
t0.

This general description, although being very elegant, has some drawbacks
if one has to generalize the problem. For example including a time dependent
external input implies waiting time distributions, which depend on the running
time t. Thus the possibility to exploit the Laplace transform, which depends on
the convolution structure of equations (2.7) and (2.9) is lost. To circumvent this
problem we introduce a different master equation approach [88, 103], which relies
on some special properties of an excitable system and thus of the observed waiting
time distributions in such systems. This property is the stable fixed point, out of
which the system is excited by noise, leading as in the double well system to a
rate process for the excitation over some effective potential barrier. In the waiting
time distributions Fig. 2.6 this rate process is recovered in the exponential decay
for long waiting times. Thus the waiting time distribution in the left state can
be decomposed into a convolution of a sharply peaked waiting time distribution,
which accounts for the motion along the left stable branch of the cubic nullcline
(refractory state) Fig. 2.4 and an exponentially decaying waiting time distribution
which represents the excitation from the stable fixed point (rest state) over some
effective potential barrier due to noise. The waiting time distribution in the firing
state is again sharply peaked, accounting for the motion along the right stable
branch of the cubic nullcline .

A discrete model for the FHN system in the different dynamical regimes, in-
cluding excitable behavior, was already presented in [75]. In this work the precise
waiting time distributions, under the assumption of a perfect time scale separation
and linearization of the nullclines, were evaluated and used to construct a two state
model. Our approach in contrast, is a phenomenological one, leading to a three
state system, consisting of rest (1), firing (2) and refractory (3) state, where the
transitions from firing to refractory and from refractory to rest state are governed
by some sharply peaked waiting time distributions while the transition from rest
to firing state is a rate process with some rate γ. The output of the three state
system, which should be an analogue to the x-variable (membrane potential) in
the FHN-system, assumes a high value in state 2 (firing) and a low value in state
1 and 3 (rest and refractory).

As already suggested it is the Markovian excitation step which allows for an
elegant master equation for the evolution of the probabilities p(i)(t), i = 1, 2, 3 to



17

1 2

3

w
(3)(τ)

w
(1)(τ) = γe

−γτ

w
(2)(τ)

Figure 2.7: The three state model of
excitable systems. The excitation from
state 1 to 2 is a rate process with rate
γ while the transitions form 2 to 3 and
3 to 1 are governed by the residence
time distributions w(2)(τ) and w(3)(τ)
respectively.

be in state i at time t. The crucial point is that knowing the probability p(1)(t)
to be in the rest state 1 we also know the probability current from state 1 to 2
which for a rate process is given by j(1)(t) = γp(1)(t). Having this probability
current we can express the probability currents between the other states by an
appropriate convolution with the respective waiting time distribution. For example
the probability flux into state 1 is given by the integrated probability flux out of
state 1 at some time t − τ in the past weighted with the probability density
w(τ) = (w(2) ◦w(3))(τ) to wait the time τ in state 2 and 3 together, such that the
system will come back to state 1 at time t and thus is contributing to the influx
into state 1 at time t.

The resulting master equations, which describe the evolution of the probabili-
ties if we started at time t0 in state 1 are

d

dt
p(1)(t) =

∫ t

t0

dt′γp(1)(t′)(w(2) ◦ w(3))(t− t′)− γp(1)(t)

d

dt
p(2)(t) = γp(1)(t)−

∫ t

t0

dt′γp(1)(t′)w(2)(t− t′) (2.15a)

d

dt
p(3)(t) =

∫ t

t0

dt′γp(1)(t′)w(2)(t− t′)−
∫ t

t0

dt′γp(1)(t′)(w(2) ◦ w(3))(t− t′)

with initial conditions

p(i)(t0) = δi,1. (2.15b)

Note that due to the Markovian excitation step out of the rest state 1, it is sufficient
to specify as an initial condition to be in state 1 at time t0 instead of demanding
to have entered state 1 at time t0 as it was done for the general semi-Markovian
master equation 2.14.

These special master equations can be shown (cf. appendix A.1) to be equiv-
alent to an appropriate three state version of the general semi Markovian master
eqs. (2.14) in the case of an exponentially distributed waiting time in state 1
w(1)(τ) = γe−γτ , i.e. φ(1)(τ) = γδ(τ). The advantage of our description comes
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into play if, as will be done in the following chapters, we relax the restriction of
stationarity but consider for example a periodic driving. In this case the waiting
time distributions become time dependent and thus eqs. (2.14) are no longer valid.
Even the derivation of some adapted versions of these equations is not possible, as
the Laplace transform used in their derivation relies on the convolution between
the waiting time distribution and the probability fluxes, a structure which in the
case of time dependent waiting time distributions is lost. Our master equation ap-
proach however, directly generalizes to time dependent excitation rates γ → γ(t)
and even time dependent waiting time distributions w(2/3)(τ) → w(2/3)(τ, t). Later
on it will turn out that to a good approximation it is only the excitation rate which
is affected by an external driving or a coupling. The waiting time distributions in
state 2 and 3 thus remain independent on the running time.

Finally we mention that the distinction between rest and refractory, does not
result from a coarse graining of the phase space of the continuous FHN model.
In contrast to the double well system, where the two discrete states where chosen
to be the basins of attraction of the two stable stationary states, there is no well
defined boundary in phase space which separates the rest and refractory state of the
excitable dynamics, as archetypically modeled by the FHN system. Obviously we
cannot assign the basin of attraction of the stationary fixed point, to be that part of
the phase space which corresponds to the rest state, because this basin of attraction
is actually the whole phase space. Although in the rest state the system will be
somewhere in the neighborhood of the stable stationary point of the FHN system,
it does neither make sense to assign some arbitrary neighborhood around the stable
fixed point to the rest state. The distinction between rest and refractory state is
solely made in terms of the observed dynamics, being composed of a sharply peaked
time responsible for the motion along the right stable branch of the cubic nullcline
and an exponentially distributed time representing the excitation dynamics.

2.1.3 Renewal Processes

We have considered two examples of a discrete state modeling of continuous sys-
tems in terms of a master equation description. Both discrete systems, also being
quite different, shared the common property that the waiting times in the different
states are independent of each other. As soon as the process has entered a certain
state the future evolution does only depend on the time of entering this state.
There are no correlations like “If the process has spend a short time in the right
well it will most probably spend a rather long time in the left well thereafter ” or
“If the interspike interval was long the next one will also be long”. Such a point
processes, where the time intervals between subsequent points (events) are inde-
pendent on the history of the process are called renewal processes and have been
extensively treated in the literature [22,23]. The term renewal stems from the fact
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that these processes where first used to analyze statistics of failure times of some
machinery components, which when a failure occurred where replaced by a new
one. Having in mind the independence of subsequent waiting times, it is evident
that the whole dynamics of such a renewal process is fully specified by the statis-
tical properties of the waiting time between subsequent events. These statistics
are specified by a waiting time distribution w(τ) where dP = w(τ)dτ denotes the
probability to observe a waiting time in the interval (τ, τ + dτ). In the simplest
case this waiting time distribution w(τ) between subsequent events is the same
for all events. Let pk(t) denote the probability to have had k events up to time t
and jk(t) the probability flux that event k+1 happens at time t. These quantities
can be related to each other using the waiting time distribution. To this end we
first have to specify an initial condition. An arbitrary however natural choice is
to assume that event 1 happened at time t0, which in terms of the probability
currents translates to j0(t) = δ(t − t0). Then by the same considerations which
lead to eqs. (2.9) and (2.7) we obtain

pk(t) =

∫ t

t0

dt′jk−1(t
′)z(t− t′), k ≥ 1 (2.16a)

jk(t) =

∫ t

t0

dt′jk−1(t
′)w(t− t′), k ≥ 1. (2.16b)

where the survival probability z(τ) denotes the probability that the interval be-
tween two subsequent events will be at least τ . In terms of the waiting time
distribution this survival probability is given by

z(τ) = 1−
∫ τ

0

dτ ′w(τ).

Often one is confronted with the situation that the transition events are still re-
newal processes, however the distribution of the waiting times alternatingly varies.
Consider for example an unsymmetric double well potential system or the excitable
system, where the waiting time in the firing state obeys a different statistic than
the waiting time in the rest and refractory state. Such an alternating renewal
processes with n substates is described by n different waiting time distribution
w(i)(τ), i = 1, . . . , n which govern consecutively the statistics of the time inter-
vals between two subsequent events. We number the events by a tuple (k, i),
where k is augmented after a full sequence of events from 1 to n while i num-
bers the n different events (see Fig. 2.7). The events thus occur in the order
. . . (k−1, n), (k, 1), . . . , (k, n), (k+1, 1), . . .. The interval between events (k, i) and
(k, i+1) is governed by w(i)(τ) for i = 1, . . . , n−1, while the interval between events
(k, n) and (k + 1, 1) is determined by w(n)(τ). Denoting by p(i)

k (t) the probability
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to have had event (k, i) up to time t and by j(i)
k (t) the corresponding probability

flux that event (k, i) happens at time t, we obtain

p
(1)
k (t) =

∫ t

t0

dt′j
(n)
k−1(t

′)z(t− t′), p
(i)
k (t) =

∫ t

t0

dt′j
(i−1)
k (t′)z(t− t′) (2.17a)

j
(1)
k (t) =

∫ t

t0

dt′j
(n)
k−1(t

′)w(t− t′), j
(i)
k (t) =

∫ t

t0

dt′j
(i−1)
k (t′)w(t− t′), (2.17b)

with k ≥ 1 and i = 2, . . . , n. Again we imposed the initial condition that event
(1, 1) happened at time t0, i.e. j(n)

0 (t) = δ(t− t0).
In contrast to the two examples of a bistable and an excitable system in the

previous section this description in terms of the events (k, i) does not only take
into account the actual state left or right, rest, firing, or refractory, as represented
by i, but also considers the number of transitions from left to right or the number
of spikes which have been emitted (compare Figs. 2.7 and 2.8). This additional

1 1 12 2 23 3 3

k k + 1 k + 2

Figure 2.8: Diagrammatic view of the unwrapped discrete state model

information can be ignored by considering

p(i)(t) :=
∑

k

p
(i)
k (t) and j(i)(t) :=

∑
k

j
(i)
k (t)

From eqs. (2.17) one then easily obtains the corresponding n state version of eqs.
(2.9) and (2.7),

p(1)(t) =

∫ t

t0

dt′j(n)(t′)z(t− t′), p(i)(t) =

∫ t

t0

dt′j(i−1)(t′)z(t− t′) (2.18a)

and

j(1)(t) =

∫ t

t0

dt′j(n)(t′)w(t− t′) + δ(t− t0) (2.18b)

j(i)(t) =

∫ t

t0

dt′j(i−1)(t′)w(t− t′). (2.18c)

The description of the renewal process in terms of the probabilities p(i)
k (t) and

the corresponding probability currents j(i)
k (t), i.e. by some general type of master
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equation, is not the only possible way. As mentioned in the beginning of this section
the defining quantity of a renewal process is the waiting time distribution w(τ) or,
in the case of an alternating n state renewal process w(1)(τ) to w(n)(τ). They fully
specify the statistics of the random sequence of event times . . . , tk, tk+1, . . . or, in
the case of an alternating renewal process . . . , t(1)k , t

(2)
k , . . . , t

(n)
k , t

(1)
k+1, . . .. From these

renewal point processes a corresponding stochastic process has to be constructed
in order to consider for example spectral properties. Sticking to our examples, the
double well system assumes some negative output x(1) if it is in the left state, while
it assumes some positive output x(2) in the right state. Thus the corresponding
stochastic process describing the output of the system is

η(t) = x(i) if t
(i)
k < t ≤ t

(i+1)
k (2.19)

which directly generalizes to alternating renewal processes with more than two
substates. For an ordinary renewal process described by a single waiting time
distribution w(τ), there are no substates in which the system’s output may assume
different values. One possibility to assign a stochastic process to such a renewal
dynamics is to consider a sequence of delta spikes, located at the times ti of the
events

χ(t) =
∑

k

δ(t− tk). (2.20)

This might be for example useful when considering spike trains of neurons. The
actual output of the neuron can then be reconstructed from the delta spike train
χ(t) by a convolution with the stereotypical shape of a spike.

Having sometimes the waiting time distributions available, there are also situ-
ations, where we obtain more evidently a master equation for the probabilities of
the renewal process. From these master equations the corresponding waiting time
distributions do not immediately follow. Remember the three state model of an
excitable dynamics eqs. (2.15) or the two state model for a double well system eqs.
(2.5). Therefore, in the following chapters our analysis will follow two approaches,
based on either some general master equation or the waiting time distributions
as either description can be the manifest result of a discrete modeling of some
continuous stochastic system.

2.2 Quantifying the behavior of a stochastic pro-
cess

There are several possibilities to analyze and to extract information from a stochas-
tic process x(t) by assigning quantities to it which have a clear, concrete interpre-
tation. One important such quantity is the spectral power density Sx(ω), which,
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in the context of renewal processes, will be introduced in subsection 2.2.1. If it is
possible to somehow assign events to a stochastic process, the random number NT

of these events in a time interval of length T may serve to analyze the regularity
of the process. We introduce the number of events, and in particular the mean
frequency of events and the effective diffusion coefficient in subsection 2.2.2 and
state the known results for renewal processes.

2.2.1 The spectral power density

The spectral power density Sx(ω) of a stochastic process x(t) describes how the
total power 〈x2〉 of the stochastic process x(t) ist distributed among the different
frequencies. The sharper the spectral power density is concentrated around some
frequency, the more regular, i.e. periodic, is the behavior of the stochastic process
In Fig. 2.9 we have plotted the spectral power density of the FHN system for
three different noise levels. The most pronounced maximum of Sx(ω) at some
intermediate noise value, and thus a most regular behavior is termed coherence
resonance [43, 74,100].
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Figure 2.9: Spectrum of the FHN system (top) for different noise levels D = 0.0001
(left), D = 0.003 (middle) and D = 0.03 (right) and a typical spike train (bottom).
Other parameters (cf. eqs. (2.6)) are a0 = 0.41, a1 = 0.5, ε = 0.01.

In our further calculations we use a definition of the spectral power density
Sx(ω), which can for example be found in [63], modified by a factor of 2π to be
consistent with the most part of literature. Our starting point is the observation of
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the stationary stochastic process x(t) on a finite time interval (0, T ), xT (t), which
can be represented in a Fourier series as

xT (t) =
∞∑

k=−∞

cωk,T exp(iωkt), ωk =
2πk

T
(2.21a)

Its discrete Fourier coefficients are given by

cωk,T =
1

T

∫ T

0

dt exp(−iωkt)xT (t) (2.21b)

The spectral power within a frequency interval (ωa, ωb) of the stochastic process
x(t) is then given by the sum of all 〈|cωn,T |2〉, whose corresponding frequency ωn

is in the interval (ωa, ωb), in the limit T →∞, namely∫ ωb

ωa

dωSx(ω) = 2π lim
T→∞

∑
ωa<ωn<ωb

〈|cωn,T |2〉. (2.21c)

The spectral power density describes how the total power 〈x2〉 of the stochastic
process x(t) ist distributed among the different frequencies. Namely from eq.
(2.21a) Parseval’s identity gives

1

T

∫ T

0

dtx2(t) =
∞∑

k=−∞

|cωk,T |2

and thus using the stationarity of the process x(t) the definition (2.21c) of the
spectral power density leads to∫ ∞

−∞
dωSx(ω) = 2π〈x2〉

or, considering the spectral power density as a function of frequency f = ω/(2π),∫ ∞

−∞
dfS̃x(f) = 〈x2〉, S̃(f) = S(2πf).

The spectral power density of the delta spike sequence eq. (2.20) as well as the
spectral power density of the pulse sequence eq. (2.19) can be expressed explicitly
in terms of the waiting time distributions w(τ) or w(0)(τ) and w(1)(τ) respectively.
These expressions where first derived in [124]. A different derivation of these results
is given in appendix A.2. For the delta spike sequence eq. (2.20) one obtains

Sχ(ω) =
2π

〈τ〉2
δ(ω) +

1

〈τ〉
1− |ŵ(ω)|2

|1− ŵ(ω)|2
(2.22)
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where

ŵ(ω) :=

∫ ∞

0

dτe−iωτw(τ) (2.23)

is the characteristic function of the waiting time density w(τ) whereas

〈τ〉 =

∫ ∞

0

dττw(τ)

denotes the mean waiting time. The corresponding result for the pulse sequence
eq. (2.19) is

Sη(ω) =
2π(a〈τ (0)〉+ b〈τ (1)〉)2

(〈τ (0)〉+ 〈τ (1)〉)2
δ(ω) (2.24)

+
2(a− b)2

ω2(〈τ (0)〉+ 〈τ (1)〉)
Re

(1− ŵ(0)(ω))(1− ŵ(1)(ω))

1− ŵ(0)(ω)ŵ(1)(ω)

where again ŵ(0) and ŵ(1) are the characteristic functions of the respective waiting
time density and 〈τ (0)〉 and 〈τ (1)〉 are the corresponding mean waiting times.

Finally we want to mention the relation between the spectral power density
and the auto correlation function of the stochastic process (For a short derivation
see appendix A.3). This relation, known as the Wiener-Khinchine theorem reads

Sx(ω) =

∫ ∞

−∞
dτ exp(−iωτ)cx,x(τ) (2.25)

where

cx,x(τ) = 〈x(t)x(t+ τ)〉

is the auto correlation function of the stochastic process x(t). As x(t) is assumed
to be stationary cx̃,x̃(τ) is independent on t. Sometimes eq. (2.25) is taken as
the definition of the spectral power density [124]. However if the process x(t) is
not stationary but periodic in time this will lead to difficulties as the correlation
function then depends explicitly on time t. In this case an additional time average
over one period of the process is needed [60] (see section 3.1). Using the definition
(2.21c) this additional averaging procedure is dispensable.

The limits ω → 0 and ω →∞ of the spectral power density

The spectral power density for the delta spike sequence eq. (2.22) and for the pulse
sequence eq. (2.24) can be further evaluated in the limits ω → 0 and ω →∞ (see
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e.g. [72]). Expressing the characteristic function ŵ(ω) eq. (2.23) of the waiting
time density in terms of the moments of the waiting time,

ŵ(ω) =
∞∑

k=0

(−iω)k

k!
〈τ k〉

one ends up with

lim
ω→0

Sχ(ω) =
〈τ 2〉 − 〈τ〉2

〈τ〉3
(2.26)

and

lim
ω→0

Sη(ω) = (a− b)2 〈(τ (0) − 〈τ (0)〉)2〉〈τ (1)〉2 + 〈(τ (1) − 〈τ (1)〉)2〉〈τ (0)〉2

(〈τ (0)〉+ 〈τ (1)〉)3

For ω → ∞ the characteristic function of the waiting time density generally de-
creases to zero 2. Thus from eqs. (2.22) and (2.24) one deduces

lim
ω→∞

Sχ(ω) =
1

〈τ〉
. and lim

ω→∞
Sη(ω) = 0. (2.27)

The spectral power density–comparison between the threestate model
and the FHN system

We finally want to compare the spectral power density of the FHN system (2.6)
with the spectral power density of the threestate model for excitable systems (2.15).
To this end we assume a fixed firing τ (2) and refractory time τ (3), i.e. w(2)(τ) =
δ(τ − τ (2)) and w(3)(τ) = δ(τ − τ (3)). Assigning further the output 1 to the firing
state and −1 to the rest and refractory state, the spectral power density of the
system can be evaluated according to eq. (2.24) (neglecting the term ∝ δ(ω)) as

S(ω) =
4

(T + 1
γ
)ω2

sin2 ωτ (2)

2

1 + 2 γ2

ω2

(
1− cosωT

)
+ γ

ω
sinωT

, T = τ (2) + τ (3). (2.28)

The precise values of τ (2), τ (3) and γ are estimated from the waiting time distri-
butions of the FHN Fig. 2.6 as

τ (2) = 65, τ (3) = 220 and γ = 0.0046. (2.29)

With these values we have compared the spectral power density of the threestate
model (2.28) with the numerically obtained spectral power density of the output
x(t) of the FHN system (2.6) with parameters as in Fig. 2.6. The result is presented
in Fig. 2.10 showing a good quantitative agreement between the three state model
spectral power density and the spectral power density of the archetypal excitable
system, the FHN model.

2There exist pathological cases like a delta peaked waiting time density, i.e. a fixed non
random waiting time for which this is not true



26 2.2. QUANTIFYING THE BEHAVIOR OF A STOCHASTIC PROCESS

ω

S
(ω

)

���������������
	������	�������

102

101

100

10−1

10−2

10−3

10−4

Figure 2.10: Spectral power density according to eq. (2.28) of a threestate system
(solid line) with fixed waiting times τ (2) = 65 and τ (3) = 220 in state 2 and 3
respectively and an excitation rate γ0 = 0.0046 compared to the spectral power
density of the output x(t) of the FitzHugh-Nagumo system eq. (2.6). (× : x(t),
+: dichotomically filtered output 1 if x(t) > 0 and −1 if x(t) ≤ 0) with a0 =
0.41, a1 = 0.5, ε = 0.01 and D = 0.0001.

2.2.2 Effective Diffusion

Assume that we can assign characteristic events to a stochastic process, like the
crossing of the potential barrier in a double well system or the generation of a spike
in an excitable system (see Figs. 2.2 and 2.5). If we already start from a discrete
state system, the transitions between these states may naturally serve as character-
istic events. Properties of the random sequence of such events . . . , ti−1, ti, ti+1, . . .
like the frequency of events or the regularity of their occurrence allow to charac-
terize the underlying stochastic process. To visualize this effect we consider the
spiking of the stochastic FHN model. In Fig. 2.11 we have plotted the number
N0,t of spikes in the time interval (0, t) as a function of the interval length t at
three different noise levels. For each noise level we considered 20 different realiza-
tions of the process. The mean as well as the variance of N0,t grow linearly with
increasing t however the rate of growth is different. The smaller the variance grows
the more regular is the process. Again we observe a most regular behavior at an
intermediate noise level which is a fingerprint of coherence resonance [43, 74, 100]
which was already represented in the spectral power density Fig. 2.9.

To put these observations on a firm ground, consider the random number of
events Nt0,t in a time interval (t0, t]. The instantaneous mean frequency vt0(t) of
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Figure 2.11: Top: 20 realizations of the number of spikes N0,t (black lines) as well
as the mean number of spikes 〈N0,t〉 (gray line) for the FHN system for different
noise levels D = 0.0001 (left), D = 0.001 (middle) and D = 0.01 (right) and the
corresponding mean velocity v̄ and effective diffusion constant D̄eff as well as the
Péclet number.
Bottom: The variance 〈N2

0,t〉 − 〈N0,t〉2 of the number of spikes (taken from 200
realization).
Other parameters (cf. eqs. (2.6)) are a0 = 0.41, a1 = 0.5, ε = 0.01.

events is defined as the increase of the mean number of events in time,

vt0(t) =
d

dt
〈Nt0,t〉

while the instantaneous effective diffusion constant quantifies the increase of the
variance of the number of events in time,

Deff,t0(t) =
d

dt

〈N2
t0,t〉 − 〈Nt0,t〉2

2
.

Often the long time averaged quantities

v̄ = lim
t→∞

〈Nt0,t〉
t

and D̄eff = lim
t→∞

〈N2
t0,t〉 − 〈Nt0,t〉2

2t

provide the information of interest. For the stationary processes considered here
the instantaneous mean frequency and the instantaneous effective diffusion coeffi-
cient do neither explicitly depend on t0 nor on t but only on the length t− t0 of the
considered interval. They therefore agree with the long time averaged quantities
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v̄ and D̄eff. However if we relax the assumption of stationarity and consider for
example periodic renewal processes as will be done in chapter 4 the instantaneous
mean frequency vt0(t) and instantaneous effective diffusion coefficient Deff,t0(t) are
no longer constant. Then the corresponding long time averaged quantities v̄ and
D̄eff are the appropriate mean to capture the system’s behavior by a few numbers.

The effective diffusion constant quantifies how fast the number of events of
different realizations of the process diverge on average. A process running at
twice the speed has a twice the mean frequency and effective diffusion constant.
To have a measure of the regularity of the process which is independent on its
absolute speed one considers the Péclet number

Pe =
v̄

D̄eff
= lim

T→∞

2〈Nt0,t〉
〈N2

t0,t〉 − 〈Nt0,t〉2
.

This number no longer depends on the absolute speed of the process and thus is
better suited to measure the regularity of the process than the effective diffusion
constant. The higher the Péclet number the more regular is the process. The Péclet
number can be interpreted as the mean number of events which happen until the
variance of the number of events is one. Namely assume that the variance is one.
This happens after a time T0 defined by T0D̄eff = 1. Then it immediately follows
from the definition that Pe = T0v which is the average number of events which
happened within the time interval T0. Thus Pe gives the average number of events
after which the variance of the event number has grown to one on average.

For a renewal process with a waiting time w(τ) between subsequent events
these quantities can be calculated [22]. Denoting the moments of the waiting time
by

〈τn〉 =

∫ ∞

0

dττnw(τ)

one obtains

v̄ =
1

〈τ〉
and D̄eff =

〈τ 2〉 − 〈τ〉2

2〈τ〉3
. (2.30)

and therefore

Pe =
2〈τ〉2

〈τ 2〉 − 〈τ〉2
.

Interestingly the mean frequency v agrees with the high frequency limit (2.27) of
the spectral density of the corresponding delta spike train χ(t),

v̄ = lim
ω→∞

Sχ(ω)
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while the effective diffusion coefficient (2.30) agrees up to a factor of 2 with the
low frequency limit (2.26) of the spectral density of a delta spike train [72]

D̄eff =
1

2
lim
ω→0

Sχ(ω)

The Péclet number can thus be expressed as

Pe =
2 limω→0 Sχ(ω)

limω→∞ Sχ(ω)

At the end of section 4.1 we will show that this equivalence is preserved if we
consider periodic instead of stationary delta sequences. Additionally, this equiva-
lence is not a consequence of the renewal property of the underlying process but
holds for general periodic or stationary point processes and the corresponding delta
sequences which will be shown in section 4.1.

2.3 Summary
We have introduced two examples of a discrete state description of continuous
stochastic systems, the well known two state Markovian approximation of the
dynamics of an overdamped particle in a double well potential [83] and a three
state non Markovian model for excitable dynamics [88,103]. While the first one is
described by an ordinary master equation the second one is described by a gener-
alized master equation. We introduced a special type of master equation, which
relied on the fact that the discrete three state model of excitable dynamics exhibits
a Markovian step which describes the excitation from the rest state. In contrast
to the known semi Markovian master equation for general renewal processes, our
description is amenable to further generalizations, like for example the influence of
a time dependent external signal. The introduced three state model for excitable
dynamics will play a central role in the following chapters.

In both models the transition times between the states constitute a renewal
process, which is fully characterized by the waiting time distributions in the dis-
crete states. We introduced the spectral power density as well as the effective
diffusion coefficient and the Péclet number as measures to quantify certain aspects
of the corresponding stochastic process, especially its regularity, and reviewed the
known results for these quantities for stationary renewal processes. In the follow-
ing chapters the situation will be extended to periodically driven systems, leading
to periodic renewal processes and finally globally coupled models are considered.
Depending on the specific situation either a description in terms of a generalized
master equation or in terms of the waiting time distributions will be advantageous.
Therefore we will pursue both approaches in the rest of the present work.
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Chapter 3

Periodically Driven
Systems-Spectral Based
Quantification

Periodic signals naturally occur in a variety of different systems, ranging from light
and sound to less evident examples like the periodic modulation of the earth’s
orbit’s eccentricity. Nowadays equally important are technically generated peri-
odic signals, like radio waves. This ubiquity of periodic signals encouraged a lot
of research on the behavior of periodically driven systems. In cooperation with
noise, periodic driving generates some counter intuitive effects, subsumed under
the notion of stochastic resonance. This phenomenon, describing a most periodic
response to the periodic signal at some finite non vanishing noise level has been ob-
served in many different systems ranging from ring lasers [82] to the pray capture
of animals [37, 114] (for a comprehensive overview see [1] and references therein).
In an ensemble of coupled systems this effect may be further enhanced [62, 119],
subsumed under the notion of array enhanced stochastic resonance.

In the next two chapters we investigate the behavior of periodically driven
bistable and excitable stochastic systems. The analysis is based on the discrete
modeling introduced in chapter 2. While in the present chapter we consider spec-
tral properties of the periodically driven stochastic system leading to the well
known characterization of stochastic resonance in terms of spectral power amplifi-
cation and signal to noise ratio (for an overview see [41]), in chapter 4 synchroniza-
tion properties of the system to the periodic signal are investigated [36,40,96,127].
In both chapters the main focus is on the development of methods to calculate some
characteristic quantities of the system’s response to the periodic signal. These
methods are then applied to the discrete state models of bistable and excitable
system. The analytic results obtained for the discrete systems reproduce well the
observed behavior of the underlying continuous stochastic dynamics.

31
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3.1 The structure of the spectral power density for
periodic processes

Consider a periodic stochastic process x(t) with periodicity T = 2π/Ω. A periodic
stochastic process is a stochastic process whose statistical properties, like mean
value, correlation functions, one time probability distribution etc. are invariant
with respect to a discrete time shift of integer multiples of the period T . A single
realization of the process certainly is not periodic.

The mean value of a periodic process, being a periodic function of t, can be
expanded into a Fourier series

〈x(t)〉 =
∞∑

k=−∞

x̂k exp(ikΩt), x̂k = x̂∗−k. (3.1)

Its auto correlation function no longer depends solely on the time difference as is
the case for stationary processes, i.e. processes which are invariant under arbitrary
time shifts. It also depends on the actual time. Subtracting the product of the time
dependent mean values from the autocorrelation function the resulting function

cx̃,x̃(t, t
′) : = 〈x(t)x(t′)〉 − 〈x(t)〉〈x(t′)〉 = 〈(x(t)− 〈x(t)〉)(x(t′)− 〈x(t′)〉)〉

(3.2)

is assumed to exponentially decay to zero for increasing time difference t− t′ due
to the stochastic nature of the process. This means, that although the correlation
function does not vanish or decay to a constant value for long time distances, this is
only due to the periodicity, which modulates the expectation value. To investigate
the structure of the spectral power density for such a periodic stochastic process
we consider the coefficients

〈|cω,T |2〉 =
1

T 2

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)〈x(t)x(t′)〉. (3.3)

as used in the definition of the power spectral density eq. (2.21c). Substituting
eq. (3.2) therein we obtain

〈|cω,T |2〉 =
∣∣∣ 1
T

∫ T

0

dte−iωt〈x(t)〉
∣∣∣2 +

1

T 2

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)cx̃,x̃(t, t
′).

As cx̃,x̃(t, t
′) → 0 for |t − t′| → ∞ the second summand will tend to zero as 1

T
as

T goes to ∞. Inserting 〈x(t)〉 from eq. (3.1) into the first summand one easily
verifies that for ω 6= nΩ, n ∈ Z, this term vanish in the limit T → ∞ as 1

T 2 .
However if ω = nΩ it does not vanish but is given by |x̂n|2. These non vanishing
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coefficients lead to the appearance of delta spikes in the power spectral density
while the coefficients vanishing as 1

T
constitute the continuous part of the spectral

power density (cf. the existence of a delta peak at ω = 0 for stationary processes
with non vanishing mean, appendix A.2). Thus the spectral power density adopts
the form

Sx(ω) = Sbg(ω) + 2π
∞∑

n=−∞

snδ(ω − nΩ), sn = |x̂n|2. (3.4)

The continuous part

Sbg(ω) = lim
T→∞

1

T

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)cx̃,x̃(t, t
′). (3.5)

is called background spectral power density in the following. Note that the delta
peak at ω = 0 is not contained in Sbg(ω) but represented by s0 although it persists
in the case of stationary processes.

In contrast to stationary processes,the Wiener-Khinchine theorem in its original
form (2.25) is no longer valid for periodic processes as already the correlation
function no longer depends only on the time difference but also on the running
time. However replacing the auto correlation function with the corresponding
period averaged auto correlation function

c̄x,x(τ) :=
1

T

∫ T

0

dtcx,x(t, τ) (3.6)

the Wiener-Khinchine theorem for periodic processes

Sx(ω) =

∫ ∞

−∞
dτe−iωτ c̄x,x(τ) (3.7)

holds [60] (for a short derivation see appendix A.3.2).
In our analysis of the spectral properties of periodic renewal processes in the

following sections our starting point will always be the definition (2.21c) of the
spectral power density, and not the generalized Wiener-Khinchine theorem eq.
(3.7). We thus avoid the need of an additional period average.

3.2 Spectral power amplification and signal to noise
ratio

In the previous section we have seen that the periodicity of the stochastic process
leads to delta peaks appearing at integer multiples of the driving frequency in the
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spectral power density. They reflect the fact, that the correlation function of the
process no longer vanishes (or becomes constant if the process has a non vanishing
mean) for increasing time differences but remains oscillating with finite amplitude
for arbitrary time differences. If the periodicity of the process is induced by a
periodic driving one probably wants to quantify its influence. Consider a periodic
signal

s(t) = Ain exp(iΩt) + c.c. (3.8)

which somehow affects the system’s dynamics rendering the process periodic with
the period T = 2π

Ω
of the signal. The larger the power s1 of the process at

the frequency Ω of the signal compared to the power |Ain|2 of the signal itself the
better (in some sense) the signal is amplified by the process. Therefore the relation
between signal power and the spectral power of the process at the signal frequency
is called spectral power amplification (SPA),

SPA =
s1

|Ain|2
. (3.9)

As the power s1 corresponds to the squared oscillation amplitude |x̂1|2 of the mean
value of the process (see eqs. (3.1) and (3.4)) the spectral power amplification can
also be interpreted as the relation between the signal amplitude and the amplitude
of the mean value of the process at the signal frequency Ω. If the SPA is greater
than 1 the input signal s(t) is amplified in the sense, that the amplitude of the
oscillations of the systems mean value is larger than the amplitude of the signal.

However the result of some measurement is in general not the mean value of
the process but a single realization restricted to some time interval (0, T ). As the
system is stochastic, the oscillations of the mean value can be hidden beneath the
fluctuations in such a single observation of the process. To quantify this effect one
introduces the signal to noise ratio (SNR) as the relation between the oscillation
power and the background spectral power at the corresponding frequency,

SNR =
2πs1

Sbg(Ω)
(3.10)

Sometimes one also uses a variant of the SNR, which is scaled by the input power
of the signal. However as we only consider the SNR in linear response for some
fixed small signal amplitude and not its dependence on the signal amplitude itself,
the unscaled SNR as defined in eq. (3.10) is sufficient for our purposes. Generally
the SNR and in particular its scaled variant provides a more adequate mean to
quantify the quality, in the sense of signal extraction from a noisy background,
of the response to a periodic signal than the SPA if only a limited observation
time is available. We mention that there exist other measures to quantify the
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response of a stochastic system to a signal, based on cross correlations between
signal and system [20,21], on the structure of the resulting waiting (residence) time
distributions [18, 141], on the relative entropies and other information theoretical
quantities. In contrast to the SNR and SPA they can also be applied to quantify
the response to non periodic signals, leading to the effect of aperiodic stochastic
resonance [21]. Considering only periodic signals, though, we restrict our analysis
to the SPA and SNR.

3.3 SPA and SNR of periodically driven renewal
processes

In this section we develop concepts to evaluate the spectral power amplification
and the signal to noise ratio for renewal processes driven by a weak periodic signal.
These periodic processes are a generalization of the stationary renewal processes
introduced in chapter 2, which occurred as a discrete state approximation to ex-
citable or bistable dynamics. Thus we expect periodic renewal processes to be the
right object to be studied when modeling periodically driven bistable or excitable
dynamics as discrete state systems.

As mentioned in chapter 2 a renewal process can be either specified by a master
equation, i.e. a linear equation governing the probabilities to be in a certain
discrete state, or by directly specifying the statistics of the waiting time between
subsequent events. In the case of periodic renewal processes these waiting times
however are no longer governed by a time independent waiting time distribution
w(τ) or, for the alternating renewal process, alternatingly by w(i)(τ). Instead the
periodicity is reflected by the fact, that the waiting time distributions now depend
on the time t of the previous event in a periodic way,

w(τ) −→ w(τ, t) = w(τ, t+ T )

or

w(i)(τ) −→ w(i)(τ, t) = w(i)(τ, t+ T )

respectively, where T = 2π/Ω is the period of the driving. These periodically time
dependent waiting time distributions govern the probability

dP = w(τ, ti)dτ

that event i+1 happens in the time interval (ti + τ, ti + τ + dτ ] if event i has been
happened at time ti. Normalization holds at arbitrary time t∫ ∞

0

dτw(τ, t) = 1.
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The resulting periodic process still has the renewal property in the sense that
as soon as we know the actual time of an event ( or equivalently the respective
signal phase) the time up to the next event is statistically fully determined, i.e.
independent on the history of the process. Especially it is independent of the
previous waiting time. However due to the periodic driving the correlation function
between subsequent intervals is not zero. To render this statement more precisely,
let τi−1 = ti − ti−1 denote the interval between event i − 1 and event i and τi =
ti+1 − ti the interval between event i and event i+ 1. Then

〈τiτi+1〉 − 〈τi〉〈τi+1〉 6= 0

in general, i.e. subsequent intervals are correlated. However subsequent intervals,
conditioned on the time ti or equivalently on the phase φi = Ωti mod 2π of the
event i in between are independent,

〈τiτi+1|φi〉 − 〈τi|φi〉〈τi+1|φi〉 = 0.

In a master equation description the periodicity is reflected by the fact that the
master operator M becomes periodically time dependent with the period of the
periodic driving, which we notationally represent by a subscript t, M −→Mt =
Mt+T .

Depending on the situation either approach might be favorable. Sometimes it
is straight forward to set up a master equation for the system considered, while
in other cases, the periodically time dependent waiting time distribution might
be given. Therefore, we investigate the spectral properties of periodic renewal
processes in the framework of both approaches. In contrast to the case of sta-
tionary renewal processes a closed evaluation of the full spectral power density is
in general no longer possible for a periodic renewal process, notwithstanding the
closed evaluation of the full spectral power density in a dichotomically periodically
driven Markovian two state renewal process [15]. The weights of the delta peaks at
integer multiples of the driving frequency however, can still be evaluated, leading
for weak signals in linear order in the signal amplitude to closed expressions for
the SPA and SNR in terms of easily evaluable properties of the master operator
or the time dependent waiting time distributions respectively.

3.3.1 A master equation approach

Consider a discrete n state system described by the probabilities p(i)(t) to be in
state i at time t. We assume that this system is influenced by a periodic signal
with period T = 2π/Ω. The evolution of these probabilities is supposed to be
governed by some generalized master equation

M(i)
t [p(1), . . . , p(n)](t) = 0, i = 1, . . . , n (3.11)
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where Mt is the linear master operator, supplemented with the normalization
condition

n∑
j=1

p(j)(t) = 1. (3.12)

Due to this normalization condition we can neglect one of the n parts of the master
equation (3.11) which we choose to be the first one, i = 1. The periodic driving is
reflected by the periodicity of the master operator

Mt+T = Mt. (3.13)

To illustrate this setting we consider two examples. A Markovian two state system
with periodic driving is governed by [83]

d

dt
p(1)(t) = −γ1→2(t)p

(1)(t) + γ2→1(t)p
(2)(t) (3.14)

d

dt
p(2)(t) = γ1→2(t)p

(1)(t)− γ2→1(t)p
(2)(t). (3.15)

With the normalization condition (3.12) one of these two equation becomes obso-
lete, which we choose to be the first one. Then the corresponding master operator
is given by

M(2)
t [p(1), p(2)](t′) =

d

dt′
p(2)(t′) + γ2→1(t)p

(2)(t′)− γ1→2(t)p
(1)(t′)

which due to the periodicity of the rates γi→j(t) = γi→j(t + T ) obviously fulfills
(3.13). Another example is the periodically driven three state model for excitable
systems which is obtained form the three state model for excitable dynamics intro-
duced in subsection 2.1.2 by considering a periodically modulated excitation rate.
Its is governed by1

p(2)(t) =

∫ ∞

0

dτγ(s(t− τ))p(1)(t− τ)z(2)(τ) (3.16a)

p(3)(t) =

∫ ∞

0

dτγ(s(t− τ))p(1)(t− τ)

∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′).

(3.16b)

supplemented with the normalization condition

1 = p(1)(t) + p(2)(t)− p(3)(t) (3.16c)
1 the motivation and derivation of these equations is postponed to subsection 3.3.1 where this

system will be analyzed in greater detail



38 3.3. SPA AND SNR OF PERIODICALLY DRIVEN RENEWAL PROCESSES

In this case

M(2)
t [p(1), p(2), p(3)](t′) = p(1)(t′)−

∫ ∞

0

dτγ(s(t− τ))p(1)(t′ − τ)z(2)(τ)

M(3)
t [p(1), p(2), p(3)](t′) = p(2)(t′)−

∫ ∞

0

dτγ(s(t− τ))p(1)(t′ − τ)∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′).

(3.17)

Again the periodicity condition (3.13) is met.
Assigning the output x(i) to state i the mean output of the system is given by

〈x(t)〉 =
n∑

i=1

x(i)p(i)(t). (3.18)

Thus given the asymptotic periodic solution of the master eqs. (3.11) we can
evaluate the weights of the delta peaks in the spectral power density at integer
multiples of the driving frequency according to eq. (3.1) and (3.4). The periodic
solutions of the p(i)(t) can be expressed in a Fourier series

p(i)(t) =
∞∑

k=−∞

p̂
(i)
k exp(ikΩt), Ω =

2π

T
. (3.19)

Due to the linearity of the master operator its action in Fourier space is also linear.
Thus eqs. (3.11) can be expressed in Fourier space as

n∑
j=1

∞∑
l=−∞

M̂(i,j)
k,l p̂

(j)
l = 0, i = 2, . . . , n (3.20a)

with the normalization condition (3.12)

n∑
j=1

p̂
(j)
k = δk,0 (3.20b)

The coefficients M̂(i,j)
k,l can be obtained as (see appendix B.2)

M̂(i,j)
k,l =

1

T

∫ T

0

dtM(i)
t [. . . , 0, exp(ilΩ·), 0, . . .](t) exp(−ikΩt). (3.21)

If we assume, that the periodicity of the master operator is due to the influence
of an external periodic signal with amplitude Ain (not necessarily harmonic) the
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only coefficients M̂(i,j)
k,l which do not vanish with vanishing input signal, i.e. for

Ain → 0 are M̂(i,j)
k,k . Thus eqs. (3.20) reduces in O(1) to

n∑
j=1

M̂(i,j)
0,0 p̂

(j)
0 = 0, i = 2, . . . , n and

n∑
j=1

p̂
(j)
0 = 1. (3.22)

All other p(j)
k are 0 in O(1) due to the normalization condition (3.20b). In order

O(Ain) eqs. (3.20) are given by
n∑

j=1

M̂(i,j)
k,0 p̂

(j)
0 + M̂(i,j)

k,k p̂
(j)
k = 0, i = 2, . . . , n and

n∑
j=1

p̂
(j)
k = 0. (3.23)

Although these equations can be in principle solved for arbitrary n we only present
the general solution for n = 2 and n = 3. For n = 2 we obtain

p̂
(1)
0 =

−M̂(2,2)
0,0

M̂(2,1)
0,0 − M̂(2,2)

0,0

and p̂
(2)
0 =

M̂(2,1)
0,0

M̂(2,1)
0,0 − M̂(2,2)

0,0

(3.24)

and

p̂
(1)
k = −p̂(2)

k =
M̂(2,2)

0,0 M̂(2,1)
k,0 − M̂(2,1)

0,0 M̂(2,2)
k,0

(M̂(2,1)
0,0 − M̂(2,2)

0,0 )(M̂(2,1)
k,k − M̂(2,2)

k,k )
(3.25)

For n = 3 the results for p̂(i)
0 are (we use a sum convention, i.e. indices appearing

twice are summed over from 1 to 3).

p̂
(i)
0 =

2εijhM̂(2,j)
0,0 M̂

(3,h)
0,0

εljhM̂(2,l)
0,0 (M̂(3,j)

0,0 − M̂(3,h)
0,0 )

(3.26)

while p̂(i)
k reads in O(Ain)

p̂
(i)
k = (3.27)

−εijhεmnoM̂(2,n)
0,0 M̂(3,o)

0,0

[
M̂(3,m)

k,0 (M̂(2,j)
k,k − M̂(2,h)

k,k ) + M̂(2,m)
k,0 (M̂(3,j)

k,k − M̂(3,h)
k,k )

]
εjhlεmnoM̂(2,j)

k,k (M̂(3,h)
k,k − M̂(3,l)

k,k )M̂(2,m)
0,0 (M̂(3,n)

0,0 − M̂(3,o)
0,0 )

Here εijk is the totally antisymmetric tensor which is 1 if (i, j, k) is an even per-
mutation of (1, 2, 3), −1 if it is an odd permutation and 0 otherwise. Eventually,
according to eqs. (3.4), (3.9) , (3.18) and (3.27) the SPA can be evaluated as

SPA =
|
∑n

j=1 x
(j)p̂

(j)
1 |2

|Ain|2
. (3.28)
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Finally, if we assume that the periodicity of M(i)
t is caused by a harmonic

periodic signal s(t) = Ain exp(iΩt) + c.c.. and that further the master operator
M(i)

t depends smoothly on s(t) one can show (see Appendix B.3.1) that

M̂(i,j)
k,l = O(|Ain||k−l|). (3.29)

Then from eq. (3.20a) one deduces that p(i)
k is of order O(A

|k|
in ). This implies, that

only the delta peak at the driving frequency Ω is of order O(Ain), while the delta
peaks at higher harmonics kΩ vanish in O(Ain).

Application to the FHN model

Let us come back to the discrete state modeling of the excitable dynamics of a
FHN system, introduced in subsection 2.1.2. The external periodic driving s(t) =
sx/y(t) = Ain exp(iΩt)+c.c. is assumed to act additively on either the slow recovery
variable y or the fast voltage variable x,

ẋ = x− x3 − y + sx(t) +
√

2Dξ(t) (3.30a)
ẏ = ε(x+ a0 − a1y − sy(t)) (3.30b)

A sketch of this system is given in Fig. 3.1. If the system is already close to
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Figure 3.1: An excitable FHN system subjected to an external driving sy(t) acting
on the slow recovery variable y (left) or sx(t) acting on the voltage variable x
(right) as described by eq. (3.30). The signal applied to y moves the y-nullcline
upwards and downwards, thus moving the stable fixed point towards the excitation
barrier and back again. The signal applied to x moves the x-nullcline upwards and
downwards, thus having a similar effect on the the excitation barrier.

the excitation threshold and we add a small signal one might assume that the
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excitation rate is quite strongly affected while the relaxation dynamics along the
stable branches of the x nullcline is less affected. This behavior is recovered in the
waiting time distribution plots for three different constant values of the external
signal Fig. 3.2.
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Figure 3.2: Logarithmic plot of the waiting time distributions in rest and refractory
state (top) and the firing state (bottom) of the FHN system eq. (3.30) for different
constant values of the external signal sy(t) (left) or sx(t) (right) and two different
noise levels. sx/y(t) = 0.01 (∗), sx/y(t) = 0.0 (×) and sx/y(t) = −0.01 (+). Other
parameters a0 = 0.41, a1 = 0.5, D = 0.0001(gray) or D = 0.0002 (black) and
ε = 0.01.

We notice that to a good approximation the waiting time distribution in the
firing state is not affected by the external signal. As this waiting time density if
sharply peaked for low noise levels, we finally approximate it with a fixed waiting
time Tf , i.e. a delta peaked waiting time density w(2)(τ) = δ(τ − Tf ) to get some
concrete analytical results. The same considerations are true for the refractory
state, represented by the well defined step in the joint waiting time distribution in
rest and refractory state, w(3)(τ) = δ(τ − Tr). The signal however strongly effects
the excitation rate, as represented by the different slopes of the waiting time density
in the rest and refractory state for different constant value of the signal s(t) ≡
sx/y(t). If we assume that the external signal varies on a much slower timescale
than the relaxation timescale at the stable fixed point, the excitation process will
still be a rate process as in the case of a constant signal however now with a
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signal and therefore time dependent rate γ(s(t)). This adiabatic assumption was
also required in the two state Markovian description of the double well potential
system. We can now easily modify the master equation description for the undriven
FHN system eqs. (2.15) by including the signal dependent rate, leading to

d

dt
p(1)(t) =

∫ t

t0

dt′γ
(
s(t′)

)
p(1)(t′)(w(2) ◦ w(3))(t− t′)− γ

(
s(t)
)
p(1)(t)

(3.31a)
d

dt
p(2)(t) = γ

(
s(t)
)
p(1)(t)−

∫ t

t0

dt′γ
(
s(t′)

)
p(1)(t′)w(2)(t− t′) (3.31b)

d

dt
p(3)(t) =

∫ t

t0

dt′γ
(
s(t′)

)
p(1)(t′)

[
w(2)(t− t′)− (w(2) ◦ w(3))(t− t′)

]
(3.31c)

with the initial condition p(1)(t0) = 1 and p(2/3)(t0) = 0. Depending on the discrete
state of the system the output x(t) assumes either a high value x1 (firing state) or
a low value x0 (rest and refractory state). The stochastic process we are interested
in is thus given by

x(t) =

{
x0 if the system is in state 1 or 3
x1 if the system is in state 2 (firing) (3.32)

In order to calculate the asymptotic periodic output

〈x(t)〉 = x0

(
p(1)(t) + p(3)(t)

)
+ x1p

(2)(t) = x0 + (x1 − x0)p
(2)(t) (3.33)

we have to calculate the asymptotic periodic solutions of eqs. (3.31). The asymp-
totic solution is obtained by shifting the initial time t0 to−∞. However in this limit
the initial condition is not well defined and without initial condition eqs. (3.31)
have no unique solution in the limit t0 → ∞ even if supplemented with the nor-
malization condition p(1)(t)+p(2)(t)+p(3)(t) = 1. Namely, if [p(1)(t), p(2)(t), p(3)(t)]
is a normalized periodic solution so is [cp(1)(t), cp(2)(t), cp(3)(t)− c+ 1].

Thus, before performing the limit t0 → −∞ it is advantageous to pass to
an integral version of eqs. (3.31). This integral master equation is obtained by
formally integrating eqs. (3.31) with respect to t from t0 to t, taking into account
the initial condition. The resulting equations

p(1)(t) = 1− p(2)(t)− p(3)(t) (3.34a)

p(2)(t) =

∫ t

t0

dt′γ(s(t′))p(1)(t′)z(2)(t− t′) (3.34b)

p(3)(t) =

∫ t

t0

dt′γ(s(t′))p(1)(t′)

∫ t

t′
dτw(2)(τ − t′)z(3)(t− τ)

(3.34c)
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automatically satisfy the initial condition p(1)(t0) = 1 and p(2/3)(t0) = 0. Therein

z(2/3)(τ) = 1−
∫ τ

0

dτ ′w(2/3)(τ ′)

denotes the survival probability in state 2 or 3 respectively, i.e. the probability
to stay at least the time τ in the respective state. These equations can now be
considered in the limit t0 → −∞,

p(1)(t) = 1− p(2)(t)− p(3)(t) (3.35a)

p(2)(t) =

∫ ∞

0

dτγ(s(t− τ))p(1)(t− τ)z(2)(τ) (3.35b)

p(3)(t) =

∫ ∞

0

dτγ(s(t− τ))p(1)(t− τ)

∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′).

(3.35c)

In contrast to eqs. (3.31) they have in general a unique periodic solution which
we express in a Fourier series as

p(i)(t) =
∞∑

k=−∞

p̂
(i)
k exp(ikΩt)

The master operator which corresponds to the master equation (3.35) was already
presented in eq. (3.17). Expanding the periodic excitation rate γ into a Fourier
series

γ(s(t)) =
∞∑

k=−∞

γ̂k exp(ikΩt) (3.36)

we eventually obtain its Fourier coefficients M̂(i,j)
k,l according to eq. (3.21) as

M̂(2,1)
k,l = −γk−lẑ

(2)
k , M̂(2,2)

k,l = δk,l, (3.37)

M̂(3,1)
k,l = −γk−lŵ

(2)
k ẑ

(3)
k , M̂(3,3)

k,l = δk,l (3.38)

M̂(i,j)
k,l = 0, (i, j) 6= (2, 1), (3, 1), (2, 2), (3, 3) (3.39)

Therein the Fourier coefficients

ẑ
(i)
k =

∫ ∞

0

dτz(i)(τ) exp(−ikΩτ) and ŵ
(i)
k =

∫ ∞

0

dτw(i)(τ) exp(−ikΩτ).

are related by

ẑ
(i)
k =

1− ŵ
(i)
k

ikΩ
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For the sake of notation we introduce the waiting time distribution in state 1 of
the undriven system

w(1)(τ) = γ0 exp(−γ0τ), ŵ
(1)
k =

γ0

γ0 + ikΩ
. (3.40)

Applying the general result (3.26) and (3.27) we obtain in linear order in the input
amplitude Ain for p(i)

0

p̂
(i)
0 =

〈τ (i)〉
T

, T = 〈τ (1)〉+ 〈τ (2)〉+ 〈τ (3)〉, 〈τ (1)〉 =
1

γ0

(3.41)

where we used the fact that the mean waiting time 〈τ (i)〉 in state i can be expressed
in terms of the survival probability as

〈τ (i)〉 =

∫ ∞

0

dτz(i)(τ) = ẑ
(i)
0 (3.42)

The coefficients p(i)
±1 are obtained from eq. (3.27) as

p̂
(1)
1 = p̂

(1)∗
−1 =

iγ̂1

Tγ0Ω

(1− ŵ
(1)
1 )(1− ŵ

(2)
1 ŵ

(3)
1 )

1− ŵ
(1)
1 ŵ

(2)
1 ŵ

(3)
1

(3.43a)

p̂
(2)
1 = p̂

(2)∗
−1 = − iγ̂1

Tγ0Ω

(1− ŵ
(1)
1 )(1− ŵ

(2)
1 )

1− ŵ
(1)
1 ŵ

(2)
1 ŵ

(3)
1

(3.43b)

p̂
(3)
1 = p̂

(3)∗
−1 = − iγ̂1

Tγ0Ω

(1− ŵ
(1)
1 )ŵ

(2)
1 (1− ŵ

(3)
1 )

1− ŵ
(1)
1 ŵ

(2)
1 ŵ

(3)
1

(3.43c)

Eventually the SPA evaluated according to eq. (3.28) is given by [104]

SPA =
(x1 − x0)

2

|Ain|2

∣∣∣∣ γ̂1

Tγ0Ω

∣∣∣∣2
∣∣∣∣∣(1− ŵ

(1)
1 )(1− ŵ

(2)
1 )

1− ŵ
(1)
1 ŵ

(2)
1 ŵ

(3)
1

∣∣∣∣∣
2

(3.44)

Up to now we did not specify the signal dependence of the excitation rate. Having
in mind the excitable FHN dynamics we want to model, we assume that the peri-
odic driving modulates the effective excitation barrier the system has to surmount
by noise in order to be excited. The resulting Kramers type rate, is then given by

γ(s(t)) = r0 exp(−∆U(s(t))

D
) = γ0(1 + αs(t)) +O(A2

in)

where D is the strength of the noise. Introducing the excitation rate without signal

γ0 = r0 exp(−∆U(0)

D
)
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the total excitation rate can be written in first order in the signal amplitude as

γ(s(t)) = γ0(1 + αs(t)) +O(A2
in).

Therein

α =
1

γ(0)

d

ds
γ(s)

∣∣∣
s=0

= − 1

D

d

ds
∆U(s)

∣∣∣
s=0

denotes the sensibility of the system with respect to the external signal. Thus the
Fourier coefficients of the periodic excitation rate are

γ̂1 = γ̂∗−1 = γ0αAin +O(A2
in).

With this excitation rate (3.44) eventually reads

SPA =
(x1 − x0)

2α2

T 2Ω2

∣∣∣∣∣(1− ŵ
(1)
1 )(1− ŵ

(2)
1 )

1− ŵ
(1)
1 ŵ

(2)
1 ŵ

(3)
1

∣∣∣∣∣
2

(3.45)

We have already noted that for small noise levels the waiting time densities in
firing and refractory state are sharply peaked, thus allowing for an approximation
by fixed waiting times Tf and Tr. Accordingly

w(2)(τ) = δ(τ − Tf ) and w(3)(τ) = δ(τ − Tr).

Then the SPA (3.45) can be further evaluated to

SPA =
4(x1 − x0)

2α2

( 1
γ0

+ Tf + Tr)2Ω2

sin2 ΩTf

2

1 + 2
γ2
0

Ω2

(
1− cos(Ω(Tf + Tr))

)
+ 2γ0

Ω
sin(Ω(Tf + Tr))

(3.46)

There are altogether four parameters which describe the system’s response to the
external periodic signal, namely the firing and refractory time Tf and Tr respec-
tively and the excitation rate without driving γ0 as well as the sensibility α, which
describes the change in the excitation rate γ if one changes the signal s(t). These
parameters have to be somehow extracted from the FHN system considered. We
estimate them from the numerically obtained waiting time densities Fig. 3.2 for
D = 0.0001 as

Tf = 65.5, Tr = 220, γ0 = 0.0046 and α ≈ 100

for the signal in the inhibitor y

Tf = 65.5, Tr = 220, γ0 = 0.0046 and α ≈ 50
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Figure 3.3: SPA of the threestate model (theory and simulation) compared to the
SPA of the output x(t) of the FHN system and a dichotomically filtered output.
Top: Signal entering into the y dynamics. Bottom: Signal entering into the x
dynamics. Other parameters a0 = 0.41, a1 = 0.5, D = 0.0001 and ε = 0.01. The
vertical line shows the frequency where the theory predicts the maximum SPA.

for the signal in the activator x. With these values and the output x0 = −1 and
x1 = 1 we have compared the analytical expression eq. (3.46) with the numerically
evaluated SPA of the output x(t) of the FHN system in Fig. 3.3. In addition, we
further considered the SPA of a binarily filtered output of the FHN system

x̃(t) =

{
−1 if x(t) < 0
1 if x(t) ≥ 0

(3.47)

in order to avoid the influence of the form factor of the spikes, which actually are
not rectangular pulses as supposed in the discrete state model (see Fig. 2.5). The
numerical simulations of the FHN and threestate model were done with a signal
amplitude Ain = 0.002.

First we notice that although there are strong quantitative derivations, the
structure of the SPA as a function of the driving frequency is nevertheless well
reproduced. Due to the analytic result eq. (3.46) it can be easily interpreted.
Namely the deep minima stem from the approximately fixed firing time Tf and
are located at frequencies Ω = 2πn/Tf . They represent the fact that in a sequence
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of rectangular pulses with width Tf located at arbitrary positions, there is no
frequency proportional to 2πn/Tf in the Fourier transformed.

The small minima and maxima in between these deep minima are contributions
of the denominator in eq. (3.46). For γ0 � Ω we may neglect the term γ2

0

Ω2 . In this
limit the maxima are therefore located at frequencies for which sin(Ω(Tf + Tr)) =
−1, i.e.

Ωmax =
2nπ − π

2

Tf + Tr

, n ∈ N

For γ0 � Ω the term γ2
0

Ω2 dominates the term γ0

Ω
. Thus the maxima are located

at frequencies where cos(Ω(Tf + Tr)) = 1, i.e.

Ωmax =
2nπ

Tf + Tr

, n ∈ N

Let us assume that γ0 � Ω. Then the first maximum is located at Ω = 3/2π/(Tf +
Tr) ≈ 0.0165, which is indeed greater than γ0 ≈ 0.0046. The maximum value of
the SPA is as predicted observed at Ω ≈ 0.0165 (see Fig. 3.3). Thus the theoretical
treatment allows to predict the frequencies which are optimally amplified by the
excitable system by just measuring the firing and refractory time as well as the
excitation rate of the undriven system. For the signal acting additively on the
y dynamics there is a strong damping for higher frequencies in the FHN system
compared to the three state model. This might be due to the fact, that for these
frequencies the adiabatic assumption, that the signal is sufficiently slowly varying,
such that the excitation process can be considered as rate process with a time
dependent rate is no longer valid. The real shape of a spike leads to a form factor
which suppresses the low frequencies, compared to the form factor of a rectangular
pulse, as can be seen by comparing the results for the FHN output x(t) and the
corresponding rectangular pulse train x̃(t) eq. (3.47).

The sensibility parameter α has been estimated from waiting time distributions
for different constant values of the driving amplitude. With this α the SPA is well
estimated for the dynamics entering into the y variable. However the SPA is
strongly underestimated for the signal entering into the x dynamics. This means
that the periodic signal has a much stronger effect onto the excitation rate as has a
constant signal. If this derivation would occur at certain driving frequencies only, it
probably could be understood as a resonance of the signal with the eigenfrequency
of the FHN at the fixed point. However the derivation is nearly uniform with a
factor of about 100 in a large range of driving frequencies. This implies that a
periodic signal entering into the x dynamics of a FHN system, which in case of
a neuron is the natural place to include signals, is much more amplified than one
would expect from the change of the excitation rate for constant or adiabatically
slowly varying signals.
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3.3.2 An approach based on waiting time distributions

In this section our starting point is a time dependent waiting time distribution,
which specifies the periodic renewal process. This time dependent waiting time
distribution can be given as a starting point or, if the discrete periodic renewal
process is the result of a discrete model of some continuous system has to be
somehow extracted from this continuous model, e.g. by calculating the first passage
times between.

In order to apply the concept of spectral power density to the periodic renewal
process, which is a point process, we have to map it onto a stochastic process,
i.e. we have to assign some value to the process for each time t. This is done
in exactly the same way as for a stationary renewal process presented in section
2.1.3 (see eqs. (2.19) and (2.20)). For the ordinary periodic renewal process,
described by a single time dependent waiting time distribution we consider the
sequence of delta spikes at the times of the events, while for an alternating n
state periodic renewal process, where the intervals between subsequent events are
alternatingly governed by w(1)(τ, t), . . . , w(n)(τ, t), w(1)(τ, t), . . ., the corresponding
stochastic process assumes different constant values x(1) to x(n). For the sake
of notational simplicity we restrict ourselves to alternating two state processes.
However a generalization is straight forward.

Periodic renewal delta spike sequences

Let us first consider the renewal delta spike sequence (2.20)

χ(t) =
∑

i

δ(t− ti) (3.48)

where the intervals τ = ti+1 − ti between subsequent events are governed by the
time dependent waiting time distribution w(τ, ti), i.e. the probability dP to have
the event i+ 1 in the time interval time (ti + τ, ti + τ + dτ) is

dP = w(τ, ti)dτ.

To analyze the spectral power density eq. (2.21c) we insert the stochastic
process eq. (3.48) into eq. (2.21b) resulting in

〈|cnΩ,T |2〉 =
1

T 2
〈
0<tk,tj<T∑

k,j

exp(inΩ(tk − tj))〉 (3.49)

There are two random components for which the ensemble mean has to be taken,
namely the number NT of events in the interval (0, T ) and the actual spiking
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times ti. Therefore it is not immediately possible to interchange the mean and the
summation. However in the limit T →∞ which we are concerned with, the mean
and variance of NT grow linearly with T superposed with a periodic modulation
(see appendix C.1) and therefore the variance of NT/T will tend to zero while
NT/T tends to a fixed (non random) value 〈τ〉 which is the mean interval between
subsequent events. In this limit T →∞, which is assumed in the following

〈|cnΩ,T |2〉 =
1

T 2

〈NT 〉∑
k,j=1

〈exp(inΩ(tk − tj))〉

where 〈NT 〉 = T/〈τ〉 is the mean number of events in the interval (0, T ). In
this expression the actual spiking times ti are no longer important but only the
corresponding phases of the periodic signal φi = Ωti mod 2π [102], leading to

〈|cnΩ,T |2〉 =
1

T 2

〈NT 〉∑
k,j=1

〈exp(in(φk − φj))〉 (3.50)

The following calculation will benefit from the fact that the stochastic process
{φi}i is a stationary Markov process in contrast to the non stationary process
{ti}i.

Splitting the double sum in eq. (3.50) into a diagonal part and a upper and
lower diagonal part we arrive at

〈|cnΩ,T |2〉 =
1

T 2

〈NT 〉∑
k=1

k∑
j=1

〈exp(in(φj − φ0))〉+ c.c. (3.51)

where we used the fact that in the limit T →∞ the diagonal part NT/T
2 is zero

and that the process is stationary. To proceed further we introduce the phase
evolution operator

(Lf)(φ) :=

∫ 2π

0

dψP (φ|ψ)f(ψ) (3.52)

whose integral kernel P (φ|ψ) is the conditioned probability to have a signal phase
φ at the time of an event if the previous event had a signal phase ψ. This operator
acting on the space L1([0, 2π]) is a so called Markov operator [71], having the
properties

Lf ≥ 0 if f ≥ 0 and ‖Lf‖ = ‖f‖.

Introducing the two point probability Pj(φ;ψ) that the phase of event i is ψ and
the phase of event j + i is φ as

Pj(φ;ψ) :=

∫ 2π

0

dα1 . . .

∫ 2π

0

dαj−1P (φ|αj−1) . . . P (α1|ψ)P st(ψ)
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where P st(φ) is the stationary phase distribution, we can express the expectation
value 〈exp(in(φj − φ0))〉 in eq. (3.51) in terms of this evolution operator as

〈ein(φj−φ0)〉 :=

∫ 2π

0

dφ

∫ 2π

0

dψ exp(in(φ− ψ))Pj(φ;ψ)

= 〈fn,Lj(fnP
st)〉C (3.53)

where fn(φ) := exp(−inφ) an we have introduced the inner product 〈f, g〉C =∫ 2π

0
dφf ∗(φ)g(φ).
We assume in the following that the original periodic renewal process is suf-

ficiently well behaved such that the phase process {φi} has a unique stationary
density. Then (cf. appendix B.1) in the limit T →∞

1

T 2

〈NT 〉∑
k=1

k∑
j=1

Ljf =
〈1, f〉C
2〈τ〉2

P st (3.54)

Expressing now the ensemble means in eq. (3.51) by powers of L as shown in eq.
(3.53) using eq. (3.54), the weights

2πsn = lim
ε→0

∫ nΩ+ε

nΩ−ε

dωS(ω) = 2π lim
T→∞

〈|cnΩ,T |2〉 (3.55)

of the delta peaks in the spectral power density eq. (3.4) are finally expressed by
the stationary phase distribution P st(φ) and the mean inter spike interval 〈τ〉 as

sn = 2
|〈fn, P

st〉C|2

2〈τ〉2
=

1

〈τ〉2
∣∣∣ ∫ 2π

0

dφ exp(inφ)P st(φ)
∣∣∣2 (3.56)

This equation, which can also be found in [117] relates the weights of the delta
peaks at integer multiples of the driving frequency in the power spectrum of the
delta sequence (3.48) to the stationary phase distribution of the point process and
is valid for any periodically driven renewal process having a unique stationary
phase distribution. An equivalent formula expressing these weights in terms of
the time dependent mean spiking rate has been derived in [61] by different means,
considering the averaged correlation function.

In the following we relate the stationary phase distribution to the time de-
pendent waiting time distribution w(τ, t) of the periodic renewal process. The
stationary phase distribution P st is invariant under the action of the phase evolu-
tion operator eq. (3.52), i.e.

P st(φ) =

∫ 2π

0

dψP (φ|ψ)P st(ψ). (3.57)
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The integral kernel P (φ|ψ) expresses the probability that an event has a signal
phase φ if the signal phase of the previous event was ψ. It can be expressed in
terms of the time dependent waiting time distribution w(τ, t) which defines the
periodical renewal process as

P (φ|ψ) =
1

Ω

∞∑
n=n0

w(
φ− ψ + 2πn

Ω
,
ψ

Ω
) (3.58)

where n0 = 0 if φ > ψ and n0 = 1 otherwise.
Expressing P (φ|ψ) in a Fourier series as

P (φ|ψ) =
1

2π

∞∑
j,k=−∞

P̂j,k exp(ijφ) exp(ikψ) (3.59)

with the Fourier coefficients

P̂j,k =
1

2π

∫ 2π

0

dφ

∫ 2π

0

dψ exp(−ijφ) exp(−ikψ)P (φ, ψ)

eq. (3.58) can be written more elegantly as

P̂j,k = ŵj,j+k (3.60)

where ŵk,l is related to the time dependent waiting time distribution w(τ, t) by

ŵk,l =

∫ ∞

0

dτe−ikΩτ ŵl(τ) =
Ω

2π

∫ 2π
Ω

0

dt

∫ ∞

0

dτe−ikΩτe−ilΩtw(τ, t). (3.61)

The Fourier coefficients

P̂ st
k =

1

2π

∫ 2π

0

P st(φ) exp(−ikφ)

of the stationary phase distribution P st(φ) are then defined (cf. eq. (3.57), (3.60))
by

P̂ st
k =

∞∑
j=−∞

P̂k,jP̂
st
−j =

∞∑
j=−∞

ŵk,k+jP̂
st
−j, P̂ st

0 = 1 (3.62)

Having the Fourier coefficients P̂ st
k of the stationary phase distribution, the weights

sn can be easily evaluated from eq. (3.56) as

sn = 4π2 |P̂ st
n |2

〈τ〉2
(3.63)
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The infinite set of linear equations (3.62) for the stationary phase distribu-
tions cannot in general be solved analytically. Therefore some approximations are
needed one of which is the weak driving approximation. Namely if the periodic
driving is sufficiently weak, i.e. if its amplitude A∈ is small we may neglect terms
of order Ak

in, k ≥ 2 in eq. (3.62).
This allows to solve eq. (3.62) for P̂ st

k in first order in Ain, leading to

P̂ st
0 =

1

2π
+O(A2

in)

P̂ st
k = (P̂ st

−k)
∗ =

1

2π

P̂−k,0

1− P̂k,−k

+O(A2
in).

The stationary phase distribution is therefore given by

P̂ st(φ) =
1

2π

[
1 + 2Re

∞∑
k=1

[ P̂−k,0

1− P̂k,−k

exp(ikφ)
]]

+O(A2
in).

To calculate the mean inter event interval 〈τ〉 of the driven process we have to
average the mean inter event intervals for a given signal phase with respect to the
stationary phase distribution,

〈τ〉 =

∫ 2π

0

dφP st(φ)

∫ ∞

0

dττw(τ,
φ

Ω
) = 2π

∞∑
k=−∞

P̂ st
k

∫ ∞

0

dττŵ−k(τ)

=

∫ ∞

0

dττŵ0(τ) +O(A2
in) = 〈τ〉0 +O(A2

in). (3.64)

where

〈τ〉0 :=
1

T

∫ T

0

dt

∫ ∞

0

dττw(τ, t)

is the period averaged mean waiting time. Taken together eq. (3.63) reads

s±1 =
1

〈τ〉20
|P̂1,0|2

|1− P̂1,−1|2
+O(A4

in) =
1

〈τ〉20
|ŵ1,1|2

|1− ŵ1,0|2
+O(A4

in) (3.65)

From this expression the spectral power amplification can be directly calculated
according to eq. (3.9) as

SPA =
1

|Ain|2〈τ〉20
|ŵ1,1|2

|1− ŵ1,0|2
+O(A2

in).

The SPA does not depend on Ain in lowest order as s1 does not have any contri-
bution proportional to |Ain|3.
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To calculate the SNR, we have to know the background spectral density Sbg(Ω)
(cf. eq. (3.4)) for the driven process, which we cannot calculate analytically. How-
ever in order O(A2

in) it agrees with the spectral power density of the corresponding
undriven process obtained by setting Ain = 0, i.e.

Sbg(Ω) = Sun(Ω) +O(A2
in)

One can easily convince oneself that there are no terms proportional to Ain in
Sbg(Ω) as it must be invariant under Ain → −Ain, which is just a phase shift of
the external signal. The spectral power density of the undriven an thus stationary
process is known to be [124] (see eq. (2.22))

Sun(ω) =
2π

〈τ〉2un
δ(ω) +

1

〈τ〉un

1− |ŵun(ω)|2

|1− ŵun(ω)|2

Here ŵun(ω) :=
∫∞

0
dτ exp(−iωτ)wun(τ) denotes the characteristic function of the

waiting time distribution wun(τ) of the undriven process, while 〈τ〉un =
∫∞

0
dττŵun(τ)

is the mean waiting time. Now the waiting time distribution wun(τ) of the undriven
system is given in order O(A2

in) by the period averaged waiting time distribution
of the driven system, which in turn is given by the zeroth Fourier coefficient ŵ0(τ)
of the time dependent waiting time distribution, i.e.

wun(τ) = ŵ0(τ) +O(A2
in)

Therefore we eventually obtain

〈τ〉un = 〈τ〉0 +O(A2
in),

and

ŵun(ω) =
2π

Ω

∫ Ω
2π

0

dt

∫ ∞

0

dτ exp(−iωτ)w(τ, t) +O(A2
in).

Setting ω = Ω one therefore gets (see eq. (3.61)

ŵun(Ω) = ŵ1,0 +O(A2
in)

Eventually this leads to

Sbg(Ω) =
1

〈τ〉0
1− |ŵ1,0|2

|1− ŵ1,0|2
+O(A2

in)

Thus the SNR of the driven system is according to eq. (3.10)

SNR =
2π

〈τ〉0
|ŵ1,1|2

1− |ŵ1,0|2
+O(A4

in)
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Finally we want to mention that if the periodicity of the waiting time distribu-
tions is due to a weak harmonic driving with frequency Ω, s(t) = Ain exp(iΩt)+c.c.,
and if additionally the waiting time distribution w(τ, t) depends smoothly on this
driving, then (cf. appendix B.3) , the Fourier coefficients ŵl(τ) and ŵk,l as de-
fined by eq. (3.61) are of order O(A

|l|
in). Then according to eq. (3.60) the Fourier

coefficients P̂k,j are of order O(A
|k+j|
in ) and all Fourier coefficients P̂ st

k with k ≥ 2
vanish in order O(Ain). This implies that the weights of the delta peaks at higher
harmonics kΩ, |k| ≥ 2 vanish in O(Ain).

Periodic two state renewal processes

In this subsection we calculate the SPA and SNR of the alternating renewal process
as defined by eq. (2.19),

η(t) =

{
x(0) if t(0)i < t ≤ t

(1)
i

x(1) if t(1)i < t ≤ t
(0)
i+1

(3.66)

where the intervals τ (0) = t
(1)
i −t(0)

i are distributed according to w(0)(τ (0), t
(0)
i ) while

the intervals τ (1) = t
(0)
i+1 − t

(1)
i according to w(1)(τ (1), t

(1)
i ). The derivation is to a

large extent analogously to the derivation of the SPA and SNR of a delta pulse
sequence shown in the previous subsection 3.3.2 and is thus presented less detailed.

For the sake of a simple notion we set x(0) = 0 and x(1) = 1. For different
choices of x(0) and x(1) the resulting expressions for the spectral quantities have
only to be rescaled by (x(0) − x(1))2. Inserting this process into the definition of
the 〈|cnΩ,T |2〉 (3.49) and following the same procedure as in the previous section
the corresponding eq. (3.51) is given by

〈|cnΩ,T |2〉 =
1

n2Ω2T 2

〈NT 〉∑
k=1

k∑
j=1

[
〈
(
einφ

(1)
j − einφ

(0)
j
)(
e−inφ

(1)
0 − e−inφ

(0)
0
)
〉+ c.c.

]
(3.67)

where 〈NT 〉 = T/(〈τ (0)〉 + 〈τ (1)〉) is the mean number of pulses in the interval
(0, T ), 〈τ (0)〉 and 〈τ (1)〉 are the mean waiting times in the two different states and
φ

(s)
i are the signal phases at the corresponding times t(s)i . Next we introduce two

phase evolution operators

(L(1→0)f)(φ) :=

∫ 2π

0

dψP(1→0)(φ|ψ)f(ψ)

(L(0→1)f)(φ) :=

∫ 2π

0

dψP(0→1)(φ|ψ)f(ψ)
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where P(1→0)(φ|ψ) is the conditioned probability to find a phase φ for an event (0)
if the phase at the previous event (1) was ψ and P(0→1)(φ|ψ) is the conditioned
probability to find a phase φ at an event(1) if the phase of the previous event (0)
was ψ. From these operators we can construct the operators

L(1) := L(0→1)L(1→0) and L(0) := L(1→0)L(0→1)

which describe the phase evolution from one event (1) to the following event (1)
and from one event (0) to the following event (0), respectively. In contrast to the
operators L(1→0) and L(0→1), these operators have a stationary density P st

(0) and
P st

(1) respectively, which are the stationary phase distribution for the events (1) or
(0) respectively and are assumed to be unique. We now express the mean in eq.
(3.67) in terms of these operators and the stationary phase distributions as in the
previous section,

〈
(
einφ

(1)
j − einφ

(0)
j
)(
e−inφ

(1)
0 − e−inφ

(0)
0
)
〉 =

〈fn, L
j
(1)(fnP(1))〉C − 〈fn, L(1→0)L

j−1
(1) (fnP(1))〉C

−〈fn, L(0→1)L
j
(0)(fnP(0))〉C + 〈fn, L

j
(0)(fnP(0))〉C

According to appendix B.1 eq. (B.3)in the limit T →∞ to

1

T 2

〈NT 〉∑
k=1

k∑
j=1

Lj
(0/1)f =

〈1, f〉C
2(〈τ (0)〉+ 〈τ (1)〉)2

P st
(0/1) (3.68)

and therefore eventually

sn = 2
|〈fn, P

st
(1) − P st

(0)〉C|2

2n2Ω2(〈τ (0)〉+ 〈τ (1)〉)2
(3.69)

=

∣∣∣ ∫ 2π

0
dφ exp(inφ)P st

(1)(φ)−
∫ 2π

0
dφ exp(inφ)P st

(0)(φ)
∣∣∣2

n2Ω2(〈τ (0)〉+ 〈τ (1)〉)2
.

As in the previous section we express the Fourier coefficients P̂ (r→s)
j,k of the integral

kernels P(r→s)(φ, ψ), defined by

P(r→s)(φ, ψ) =
1

2π

∞∑
j,k=−∞

P̂
(r→s)
j,k exp(ijφ) exp(ikψ),

by the Fourier coefficients of the time dependent waiting time distributions w(1)(τ, t)
and w(0)(τ, t) (cf. eqs. (3.58) and (3.60)) as

P̂
(r→s)
j,k = ŵ

(r)
j,j+k
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The stationary phase distributions P st
(0) and P st

(1) are defined by

P st
(r)(φ) =

∫ 2π

0

dθ

∫ 2π

0

dψP(s→r)(φ, θ)P(r→s)(θ, ψ)P(r)(ψ)

The Fourier components P̂ (0)
k and P̂ (1)

k of the stationary phase distributions P(0)(φ)
and P(1)(φ) are accordingly defined by

P̂
(r)st
k =

∞∑
i,j=−∞

P̂
(s→r)
k,i P̂

(r→s)
−i,j P̂

(r)st
−j , P̂

(r)st
0 = 1. (3.70)

Having these Fourier coefficients, the weights sn can be easily evaluated from eq.
(3.69) as

sn =
4π2

n2Ω2(〈τ (0)〉0 + 〈τ (1)〉0)2
|P̂ (0)st

n − P̂ (1)st
n |2. (3.71)

Again, this result is valid for arbitrary not necessarily small driving signals. As in
the previous subsection, we solve eq. (3.70) in linear order in the amplitude Ain of
the periodic driving, leading to

P̂
(r),st
0 =

1

2π
, r = 0, 1

P̂
(r),st
k = (P̂

(r),st
−k )∗ =

P̂
(s→r)
k,0 + P̂

(s→r)
k,−k P̂

(r→s)
k,0

2π(1− P̂
(s→r)
k,−k P̂

(r→s)
k,−k )

, (r, s) = (0, 1), (1, 0).

These results together with the appropriate time dependent waiting time density
for a double well system reproduce the stationary phase distribution calculated
in [18].

Now we can evaluate s±1 from eq. (3.71) in order O(A2
in), taking again into

account (cf. eq. (3.64)) that the mean waiting time in a state of the driven system
〈τ (r)〉 agrees up to order O(A2

in) with the respective mean waiting time 〈τ (r)〉0 of
the undriven system. The resulting expressions are

s±1 =
1

Ω2(〈τ (0)〉0 + 〈τ (1)〉0)2

∣∣ŵ(1)
1,1(1− ŵ

(0)
1,0)− ŵ

(0)
1,1(1− ŵ

(1)
1,0)

1− ŵ
(1)
1,0ŵ

(0)
1,0

∣∣2 (3.72)

which agrees with the result found in [49, 50] by means of an approach based on
asymptotic periodic solutions of driven renewal equations. From eq. (3.72) we
can calculate the SPA and SNR as in the previous section. If we consider now
the general situation with values x(0) and x(1) in state 0 and 1 respectively, the
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spectral power density is scaled by (x(0)− x(1))2, leading to the same factor in the
SPA while the SNR remains invariant. Thus

SPA =
(x(0) − x(1))2

|Ain|2Ω2(〈τ (0)〉0 + 〈τ (1)〉0)2

∣∣ŵ(1)
1,1(1− ŵ

(0)
1,0)− ŵ

(0)
1,1(1− ŵ

(1)
1,0)

1− ŵ
(0)
1,0ŵ

(1)
1,0

∣∣2
+O(A2

in) (3.73)

To calculate the SNR according to eq. (3.10) we need again the background
spectral density, which in lowest order in the input amplitude can be taken as the
spectral power density of the undriven process eq. (2.24), leading to

SNR =
π

〈τ (0)〉0 + 〈τ (1)〉0
|ŵ(1)

1,1(1− ŵ
(0)
1,0)− ŵ

(0)
1,1(1− ŵ

(1)
1,0)|2

Re
[
(1− ŵ

(0)
1,0)(1− ŵ

(1)
1,0)(1− ŵ

(0)
−1,0ŵ

(1)
−1,0)

] +O(A4
in)

(3.74)

Application of the driven renewal process approach to the FHN system
in the bistable and excitable regime

In this section we apply the results of periodic renewal processes from the previous
section to the spike train of a periodically driven FitzHugh-Nagumo system

ẋ = x− x3 − y +
√

2Dξ(t)

ẏ = ε(x+ a0 − sa(t)− (a1 + sp(t))y) (3.75)

In contrast to the application of the non Markovian master equation approach to
the FHN system in subsection 3.3.1 we consider only signals in the slow inhibitor
dynamics (y variable). However we go beyond the excitable regime. Namely, de-
pending on the choice of parameters the FHN system is either bistable, oscillatory
or excitable. Here we are interested in the excitable and bistable regime. All
numerical investigations which follow are done with the parameter values

a0 = 0.1, a1 = 1.25, and ε = 0.001 (3.76)

for the excitable regime and

a0 = 0, a1 = 1.51, and ε = 0.001 (3.77)

for the bistable regime. The external periodic driving is chosen to act additively
(sa(t)) or parametrically (sp(t)) on the y dynamics which corresponds to a shifting
of the y-nullcline (see Fig. 3.4) upwards and downwards or a rotation of the y-
nullcline around the point (a0, 0) respectively. In the following all signals are sub
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Figure 3.4: Left: Nullclines ẋ = 0 and ẏ = 0 of the FHN system without noise and
signal, and a typical trajectory of the noisy undriven system in the excitable regime
with parameters from eq. (3.76) (top) and bistable regime (bottom, parameters
from eq. (3.77)). Right: Corresponding spiketrain x(t) for a noise level D =
1.0 · 10−6.

threshold signals, i.e. the fixed point structure and the stability properties of the
fixed points do not change due to the driving.

A typical trajectory as well as the nullclines of the undriven system and a
typical output spike train for the excitable and bistable situation are shown in Fig.
3.4. Due to a strong timescale separation ε = 0.001 the system very quickly moves
between the right and left stable branch of the x nullcline. We thus approximate
it with a two state description, where the two states correspond to the left and
right stable branch of the cubic nullcline, neglecting the fast motion between the
branches. The output of the system, i.e. the x coordinate remains approximately
constant on these branches, namely 1 or -1. This approximation is shown for the
bistable case in Fig. (3.5).

As already noticed previously, the dynamics of the FHN system has two in-
gredients. First, an excitation process from the stable fixed point(s) and second
the motion along the stable branches of the nullclines. The excitation process is
strongly influenced by the driving or a change in noise strength. while the motion
along the stable branches of the cubic nullcline does not depend on the noise level
and driving for small driving amplitudes and a small noise level .

This behavior has been recovered in the waiting time distributions on the left
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Figure 3.5: Typical spiketrain x(t) of the FHN system eqs. (3.75) in the bistable
regime with noise strength D = 1.0 ·10−6 and the corresponding two state approx-
imation.

and right branch Fig. 3.6. Numerically evaluated for different small constant values
of the signal and different low noise levels they show no waiting times shorter than
a certain threshold T , which approximately does not depend on noise level and
signal strength (Fig. 3.6). This threshold T is the time needed to travel along the
stable branch. The following excitation step from the stable fixed point onto the
excitation loop is to a good approximation a rate process, represented by the an
exponentially distributed waiting time. In the logarithmic plot of the waiting time
distributions Fig. 3.6 this is represented by linear decrease beyond the threshold.
The rate of this excitation process strongly depends on both the signal and noise
level. Within an adiabatic approximation, assuming that the time scale of the
external signal is much slower than the relaxation time scale around the stable
fixed point, the excitation step for time varying signals becomes a rate process
with a signal and therefore time dependent rate γ(t). In the case of the excitable
regime with one stable fixed point on the left branch of the cubic nullcline we thus
obtain the waiting time distributions distribution

w(0)(τ, t) = Θ(τ − T (0))γ(0)(t+ τ) exp
(
−
∫ t+τ

t+T (0)

dτ ′γ(0)(τ ′)
)

(3.78a)

w(1)(τ, t) = δ(τ − T (1)) (3.78b)

while in the bistable situation with two stable fixed points the waiting time distri-
butions are given by

w(i)(τ, t) = Θ(τ − T (i))γ(i)(t+ τ) exp
(
−
∫ t+τ

t+T

dτ ′γ(i)(τ ′)
)
, i = 0, 1. (3.79)
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Figure 3.6: Non normalized waiting time distributions plotted in logarithmic scale
in the left (left) and right state (right) for the excitable regime with additive driving
(top) and bistable regime with additive (middle) and parametric driving (bottom)
Noise levels D = 1.∗10−5 (gray) and D = 2.∗10−6 (black) and three different con-
stant input signals sa/p(t) = −10−3 (+) , sa/p(t) = 0.0 (×) and sa/p(t) = 10−3 (∗) .
Other parameters as given in eqs. (3.76) and (3.77)

Considering a weak periodic signal s(t) = Ain exp(iΩt) + c.c., the time dependent
excitation rate γ(t) within an adiabatic approximation is given by

γ(i)(t) = γ
(i)
0 (1 + α(i)s(t)) +O(A2

in). (3.80)

where the rate without driving γ(i)
0 as well as the sensibility α(i) depend on noise

strength D. With this excitation rate and the waiting time distributions eq. (3.78)
the SPA and SNR can be evaluated from eqs. (3.73) and (3.74). The SPA for
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excitable system is given by (setting γ0 ≡ γ
(0)
0 and α ≡ α(0))

SPA =
(x(0) − x(1))2α2

( 1
γ0

+ T (0) + T (1))2Ω2
(3.81a)

sin2 ΩT (1)

2

(1 + 2
γ2
0

Ω2 (1− cos Ω(T (0) + T (1))) + 2γ0

Ω
sin Ω(T (0) + T (1)))

while the SNR reads

SNR =
2πα2A2

in
1
γ0

+ T (0) + T (1)
(3.81b)

Eq. (3.81a) agrees with the result eq. (3.46) from subsection 3.3.1.
For the bistable regime general expressions can be derived for the SPA and

SNR, however we restrict ourselves to the symmetric situation T (0) = T (1) ≡ T ,
γ

(0)
0 = γ

(1)
0 ≡ γ0 to keep the number of parameters and the resulting formulas

manageable. For an additive driving α(1) = −α(0) ≡ α the resulting expressions
for the SPA and SNR are given by

SPA =
(x(0) − x(1))2α2

Ω2( 1
γ0

+ T )2(1 + 2
γ2
0

Ω2 (1 + cos ΩT )− 2γ0

Ω
sin ΩT )

(3.82a)

SNR =
2πα2A2

in
1
γ0

+ T
(3.82b)

In the limit T → 0 which corresponds to the two state approximation of a double
well potential system, one recovers from eqs. (3.82a) and (3.82b) the well known
expressions [41] 2

SPA0 =
(x(0) − x(1))2α2γ2

0

Ω2 + 4γ2
0

and SNR0 = 2πα2A2
inγ0

We can now express the SPA of the two state model for the bistable FHN system
in terms of the SPA0 of the double well potential system and an amplification factor
a as

SPA = SPA0a(
γ0

Ω
,
TΩ

2π
)

2The factor of 2 in SNR0 compared to the expression in [41] has to reasons, namely the
SNR as defined in [41] is twice the SNR as used in this work and the definition of our signal as
s(t) = Ain exp(iΩt) + c.c. leads to a doubled amplitude as compared to s(t) = Ain cos Ωt and
thus to a factor of 4 in |Ain|2. As this factor cancels in the SPA our expression for SPA0 has an
additional factor 1

2 compared to [41]
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where the amplification factor a is given by

a(c1, c2) =
1 + 4c21

(1 + 2πc1c2)2(1 + 2c21(1 + cos 2πc2)− 2c1 sin 2πc2)

Fig. 3.7 shows a plot of this amplification factor. First we notice that there are
regions where a > 1, i.e. the additional fixed waiting time T improves the SPA
compared to a double well potential system’s SPA without fixed waiting time.
The amplification factor for the optimal waiting time T increases like γ2

0/Ω
2 for

γ0 � Ω. For these large excitation rates the optimal fixed waiting times T for a
given driving frequency Ω are approximately located at T = (2n+1)π

Ω
, n = 0, 1, . . ..

If we consider the symmetric bistable regime with a parametric driving the
situation changes completely. In this case α(0) = α(1) and the SNR as well as the
SPA vanish. This is not an effect of the approximations we made but an effect of
symmetry which also holds beyond the two state approximation and beyond linear
response as can be understood as follows: Due to the type of the driving there is
no preferred state (left branch of the cubic nullcline or right branch of the cubic
nullcline) for a given signal phase. In the continuous description the state (x, y)
is as probable as the state (−x,−y) for a given signal phase. The coefficients cω,T

as defined in eq. (2.21b) therefore vanish in the limit T → ∞ for arbitrary ω.
Then also 〈|cω,T |2〉 vanish and accordingly there are no delta peaks in the spectral
power density. However, although the SPA and SNR is exactly zero the system
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nevertheless can be strongly influenced by the periodic input. It may even show
nearly periodic behavior (Fig. 3.8). This leads to the need of different non spectral
based measures to quantify the response to a periodic signal as the spectral based
measures SNR and SPA clearly fail in this case.

t

x
(t

)

���������� �������������������������� �������	��������
������������������

�

����

�

� ����

� �

Figure 3.8: A typical output trajectory (solid line) and corresponding input signal
(dashed line) for the FHN system in the symmetric bistable regime (parameters
given in eq. (3.77)) with parametric driving and a driving frequency Ω = 0.001
and driving amplitude Ain = 0.1.

Finally we compare our theoretical results with simulations of the FHN system
with additive driving sa(t) = 0.001 exp(iΩt) + c.c.. To this end we have to adapt
the parameters of the two state model to the continuous FHN model. From the
numerical evaluations of the FHN system’s waiting time distributions Fig. (3.6)
we estimate for D = 2.0 · 10−6 for the bistable situation

T (0) = T (1) ≈ 1430, γ
(0)
0 = γ

(1)
0 ≈ 0.003, α(0) = −α(1) ≈ 290 (3.83)

and for the excitable system

T (0) ≈ 1550, T (1) ≈ 915, γ
(0)
0 ≈ 0.003, α(0) ≈ 300 (3.84)

while for for D = 1.0 · 10−5 the bistable regime has

T (0) = T (1) ≈ 1430, γ
(0)
0 = γ

(1)
0 ≈ 0.01, α(0) = −α(1) ≈ 127 (3.85)

and the excitable regime

T (0) ≈ 1550, T (1) ≈ 915, γ
(0)
0 ≈ 0.01, α(0) ≈ 123 (3.86)

With these parameters we have compared the expressions (3.81) and (3.82)
with the SPA and SNR of the FHN system (Fig. 3.9 and 3.10) as obtained by
numerical simulations and found a very good agreement. The deviation for low
frequencies is due to the fact that the form factor of the real pulses suppresses the
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Figure 3.9: SPA (upper curves) and SNR (lower curves) of the two state theory
(solid lines) compared to simulations of a FHN system (symbols) in the excitable
regime for two different noise levels D = 2. 10−6 (top) and D = 1. 10−5 (bottom).
The ×-symbols correspond to a digitally filtered spiketrain of the FHN system,
were we assigned the value 1 to the system’s output on the right branch of the
cubic nullcline and -1 on the left branch (see Fig. 3.5). The +-symbols correspond
to the the unfiltered spiketrain x(t) of the FHN system. Parameters for the two
state theory are given in eqs. (3.84) (top) and (3.86) (bottom). Parameters for
the FHN system according to eq. (3.76).

low frequency range compared to the form factor of an rectangular pulse. As the
form factor cancels for the SNR, there is no significant deviation for low frequencies
from the expected constant value.

Up to now we did not consider the dependence of the system parameters on
noise. We only made the assumption that the noise level influences the SPA and
SNR via the excitation rates γ(0)

0 and γ
(1)
0 and the amplification parameters α(0)

and α(1). This assumption has proven to be a good approximation for low noise
levels. To consider the SPA and SNR as a function of noise strength we additionally
assume an Arrhenius type excitation rate γ(t) ≡ γ(0)(t) with an effective potential
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Figure 3.10: SPA (upper curves) and SNR (lower curves) of the two state theory
(solid lines) compared to simulations of a FHN system (symbols) in the bistable
regime for two different noise levels D = 2. 10−6 (top) and D = 1. 10−5 (bottom).
The meaning of the symbols is explained in the caption of Fig. 3.9. Parameters for
the two state theory are given in eqs. (3.83) (top) and (3.85) (bottom). Parameters
for the FHN system according to eq. (3.77).

barrier ∆U which is modulated by the external small signal, i.e.

γ(t) = r0 exp(−∆U − βs(t)

D
) = γ0(1 +

βs(t)

D
). (3.87)

With this excitation rate we can fit the parameters r0, ∆U and β to our system
(see Fig. 3.11). Within this approximation we have plotted the SPA (3.81a) as a
function of noise strength and driving frequency Fig.3.12. As already observed the
SPA shows a complex structure, with multiple minima and maxima as a function
of driving frequency. However, also as a function of noise strength the SPA shows
a maximum. There is an optimal noise level at which periodic signals are maxi-
mally amplified by the stochastic excitable system, which is the famous effect of
stochastic resonance in excitable systems. [41, 73, 75, 77, 137]. This optimal noise
level only weakly depends on the driving frequency. The existence of an optimal
noise level is a joint effect of an decreasing sensibility α and at the same time an
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increasing mean excitation rate γ0 with increasing noise. This is different from
the coherence resonance effect of excitable systems, which is due to a different
dependence of the excitation time and the firing and refractory time on the noise
level. [100]. Here we did not consider any dependence of the firing and refractory
time on noise at all.
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Figure 3.11: Excitation rate γ0 of the FitzHugh-Nagumo model in the excitable
regime without external signal (+) and parameter α (×) from eq. (3.80) as a
function of noise strength. The lines corresponds to an Arrhenius type dependence
γ0 = r0 exp(−∆U

D
) with r0 = 0.0082 and ∆U = 2.2 · 10−6(solid line) and α =

−0.00042/D, i.e β = 0.00042 (dotted line) in eq. (3.87).
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Figure 3.12: SPA according to eq. (3.81a) with T (0) = 1550 and T (1) = 900 and
γ(t) according to eq. (3.87) with r0 = 0.0082 and ∆U = 2.2·10−6 and β = 0.00042.
The thick solid line indicates the optimal noise level, at which the SPA is maximal.
The horizontal sections at D = 2.∗10−6 and D = 1.∗10−5 correspond to the plots
in Fig. 3.9.
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3.4 Summary
The response of periodically driven stochastic systems to the driving signal can
be measured by means of the spectral based quantities SPA and SNR. We derived
results for the SNR and SPA of periodic renewal processes, both based on a master
equation description and based on the time dependent waiting time distributions
between subsequent events. These periodic renewal processes occur as a generaliza-
tion of the stationary renewal processes, introduced in chapter 2, if the underlying
system, e.g. the double well potential system or the FHN system, is influenced by
a periodic signal. We then applied the general results to the discrete state model
of the FHN system. Fitting a few parameters, the firing and refractory time as
well as the stationary excitation rate, the theoretical result for the SNR and SPA
obtained within the periodic renewal process approach quite well reproduce and
explain the observed behavior of the underlying continuous FHN dynamics. A
simple example, namely the parametrically driven symmetric bistable FHN sys-
tem, revealed the limits of spectral based measures of the response to the driving
signal. In this example both the SPA and the SNR are exactly zero, although
the system shows a very pronounced response to the periodic signal. In the next
chapter we investigate the concept of synchronization between the process and the
signal, which overcomes this shortcoming.



Chapter 4

Periodically Driven
Systems-Stochastic Synchronization

Synchronization of deterministic nonlinear oscillatory systems to a periodic driving
is a widely observed phenomenon. Depending on the amplitude of the driving and
the mismatch between the driving frequency and the systems’ frequency, synchro-
nization regions with different rational relations between these frequencies can be
observed. In these synchronization regions, known as Arnold tongues when plotted
as a function of signal amplitude and frequency, the system performs a resonant
motion on a torus in the joint phase space.

Considering stochastic systems these concepts have to be revised [14, 36, 40].
Due to the influence of noise, a perfect synchronization between the system’s dy-
namics and the signal is no longer possible but there is always a finite probability
of so called phase slips, namely an additional or missing cycle of the system. The
rarer these phase slips are the better the system is synchronized.

Departing from the picture of stochastic oscillatory systems, let us consider an
arbitrary system whose behavior is characterized by some recurrent events, like
for example the generation of a spike in an excitable system, or the transition
between the two wells in a double well system [36]. As pointed out in subsection
2.2.2 for undriven systems, the Péclet number which is the ratio between mean
frequency and the effective diffusion constant of the number of events, characterizes
the regularity of the occurrence of these events, and thus of the system’s dynamics
which generates the events.

Imagine now that the system is influenced by a periodic signal. If this influence
is very strong, such that the events are triggered by the periodic signal in an
approximately deterministic way one observes an integer ratio between system
frequency and signal frequency. At the same time the effective diffusion of the
number of events is approximately zero, as the events inherit the deterministic
behavior of the signal. Thus the Péclet number is very high. A high Péclet
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number and a rational relation between system and signal frequency are thus
indicating that the system and signal are stochastically synchronized with phase
slips occurring only very rarely. On the other hand, if the influence of the external
signal is weak, the occurrence of the events happens in a stochastic way governed
by the stochastic dynamics of the system considered. In this case the system
frequency is not locked to the signal frequency and due to the stochastic nature
of the system, the effective diffusion constant is different from zero. leading to a
larger Péclet number. Thus the mean frequency, effective diffusion constant and
Péclet number may serve as a measure of synchronization to the periodic signal.
However one has to be careful. A high Péclet number alone is not a foolproof
sign of stochastic synchronization, as it can just be due to a very regular motion
of the system itself. Even an integer relation between mean system frequency
and signal frequency can exist by chance. However observing plateaus in the
relation between system and signal frequency when varying the driving frequency,
which are accompanied with a strong decrease of the effective diffusion coefficient
and thus with a strong increase of the Péclet number is an undeceptive sign of
synchronization. To demonstrate this behavior we have numerically evaluated
the above mentioned quantities for the periodically driven FHN system in Fig.
4.1. The plateaus in the frequency ratio accompanied by a low effective diffusion
coefficient indicate synchronization regions. Although merely visible, even in the
regions of nearly perfect synchronization the actual excitation times and thus the
systems dynamics is still random (see Fig. 4.1, right plot).

The following three sections are devoted to the calculation of the mean fre-
quency, effective diffusion coefficient and Péclet number in periodically driven
discrete state models. While in the next section we investigate general proper-
ties of the number of events of a periodic renewal process, in sections 4.2 and 4.3
we present two methods to actually calculate the mean frequency and effective
diffusion coefficient of the event number.

In section 4.2 we considers discrete state models, whose stochastic dynamics is
assumed to be governed by some generalized master equation. This approach will
be used to investigate stochastic synchronization in a Markovian two state model
for double well potential systems (subsection 4.2.1) and a non Markovian model for
excitable dynamics (subsection 4.2.2). Finally we apply it to investigate the control
of molecular motors by periodically varying fuel concentrations in subsection 4.2.3.

The second approach is more general. We present a method to calculate the
mean frequency and effective diffusion coefficient of the number of events of peri-
odically driven renewal processes, defined by a periodically time dependent waiting
time distribution w(τ, t). Finally in subsection 4.3.4 we show equivalence between
the two approaches for the two state non Markovian model of excitable dynamics.
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Figure 4.1: Synchronization in the FHN system. The left figure shows the relation
between mean frequency v̄ of the system and driving frequency ν = Ω

2π
and the

effective diffusion coefficient D̄eff as a function of the driving frequency ν = Ω
2π

. For
three different driving frequencies, corresponding to 1 : 1 (bottom), 2 : 1, (top) and
no synchronization, we have plotted 20 realizations of the corresponding number
of spikes N0,t of the FHN system (right figure). Parameters of the FHN system
eqs. (3.30): a0 = 0.405, a1 = 0.5, ε = 0.001, D = 1.0 × 10−5, and a dichotomic
driving s(t) = ±0.015.

4.1 Properties of the number of events for period-
ically driven renewal processes

Consider a periodic renewal process. As motivated above, stochastic synchroniza-
tion to the periodic driving can be characterized as an integer or rational relation
between driving frequency and the frequency of the events v̄ and at the same time,
a decrease in the effective diffusion coefficient D̄eff, i.e. a more regular (periodic)
behavior. In terms of the number Nt0,t of events in the interval (t0, t] the instanta-
neous mean frequency and instantaneous effective diffusion coefficient are defined
as

vt0(t) =
d

dt
〈Nt0,t〉 and Deff,t0(t) =

d

dt

〈N2
t0,t〉 − 〈Nt0,t〉2

2
. (4.1)
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Asymptotically, i.e. for t0 → −∞ the instantaneous mean frequency and the
instantaneous effective diffusion coefficient eqs. (4.1) become periodic functions of
time (for a proof see appendix C.1) and we may express their long time averaged
values

v̄ = lim
t→∞

〈Nt0,t〉
t

and D̄eff = lim
t→∞

〈N2
t0,t〉 − 〈Nt0,t〉2

2t
(4.2)

as averages over one period of the asymptotically periodic instantaneous values
v(t) = limt0→−∞ vt0(t) and Deff(t) = limt0→−∞Deff,t0(t), i.e.

v̄ =
1

T

∫ T

0

dtv(t) and D̄eff =
1

T

∫ T

0

dtDeff(t). (4.3)

Also the higher cumulants grow periodically (see again appendix C.1). Denoting
by

κ[i](t) := lim
t0→−∞

d

dt
K

[i]
t,t0 (4.4)

the asymptotic periodic growth of the ith cumulant K [i]
t,t0 of the number of events

Nt0,t in the interval (t0, t], one immediately obtains v(t) = κ[1](t) and Deff(t) =
κ[2](t)/2.

Up to now we have defined the mean frequency and the effective diffusion
coefficient for the number of events. However in many cases the quantity of interest
is not directly the number N of events but some quantity proportional to it. This
can be for example a phase φ := 2πN of the system, which increases by 2π for each
event. This phase will be considered in the context of stochastic synchronization
with the external signal in subsections 4.2.1 and 4.2.21. Or it can be the position
x = `N along a track, if an event corresponds to a step of length ` on the track,
as is the case when investigating a model for molecular motors in subsection 4.2.3.
Denoting the proportionality constant by L, the drift and diffusion properties of
the resulting quantity are obtained by

v̄L = Lv̄ and D̄eff,L = L2D̄eff. (4.5)

Therefrom the Péclet number

Pe =
Lv̄L

D̄eff,L

(4.6)

1To consider a phase which increases by 2π for each event, and compare it to the angular
velocity of the signal, instead of directly comparing the frequency of events with the frequency of
the driving signal, has historical reasons, as the concept of synchronization stems from oscillatory
system where the notion of a phase is inherently given.
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can be calculated, which no longer depends on L. As explained in chapter 2
subsection 2.2.2 it can be interpreted as the averaged number of steps performed
until the system is randomized over one step length.

Finally we want to mention that also in the case of periodic renewal processes
the equivalence between the low frequency limit of the spectral power density
Sχ(ω) of the corresponding delta peak processes

χ(t) =
∑

i

δ(t− ti) (4.7)

and twice the effective diffusion coefficient of the point process {ti}i is preserved.
(For the stationary case cf. eqs. (2.26) and (2.30)). Likewise, the relation between
mean frequency and the high frequency limit of Sχ(ω) carries over to periodic
processes. (cf. eqs. (2.27) and (2.30)). Although we do not exploit this fact in
the calculation of the effective diffusion coefficient in this chapter it is nevertheless
worth to be shown. Namely consider a sequence of events at times ti as. If
Nt0,t denotes the number of events in the time interval (t0, t], the corresponding
stochastic process consisting of delta peaks at the event times is given by

χ(t) =
d

dt
Nt0,t, t ≥ t0 and vice versa Nt0,t =

∫ t

t0

dt′χ(t′).

For this process the asymptotic effective diffusion coefficient is given by

D̄eff := lim
T→∞

〈N2
t0,T 〉 − 〈Nt0,T 〉2

2T

= lim
T→∞

1

2T

[
〈
∫ T

0

dtχ(t)

∫ T

0

dt′χ(t′)〉 − 〈
∫ T

0

dtχ(t)〉〈
∫ T

0

dt′χ(t′)〉
]

= lim
T→∞

lim
ω→0

1

2T

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)cχ̃,χ̃(t, t′)

In the second step we have changed the lower integral boundary from t0 to 0 which
is possible as the finite difference tends to zero as T → ∞ due to the prefactor
1/T . Upon exchanging the two limits T →∞ and ω → 0, which is possible as the
background spectral density of χ(t) as defined by (3.5) is continuous at ω = 0, we
eventually obtain

D̄eff =
Sbg(0)

2
=

1

2
lim
ω→0

S(ω). (4.8)

For the mean frequency v one obtains

lim
ω→∞

Sχ(ω) = lim
ω→∞

lim
T→∞

T 〈|cω, T |2〉 = lim
ω→∞

lim
T→∞

1

T

〈NT 〉∑
k,l=0

exp(iω(tk − tl))(4.9)

= lim
T→∞

〈NT 〉
T

= v̄ (4.10)
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where in the one before the last step we used the fact that in the limit ω →∞ the
sum over the exp(iω(tk − tl)) with k 6= l vanishes and only the summands with
k = l which are 1 remain. We did not use any consequence of the periodic point
process being a renewal process. Relations (4.8) and (4.9) thus hold for arbitrary
periodic or stationary point processes.

4.2 A master equation approach
Consider a periodically driven stochastic n state system described by the proba-
bilities p(t) = [p(1)(t), . . . , p(n)(t)] to be in state 1, 2, . . . , n respectively at time t
Fig. 4.2. We consider the transition into state 1 as an event and ask for the drift
and diffusion properties of the number of these events (cf. subsection 2.2.2). [105].

1 2

p
(2)

p
(1)

Figure 4.2: A two state system

We further assume that the underlying process is a periodic renewal process
and that the evolution of the probabilities in time can be expressed in terms
of some generalized master equation, which relates the temporal change of the
probabilities p(i)(t) to be in state i at time t to the probabilities themselves by
some linear master operator Mt,

d

dt
p(i)(t) = M(i)

t [p](t), i = 1, . . . , n (4.11)

with p = [p(1)(t), . . . , p(n)(t)]. These equations have to be supplemented with the
normalization condition.

n∑
i=1

p(i)(t) = 1. (4.12)

The periodicity of the problem is reflected by the periodicity of the master operator,
i.e.

Mt+T = Mt. (4.13)

where T denotes the period of the driving. As we are interested in the number of
events which happened up to some time t we have to unwrap the system. That is,
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we additionally have to take the number k of events, i.e. of transitions from state
n to state 1, into account. Denoting by p

(i)
k (t) the probability to be in state i at

time t and to have had k events, its dynamics is given by

d

dt
p

(i)
k (t) = M(i),+

t [pk−1](t) +M(i),0
t [pk](t), i = 1, . . . , n (4.14)

with pk(t) = [p
(1)
k (t), . . . , p

(n)
k (t)]. The operator M(i),+

t [pk−1](t) accounts for the
probability influx into state k and thus for the probability efflux out of state k− 1
while M(i),0

t [pk](t) is responsible for the evolution within the state k, i.e. between
the different substates i and for the efflux out of state k. The original master
operator is thus split into the sum of the two master operators, which result from
unwrapping the system,

M(i)
t [p](t) = M(i),+

t [p](t) +M(i),0
t [p](t) (4.15)

Due to the renewal property of the process the states k− 2 and k are not directly
linked, i.e. there is no part of the unwrapped master equation which directly
relates the probabilities pk−2(t) and pk(t). Denoting by pk(t) the total probability
to have had k events at time t, the normalization condition eq. (4.12) reads

n∑
i=1

p
(i)
k (t) = pk(t). (4.16)

Let us shortly present our two discrete models within this setting, starting with
the Markovian two state model for a double well potential system. Its probabilities
to be in state 1 or 2 are governed by

d

dt
p(1)(t) = −γ1→2(t)p

(1)(t) + γ2→1(t)p
(2)(t) (4.17a)

d

dt
p(2)(t) = γ1→2(t)p

(1)(t)− γ2→1(t)p
(2)(t). (4.17b)

If we additionally take into account the number k of events, i.e. transitions from
2 to 1 this leads to the unwrapped master equation

d

dt
p

(1)
k (t) = −γ1→2(t)p

(1)
k (t) + γ2→1(t)p

(2)
k−1(t) (4.18a)

d

dt
p

(2)
k (t) = γ1→2(t)p

(1)
k (t)− γ2→1(t)p

(2)
k (t). (4.18b)

Thus the splitting of the master operator into M(i),+
t and M(i),0

t in eq. (4.14)
results in

M(1),0
t [pk](t

′) = −γ1→2(t)p
(1)
k (t′), M(1),+

t [pk−1](t
′) = γ2→1(t)p

(2)
k−1(t

′)

M(2),0
t [pk](t

′) = γ1→2(t)p
(1)
k (t′)− γ2→1(t)p

(2)
k (t′), M(2),+

t [pk−1](t
′) = 0
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The next example, the non Markovian three state model for excitable systems
as introduced in section 2.1.2 may, in the context of synchronization, be reduced
to only two states, by lumping the firing and refractory state together to one state
1 while the rest state 2 remains on its own. This reduction is possible because here
we are not concerned with the output of the excitable system, which obviously is
different in firing and refractory state. The evolution of the probabilities in this
model is correspondingly given by (compare eqs. (2.15) and their derivation)

d

dt
p(1)(t) = γ(s(t))p(2)(t)−

∫ ∞

0

dτγ(s(t− τ))p(2)(t− τ)w(τ) (4.19a)

d

dt
p(2)(t) = −γ(s(t))p(2)(t) +

∫ ∞

0

dτγ(s(t− τ))p(2)(t− τ)w(τ) (4.19b)

where w(τ) is the waiting time density in firing and refractory state together while
γ(s(t)) is the signal dependent excitation rate of the rest state. Again taking into
account the number of events k we obtain

d

dt
p

(1)
k (t) = γ(s(t))p

(2)
k−1(t)−

∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t− τ)w(τ) (4.20a)

d

dt
p

(2)
k (t) = −γ(s(t))p(2)

k (t) +

∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t− τ)w(τ) (4.20b)

In this case the master operator is given by

M(1),0
t [pk](t

′) = 0

M(1),+
t [pk−1](t

′) = γ(s(t))p
(2)
k−1(t

′)−
∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t

′ − τ)w(τ)

M(2),0
t [pk](t

′) = −γ(s(t))p(2)
k (t′)

M(2),+
t [pk−1](t

′) =

∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t

′ − τ)w(τ)

However as already explained in connection with spectral based measures of the
periodically driven threestate model in subsection 3.3.1 this differential form does
not lead to a unique solution even together with the normalization condition (4.16).
We have to additionally impose that

p
(1)
k (t) =

∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t− τ)z(τ) (4.22)

stating that the probability that the system is in state (k, 1) at time t is the
probability flux out of state (k−1, 2) at time t−τ in the past, γ(s(t−τ))p(2)

k−1(t−τ),
times the probability that state 1 is not already left again, z(τ), integrated over the
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past. Note that the time derivative of the above equation is equal to eq. (4.20a).
Taking the normalization condition (4.16) into account eq. (4.22) leads to∫ ∞

0

dτγ(s(t− τ))p
(2)
k−1(t− τ)z(τ) + p

(2)
k (t) = pk(t). (4.23)

k k + 1
1 2 1 2

p
(2)

k+1
p

(1)

k+1
p

(2)

kp
(1)

k

Figure 4.3: The two state system is unwrapped in order to take into account the
number of events.

Our aim is to evaluate the asymptotic mean frequency v̄ as well as the effective
diffusion coefficient D̄eff. Their definition (4.2) is based on the mean number of
events as well as its variance , which can in principle be calculated in terms of the
probabilities pk as

〈Nt0,t〉 =
∞∑

k=−∞

k
n∑

i=1

p
(i)
k (t) and 〈N2

t0,t〉 =
∞∑

k=−∞

k2

n∑
i=1

p
(i)
k (t). (4.24)

However to obtain the probabilities pk(t) one has to solve the general time depen-
dent unwrapped master equation (4.14) with some appropriate initial condition,
which in general is not feasible. Therefore we propose a different approach. Ac-
cording to section 4.1 the instantaneous mean phase velocity and instantaneous
effective phase diffusion coefficient as defined in eqs. (4.1) asymptotically be-
come periodic functions of t. In this asymptotic regime the mean frequency v̄ and
effective diffusion coefficient D̄eff can be expressed as the period average of the
periodic instantaneous mean frequency and diffusion coefficient (see eq. (4.3)). In
the following we derive equations for the periodic asymptotic instantaneous mean
frequency and effective diffusion coefficient, i.e. we reduce the problem to the cal-
culation of a periodic solutions of some equations. This task is in general easier to
perform (analytically or numerically) than solving the whole unwrapped master
equation (4.14) with some initial condition to calculate the mean and variance of
the number of events eq. (4.24) and then finally passing to the asymptotic limit
in order to obtain v̄ and D̄eff according to eqs. (4.2).

How can we relate the instantaneous mean frequency v(t) and instantaneous
effective diffusion coefficient Deff(t) in a simple way to the microscopic dynamics
(4.14)? To this end we introduce a continuous probability density P(x, t) as an
envelope of the discrete probability distribution of the number of events k as given
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by pk(t) :=
∑n

i=1 p
(i)
k (for an application of such an envelope approach to undriven

systems see also [38,130]), namely∫ k+ 1
2

k− 1
2

dxP(x, t) = pk(t). (4.25)

Of cause this relation does not uniquely determine P(x, t). What kind of evolution
equation does the continuous probability distribution P(x, t) has to obey in order
that this embedding remains true in the course of time? We will not consider
this question in general, but focus only on the asymptotic case, in which the
probabilities tend more and more to a uniform distribution. In this limit we
assume that if eq. (4.25) was once true and if the cumulants and therefore also the
moments of both the continuous probability density and the discrete probabilities
grow with the same rate then eq. (4.25) remains true in the course of time. The
cumulants of the discrete process are known to grow periodically in the considered
asymptotic limit (see appendix C.1), with a rate denoted by κ[i](t), where the first
to coefficients v(t) = κ[1](t) and Deff(t) = κ[2](t)/2 are in the focus of our interest.
To have this very same growth of the cumulants for the continuous probability
density we assign the Kramers Moyal equation

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ[n](t)

∂n

∂xn
P(x, t)

= −v(t) ∂
∂x
P(x, t) +Deff(t)

∂2

∂x2
P(x, t) +O(3). (4.26)

to the evolution of the continuous probability density P(x, t) (see appendix C.2).
In this equation O(3) denotes derivatives of order ≥ 3 with respect to x. The
microscopical dynamics however is not given in terms of the pk(t) but we also have
to include the substates i in our considerations. To this end we have to relate
the p(i)

k (t) to the continuous probability density P(x, t). We assume that these
probabilities can be expanded as

p
(i)
k (t) =

∞∑
m=0

q(i)
m (t)

∂m

∂xm
P(x, t)

∣∣∣
x=k

, i = 1, . . . , n (4.27)

with some T -periodic coefficients q(i)
m (t). Expanding the integrand around k in eq.

(4.25) we obtain

pk(t) = P(k, t) +
1

24

∂2

∂x2
P(x, t)

∣∣∣
x=k

+O(4) (4.28)

which according to eq. (4.27) implies
n∑

i=1

q
(i)
0 = 1,

n∑
i=1

q
(i)
1 = 0 and

n∑
i=1

q
(i)
2 =

1

24
. (4.29)
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Having related the p(i)
k (t) to the continuous envelope P(x, t) by eq. (4.27) we

next have to analyze different structures which may occur in the generalized master
equation (4.14). The first one is the time derivative d

dt
p

(i)
k (t). Inserting the ansatz

(4.27) into this expression and using the Kramers-Moyal equation (4.26) to process
the resulting time derivatives we end up with

d

dt
p

(i)
k (t) =

[ d
dt
q
(i)
0 (t)

]
P(x, t)

∣∣∣
x=k

+
[ d
dt
q
(i)
1 (t)− v(t)q

(i)
0 (t)

] ∂
∂x
P(x, t)

∣∣∣
x=k

+
[ d
dt
q
(i)
2 (t)− v(t)q

(i)
1 (t) +Deff(t)q

(i)
0 (t)

] ∂2

∂x2
P(x, t)

∣∣∣
x=k

+O(3).

(4.30)

We further need the probabilities p(i)
k (t− τ) in the past because a general master

equation may be non local in time. Additionally we need the probabilities p(i)
k−1(t−

τ) for the previous event k − 1. By expanding P(x−∆x, t− τ) around (x, t) in a
Taylor series and transforming the time derivatives to derivatives with respect to
x with the help of eq. (4.26) (cf. appendix C.4 ) we obtain

p
(i)
k−∆(t− τ) = (4.31)

q
(i)
0 (t−τ)P(x, t)

∣∣∣
x=k

+
[
q
(i)
1 (t−τ) + q

(i)
0 (t−τ)c[1]t (τ,∆)

] ∂
∂x
P(x, t)

∣∣∣
x=k

+
[
q
(i)
2 (t−τ) + q

(i)
1 (t−τ)c[1]

t (τ,∆) + q
(i)
0 (t−τ)c[2]t (τ,∆)

] ∂2

∂x2
P(x, t)

∣∣∣
x=k

+O(3)

Therein the functions c[1]
t (τ,∆) and c[2]t (τ,∆) are given by (see appendix C.4

c
[1]
t (τ,∆) =

∫ τ

0

dτ ′v(t− τ ′)−∆

c
[2]
t (τ,∆) =

∆2

2
−
∫ τ

0

dτ ′Deff(t− τ ′)

+

∫ τ

0

dτ ′v(t− τ ′)
[ ∫ τ ′

0

dτ ′′v(t− τ ′′)−∆
]
.

Inserting expressions (4.30) and (4.31) into the master equation (4.14) and sorting
the coefficients of P(k, t), ∂

∂x
P(x, t)

∣∣∣
x=k

and ∂2

∂x2P(x, t)
∣∣∣
x=k

eventually leads to the
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following equations

d

dt
q
(i)
0 (t) = M(i)

t [q0](t) (4.32a)

d

dt
q
(i)
1 (t) = M(i)

t [q1 + c̃
[1]
t,0q0](t)−M(i),+

t [q0](t) + v(t)q
(i)
0 (t) (4.32b)

d

dt
q
(i)
2 (t) = M(i)

t [q2 + c̃
[1]
t,0q1 + c̃

[2]
t,0q0](t)−M(i),+

t [q1 + c̃
[1]

t, 1
2

q0](t)

+v(t)q
(i)
1 (t)−Deff(t)q

(i)
0 (t). (4.32c)

to determine the periodic coefficients qm := [q
(1)
m , . . . , q

(n)
m ]. For the sake of a simple

notation we introduced the abbreviations c̃[1]t,∆(t− τ) := c
[1]
t (τ,∆).

q0 in eq. (4.32a) shows the same dynamics as p in the two state system without
taking into account the number of events, (4.11), which one would also expect as
this term corresponds to an equipartition of the event number P(k, t) = const in
the expansion (4.27). The higher order terms qn are corrections which emerge due
to the fact that we are considering a non equipartition of the events k resulting in
drift and diffusion. By summing up all components i of eqs. (4.32b) and (4.32c),
using the normalization condition (4.29) and the fact that

∑n
i=1M

(i)
t = 0 we arrive

at

v(t) =
n∑

i=1

M(i),+
t [q0](t) (4.33)

Deff(t) = −
n∑

i=1

M(i),+
t [q1 + c̃

[1]

t, 1
2

q0](t)

=
v(t)

2
−

n∑
i=1

M(i),+
t [q1 + c̃

[1]
t,0q0](t) (4.34)

Having solved eq. (4.32a) for q0 we can evaluate v(t) according to eq. (4.33), this
result can then be inserted into eq. (4.32b) which in turn is solved for q1 from
which we finally obtain Deff(t) according to eq. (4.34). The mean frequency v̄ and
the effective diffusion coefficient D̄eff can then be determined as a period average
of the periodic solutions v(t) and Deff(t). The calculation is thus reduced to the
solution of a periodic problem, which in general is simpler that solving the whole
non stationary problem (4.14) with some initial conditions and then considering
the asymptotic limit.

In the following subsections we investigate stochastic synchronization in the
double well potential systems and excitable systems. To this end we apply the
general results (4.33) and (4.34) to the Markovian two state model for the double
well potential system eqs (4.17) and the non Markovian two state model eqs. (4.19)
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for excitable systems. Finally we use the results to analyze the improvement of
regularity in the motion of a periodically driven molecular motor.

4.2.1 Application to synchronization in a double well system

Consider the Markovian two state system with periodically modulated rates γ1→2(t)
and γ2→1(t). This model was introduced in [83] as an approximation to describe
the behavior of a noisy overdamped particle in a double well potential driven by
white noise(see section 2.1.1). We are interested in quantifying the stochastic
synchronization of this system to the external periodic signal. To this end we in-
troduce a phase φ of the system which increases by 2π within a full cycle, namely
within one transition from left to right and back to left again. As the long time
averaged diffusion behavior does not depend on the precise choice of this phase
we assume a discrete phase φ which increase by 2π at each transition from right
(state 2) to left (state 1). Thus φ = 2πN where N denotes the number of tran-
sitions. The instantaneous mean phase velocity ω(t) and effective phase diffusion
coefficient Deff(t) can then be obtained according to section 4.1, eq. (4.5), by an
appropriate scaling by 2π and 4π2 respectively of the mean frequency v(t) and
effective diffusion coefficient Deff(t) of the number of events.

The unwrapped master operator of this Markovian two state model has already
been presented in eqs. (4.18). Due to the Markovian nature of this system, which
renders the action of the master operator local in time eqs. (4.32) greatly simplify.
As ci,t(t) = 0 the arguments of the master operators involving these terms vanish.
Eqs. (4.33) and (4.34) then reduce to

ω(t) = 2πγ2→1(t)q
(2)
0 (t) (4.35a)

Deff(t) = 2π2γ2→1(t)q
(2)
0 (t)− 4π2γ2→1(t)q

(2)
1 (t). (4.35b)

while eqs. (4.32a) and (4.32b) for q(2)
0 (t) and q(2)

1 (t) are given by

q̇
(2)
0 (t) = −q̇(1)

0 (t) = γ1→2(t)q
(1)
0 (t)− γ2→1(t)q

(2)
0 (t) (4.36a)

q̇
(2)
1 (t) = γ1→2(t)q

(1)
1 (t)− γ2→1(t)q

(2)
1 (t) +

ω(t)

2π
q
(2)
0 (t) (4.36b)

q̇
(1)
1 (t) = −γ1→2(t)q

(1)
1 (t) + γ2→1(t)q

(2)
1 (t) +

ω(t)

2π
q
(1)
0 (t) (4.36c)

Eqs. (4.36) can be readily solved by the method of variation of constants, using
the normalization (4.29) q(1)

0 (t) = 1−q(2)
0 (t) and q(1)

1 (t) = −q(2)
1 (t). The asymptotic
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periodic solutions eventually read

q
(2)
0 (t) =

∫ T
0
dτγ1→2(t− τ) exp(−s(τ, t))

1− exp(−s(T, t))
(4.37)

q
(2)
1 (t) =

∫ T
0
dτω(t− τ)q

(2)
0 (t− τ) exp(−s(τ, t))

2π(1− exp(−s(T , t)))
(4.38)

where s(τ, t) :=
∫ t

t−τ
dτ ′(γ1→2(τ

′) + γ2→1(τ
′)). Note that s(T , t) no longer depends

on t due to the periodicity of the rates.
For a dichotomic symmetric driving with period T = 2π/Ω,

γ1→2(t) =

{
r1 if t ∈ [nT , (n+ 1

2
)T )

r2 if t ∈ [(n+ 1
2
)T , (n+ 1)T )

and vice versa for γ2→1(t) eqs. (4.37) and (4.38) can be readily evaluated leading
after some cumbersome algebra to the mean phase velocity and effective phase
diffusion constant

ω̄ = ωst + αΩ tanhR (4.39)

and

D̄eff = πωst
[1
2

+ α(
1

2
+ cosh−2R)

]
+ παΩ tanhR

[
− 1 + α(

1

2
cosh−2R + 1)

]
(4.40)

where we have introduced the mean phase velocity without driving ωst := 2π/( 1
r1

+
1
r2

), a quantifier for the driving strength α = (r1−r2)2

(r1+r2)2
and some ratio between inner

time scale and driving frequency R = π(r1+r2)
2Ω

. These results agree with the results
found independently in [16] using a different approach. Having calculated the
effective diffusion coefficient and the mean phase velocity we can evaluate the
Péclet number

Pe :=
2πω̄

D̄eff
. (4.41)

Let us first consider some limiting cases. Without signal, i.e. α = 0 and thus
r1 = r2, eq. (4.40) reduces to D̄eff = πωst, which agrees with known result for
undriven renewal processes eq. (2.30), [22],

D̄eff = (2π)2 〈τ 2〉 − 〈τ〉2

2〈τ〉3



83

where

〈τ〉 =
2

r1
and 〈τ 2〉 =

6

r2
1

are the mean and the second moment of the time needed for one transition 1 →
2 → 1.

Next we consider the small and large noise limits of the phase velocity ω̄ and
phase diffusion constant D̄eff for the case of Arrhenius rates r1/2 = r0 exp(−∆U±A

D
).

In this case α = tanh2(A
D

). If for a fixed driving frequency the noise level is
sufficiently small such that R� 1 eqs. (4.39) and (4.40) reduce to

ω̄ ≈ ωst + αΩR =
π

2
(r1 + r2) ≈

π

2
r2

D̄eff ≈ πωst(
1

2
+

3

2
α) + παΩR(−1 +

3

2
α) =

π2

4
(r1 + r2) ≈

π2

4
r2

where in the last step we used the fact that r2 dominates r1 for small noise levels.
Therefore, at the level of phase velocity and phase diffusion, the process behaves
like a process without driving whose rates are both equal to r2

2
. On the other hand

if the noise level is large and the driving frequency is small compared to r0 such
that R� 1 we get

ω̄ ≈ ωst + αΩ = 2π
r1r2
r1 + r2

+ Ω
(r1 − r2)

2

(r1 + r2)2

D̄eff ≈ π

2
ωst(1 + α) + παΩ(−1 + α) = 2π2 r1r2(r

2
1 + r2

2)

(r1 + r2)3
− 4πΩ

(r1 − r2)
2

(r1 + r2)4

The first terms in these expressions correspond to a process without driving with
one rate equal to r1 and the other equal to r2, while the second terms are corrections
which vanish for vanishing driving frequency. Between these regions we have a
competing behavior. If for a fixed driving amplitude A, the noise strength D is
sufficiently small, such that α ≈ 1 and ωst ≈ 0, and simultaneously, for a fixed
driving frequency Ω, D is sufficiently large such that R � 1, i.e. tanhR ≈ 1 we
have

ω̄ ≈ Ω and D̄eff ≈ 0

i.e. frequency and phase locking occur.
In Fig.4.4 the theoretical results (4.39), (4.40) and (4.41) are compared to sim-

ulations of the driven two state system, where we have again chosen an Arrhenius
type dependence of the rate on the noise strength.

r1/2 = r0 exp(−∆U ± A

D
)
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Figure 4.4: Mean phase velocity ω̄ (top), effective phase diffusion constant D̄eff

(middle) and Péclet number Pe (bottom) of the Markovian model for different
values of the driving amplitude. Symbols are simulation data of the two state
system, lines according to eqs. (4.39), (4.40) and (4.41), respectively. Other
parameters: r0 = 1 and ∆U = 0.25, Ω = 0.001π. The missing simulation points
for the Péclet number at the maximum are due to the limited simulation time,
which leads to an effective diffusion coefficient equal to 0 and thus to a diverging
Péclet number.

To compute these results we have modified an algorithm presented in [46] taking
into account that the transition rates are piecewise constant in time due to the
dichotomic driving. Let us assume we start at time t in state 1 and the input
defines the rate to have the value r1. Then we draw a random number τ according
to the corresponding waiting time distribution wr1(τ) = r1 exp(−r1τ). If t + τ
is smaller then the time ts of the next switching of the input we set the running
time to t + τ and perform the transition to the second state of the system. This
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state 2 will be left with rate r2 and we proceed accordingly. Contrary if during
the interval [t, t+ τ ] a switching of the input occurs we set the running time equal
to the switching time ts but remain in state 1. After switching of the input the
rate for leaving state 1 is now r2 and we proceed by drawing a new waiting time
according to the new density wr2(τ) = r2 exp(−r2τ).

The Péclet number shows a maximum as a function of noise strength, indi-
cating stochastic resonance. For a strong driving, it varies over several orders of
magnitude with varying noise strength D. The sharp peak at the optimal noise
level is not a cusp but the Péclet number remains a smooth function of the noise
level. This stands in contrast to the non-smooth cusp-like behavior of the mean
locking episodes as a function of noise strength claimed in [96].

Interestingly the Péclet number shows also a non monotonic behavior as a
function of driving frequency for a fixed noise level, i.e. using this number as a
measure of the quality of the response to the external signal we discover a “bona
fide“ resonance (Fig. 4.5). Such a bona fide resonance has been also reported for
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Figure 4.5: Péclet number Pe of the Markovian model as a function of driving
frequency Ω for different noise values showing a “bona fide” resonance. A = 0.2,
other parameters as in Fig. 4.4. The inset shows the driving frequency (solid line)
at which the Péclet number attains its maximum and the intrinsic frequency ωst

without driving (A = 0) (dashed line) as a function of noise strength.

other measures like the fraction of the transitions with a waiting time around T /2,
namely in the interval (T /2 − αT , T /2 + αT ), [42] (T /2 and not T because the
waiting time there accounts for a single transition from left to right or from right
to left respectively). However it was doubted [18] that this is actually a fingerprint
of a bona fide resonance as even in the absence of a driving, setting the driving
amplitude to 0 this quantity may show a maximum with respect to the driving
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frequency. This results from the fact that this measure is explicitly based on the
driving frequency Ω = 2π/T , a drawback which the Péclet number obviously does
not have.

Finally, we want to compare the two state theory with a double well potential
system

ẋ = − ∂

∂x
V (x, t) + s(t) +

√
2Dξ(t), V (x, t) = −a

2
x2 +

b

4
x4 (4.42)

influenced by a dichotomic periodic signal

s(t) =

{
A if t ∈ [nT , (n+ 1

2
)T )

−A if t ∈ [(n+ 1
2
)T , (n+ 1)T )

The transition rates between the two states are [67]

γ± =
ω±ω0

2π
exp(−V0 − V±

D
) (4.43)

Therein ω± are the square roots of the of the modulus of the second derivatives
of the potential in the left and right minimum respectively and ω0 is the second
derivatives of the potential in the maximum. V± and V0 are the values of the
potential in the minima and in the maximum respectively. This formula is valid
if the potential difference V0 − V± is much larger than the noise strength D. In
Fig. 4.6 the mean phase velocity, effective phase diffusion constant and Péclet
number, numerically evaluated for the double well system eq. (4.42) are compared
to the analytical results (4.39), (4.40) and (4.41) with the respective rates r1 and r2
taken from eq. (4.43). Generally we find a good agreement. The deviation between
theory and simulations in the effective diffusion constant and Péclet number, in
the regions where they take their minimum and maximum value respectively is due
to a limited simulation time. The derivation for high values of the noise strength
D is due to limitations in the Kramers rate approximation for high noise levels
compared to the potential barrier between the wells.

4.2.2 Application to synchronization in excitable systems

In this section we consider the phase velocity and effective phase diffusion of the
non Markovian two state model for excitable systems. This model is the same
as the three state model considered in subsection 3.3.1 in the context of spectral
based measures of the response to a periodic signal, except that the firing and
refractory state are now lumped together into one discrete state, representing the
motion along the excitation loop. This simplification is possible as the different
output in firing and refractory state looses its significance when considering the
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Figure 4.6: Mean phase velocity ω̄ (top), effective phase diffusion constant D̄eff

(middle) and Péclet number Pe (bottom) of the Markovian model (lines) for dif-
ferent values of the driving amplitude compared to simulation data of a dou-
ble well potential system eq. (4.42) with a = b = 1 for a driving frequency
Ω = 0.01(symbols).

synchronization behavior to an external signal. Denoting the rest state by 2 and
the motion along the excitation loop by 1, its probabilities evolve according to
eqs. (4.20). Then, according to eqs. (4.33) and (4.34), the time dependent phase
velocity ω(t) and effective phase diffusion constant Deff(t) are given by

ω(t) = 2πγ(t)q
(2)
0 (t) (4.44a)

Deff(t) = 2π2γ(t)q
(2)
0 (t)− 4π2γ(t)q

(2)
1 (t). (4.44b)

These are the same expressions as in the Markovian case eqs. (4.35) as the operator∑
iM

(i),+
t = M(1),+

t + M(2),+
t , which describes the probability flux from state k
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into state k + 1 is the same in both cases. This stems from the fact that in both
cases the step which increases the number of events is a rate process. However the
equations governing the q(i) are different. They are obtained from eq. (4.23) as∫ ∞

0

dτz(τ)γ(t− τ)q
(2)
0 (t− τ) + q

(2)
0 (t) = 1 (4.45a)∫ ∞

0

dτz(τ)γ(t− τ)q
(2)
1 (t− τ) + (4.45b)∫ ∞

0

dτz(τ)γ(t− τ)q
(2)
0 (t− τ)(

1

2π

∫ τ

0

dτ ′ω(t− τ ′)− 1) + q
(2)
1 (t) = 0.

The periodic solutions of eqs. (4.45) can be numerically obtained in Fourier space
(see appendix C.5) using a linear solver like LAPACK.

In the following we assume a fixed waiting time T on the excitation loop, i.e.
w(τ) = δ(T − τ) and z(τ) = θ(T − τ). Such an assumption is justified in the low
noise limit of the FitzHugh-Nagumo model (cf. Fig. 2.6 and 3.2). To investigate
the role of noise in this low noise regime on the synchronization in excitable system
we choose an Arrhenius type excitation rate for the transition from the rest state
2 onto the excitation loop 1. We further assume that the external driving acts as
a modulation of the potential barrier. Again we consider a dichotomic periodic
driving, i.e. the excitation rate γ(t) periodically switches between the two values
r1 = r0 exp(−(∆U − A)/D) and r2 = r0 exp(−(∆U + A)/D).

The resulting phase velocity, effective phase diffusion and Péclet number as a
function of noise strength D are shown in Fig. 4.7. To obtain these results we
solved eqs. (4.44a), (4.44b) and (4.45) for the periodic solution, by truncating
the infinite dimensional system in Fourier space (see C.5) to 100 coefficients and
then solving it numerically using LAPACK. As in the case of bistable systems
we observe frequency and phase locking, however there exist preferred driving
frequencies for which high synchronization is achieved and other frequencies which
show no synchronization at all.

The Péclet number shows a local maximum at a finite noise strength. Contrary
to the bistable situation however, the phase diffusion constant decreases again
and the Péclet number therefore increases for large noise levels. This behavior is
originated in the fixed time T on the excitation loop. Taking into account the
high rate and therefore small waiting time and variance of the excitation step for
high noise levels this leads to a low variance of the spiking, which implies a low
diffusion of the phase. We mention that this low phase diffusion does not imply
synchronization since the frequencies are not locked. Also we note that in real
excitable systems the behavior differs. For higher noise levels the variance of the
time spent on the excitation loop will increase in these systems which yields an
increasing phase diffusion with growing noise.
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Figure 4.7: Mean phase velocity ω̄ (top), effective phase diffusion coefficient D̄eff

(middle) and Péclet number Pe (bottom) of the non Markovian model as a function
of noise strength D for different values of the driving frequency Ω. Symbols are
simulation data of the two state system, lines according to numerical evaluation
of the theory. Other parameters: T = 2800, r0 = 0.0044, ∆U = 5.6 · 10−5 and
A = 5.0 · 10−5.

As seen in Fig. 4.7 the synchronization behavior strongly depends on the
driving frequency. To further analyze this effect we have plotted in Fig. 4.8
the mean phase velocity, phase diffusion coefficient and the Péclet number as
function of the driving frequency. They show a complex sequence of different
locking regions between the driving and the system’s response, represented by
shaded regions. Such a complex sequence of different locking regions have also
been observed in the Hodgkin-Huxley model in [98] and the FHN model [78]. In
these locking regions the effective phase diffusion is small Fig. 4.9. We mention
that the maximal frequency of the excitable system is ω̄max = 2π/T where T is the



90 4.2. A MASTER EQUATION APPROACH

Ω

P
e

10−210−310−4

�����

���

�

D̄
e
ff

��� �������

��� ������	

��� ������


��� �������

��� ������

��� �������

��� �������

�

3Ω
2Ω
Ω

1
2Ω

ω̄

��� �����

��� �������

��� ������	

��� �������

��� �������

��� �����

Figure 4.8: Mean phase velocity ω̄ (top), effective phase diffusion constant D̄eff

(middle) and Péclet number Pe (bottom) of the non Markovian model as a function
of driving frequency Ω for D = 0.00001. The selected shaded regions are a guide
for the eye to show that regions of frequency synchronization are accompanied
with a small effective phase diffusion and therefore with a high Péclet number.
Other parameters: T = 2800, r0 = 0.0044, ∆U = 5.6 · 10−5 and A = 5.0 · 10−5.

time on the excitation loop. There can not be 1 : 1 synchronization for Ω > ω̄max.
Let us for a moment assume the extremal case where one excitation rate r1

is infinity and the other r2 is zero. Then the system remains in the rest state as
long as the input causes the vanishing excitation rate. After the input changes
the system immediately starts with the excitation loop where it stays the time T .
For a 1 : 1 locking this time T must be larger than half the period but smaller the
full period 2π/Ω of the driving. Otherwise, if the duration of the excitation loop
would be smaller than half the period the system returns to the rest state where
it immediately starts a new excitation. In consequence 1 : n locking where the
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Figure 4.9: Effective phase diffusion constant D̄eff of the non Markovian model, as
a function of driving frequency Ω and noise level D. The black lines show regions
of frequency locking (1− ε)Ω < nω̄ < (1 + ε)Ω, ε = 0.01 with (from left to right)
n = 3, 2, 1, 1

2
. These regions of frequency locking coincide with low phase diffusion.

Other parameters as in Figs. 4.7 and 4.8.

output frequency is n times higher than the input frequency occurs if the period
of the driving is between (n− 1/2)T and nT .

The opposite case where a fast input locks a slow output occur if multiple
periods of the input fit into the excitation time. During the excitation the system
does not respond to the changes of the input. If the input has the phase with
long waiting time after the system has completed the excitation loop, it has to
wait until the input changes to the phase with the small waiting time, leading to
a n : 1 synchronization where n is the number of signal periods which fit into the
excitation time T .

However if the system finds the high excitation rate after excursion it immedi-
ately starts a new excitation loop and repeats these until it will find the phase with
long waiting times. This yields a n : m frequency locking with n > m. Note that
there are no n : m locking modes with n < m except the 1 : m modes described
above.

Realistic noise dependent time scales will weaken the extreme behavior of the
situation considered above. There are two competing effects namely increasing the
noise increases r1 as well as r2 while decreasing the noise increases the ratio between
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r1 and r2 and therefore the effect of the driving. Hence, we find synchronization
in a finite window of noise intensities where the two activation times enclose the
time T on the excitation loop,

1

r1
� T � 1

r2
. (4.46)

We point out that this latter time plays the essential role within the synchroniza-
tion process, i.e. this time scale and the period of the external drive have to be
tuned appropriately to get phase synchronization. Noise as well as the amplitude
of driving define the two excitation rates and have to be chosen such that eq.
(4.46) is optimally fulfilled, i.e. that the input acts as much as possible as a on-off
switch on the excitation process. A deviation from this extremal behavior leads to
a narrowing of the driving frequency windows amenable to frequency locking and
a shift of these windows to lower frequencies.

Inequality (4.46) allows for an estimation of noise levels, for which one can
expect synchronization. If, in particular, we specify this inequality by 1/r1 < T/4
and 1/r2 > 4T , the parameters used in Fig. 4.9 lead to a noise range from
D ≈ 5 ∗ 10−6 to D ≈ 3 ∗ 10−5 which coincides with the range of noise levels for
which phase synchronization is actually observed.

Finally we compare the theory to a dynamical system with excitable dynamics,
namely the FHN model [33, 87]

ẋ = x− x3 − y +
√

2Dξ(t) (4.47a)
ẏ = ε(x+ a0 − a1y − s(t)) (4.47b)

This system is driven by a dichotomic periodic signal s(t) with values ±A where
A = 0.015. Setting a0 = 0.405 and a1 = 0.5 the system is in the excitable regime
for both values of the signal, i.e. the signal is a sub-threshold signal. We further
consider a strong time scale separation ε = 0.001 as well as a small noise level
D = 10−5. The phase of the system is defined to increase by 2π each time a
spike is generated. From simulations of the inter spike interval distribution (see
Fig. 4.10) for constant signal ±A we find the corresponding parameters of the two
state model to be T ≈ 2620, r1 ≈ 0.0087 and r2 ≈ 8.3 · 10−8 .

The results for the phase velocity ω̄ and effective phase diffusion constant D̄eff

for the FHN system (numerical simulation of eqs. (4.47)) and the theory (4.44a)
and (4.44b) are shown in Fig. 4.11. They show a good qualitative agreement over
a large range of driving frequencies. The deviation for larger driving frequencies
is due to the fact that, in contrast to the assumptions of our two state model, the
time T spent on the excitation loop depends if only weakly on the driving.

Last but not least the very same expressions as for the excitable system can
also be used to describe the synchronization in a parametrically driven bistable
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Figure 4.10: Inter spike interval distribution of the FHN system (4.47) with
constant signal s(t) = 0.015 for a low noise level D = 10−5 and strong time scale
separation ε = 0.001. Other parameters see text.
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Figure 4.11: Comparison between theory and FHN system eqs. (4.47) for mean
phase velocity ω̄ (top) and effective phase diffusion constant D̄eff (bottom) as a
function of driving frequency. Parameters see text.

symmetric FHN system as introduced in subsection 3.3.2. To this end we consider
the dynamics on the right stable branch and the left stable branch of the bistable
system as one full cycle of the excitable system, being composed of a fixed time and
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a periodically modulated rate excitation. Then one cycle of the bistable system
corresponds to two cycles of the excitable system, which changes the mean velocity
and effective diffusion coefficient by a factor of 1/2 and 1/4 respectively. The
additively driven bistable FHN system however cannot be described in this way,
as the influence of the driving on either the left or the right excitation step is
opposite.

4.2.3 Application to molecular motors –Controlling random
motion of Brownian steppers by periodic driving

For many physicists the term “molecular motor” is associated with a Brownian
ratchet. The latter is a simple model consisting of a particle in a spatially asym-
metric potential, subjected to friction and noise. Directed motion becomes possible
if one departs from thermal equilibrium, e.g by periodically modulating the po-
tential or by considering a periodically modulated temperature. (for an overview
see [110]). An abundant literature is devoted to the questions of rectified cur-
rent (particle’s velocity) [120], thermodynamic efficiency [121], current reversals
and many other intriguing properties of such systems both in underdamped and
in overdamped regimes, under adiabatic or non-adiabatic modulation conditions
(see [1, 99, 110] for reviews, and references therein). In the context of molecular
motors Brownian ratchets have been discussed in [79].

However, the majority of real molecular motors powering our cells and their or-
ganelles are not rectifying fluctuations. They are more similar to deterministically
working car motors, whose functioning implies a sequence of well-defined processes,
which, in an analogy with a heat engines, are called strokes (see e.g. [32,76,92,94]),
which are triggered and powered by the consumption of some fuel molecules, nor-
mally ATP. These motors hardly show the reversal of their motion, are highly
efficient and best suited for performing their well-defined simple task.

There is, however, a considerable difference between the way of the functioning
of molecular motors [5] and macroscopic ones: Due to their microscopic size, the
importance of inertia and masses (being proportional to L3 with L being the size
of the system) , is negligible compared to the importance of friction, which, in
the Stokes’ case, is proportional to L. Another difference is that the motor is so
tiny that the influence of the thermal motion of the molecules of the surrounding
medium can not be neglected. Thus, although the strokes themselves are well-
defined, we cannot neglect the effects of randomness, introduced by the impacts
of these molecules. These might be constructively used by the motors whose
working cycle might include thermally activated or diffusive steps. M. Bier coined
a description of such a motor (a simplified model of a two-headed kinesin walking
along a biopolymer microtubule) as a Brownian stepper [11].
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The paradigmatic model of a Brownian stepper might be used as a prototype
of tiny engines on the nano-scale. Thus the question on the possibility to control
the motion of a stepper can be posed. Such control cannot be easily realized by
changing the properties of the molecule itself, though. It will be much easier to
modulate the properties of the surrounding medium by changing, for example, the
concentrations of some molecules (fuel molecules or special transmitters), just as
adopted in biological prototypes.

This is exactly the mechanism of control we consider in some detail [107], using
the theory developed in section 4.2. We investigate the influence of a periodic
modulation of the fuel molecule concentration on the transport properties of the
stepper. The transport properties of interest are the mean velocity v̄ and the
effective diffusion coefficient D̄eff of the molecular motor. The first one determines
the effectiveness of transport, and the second one, describing the spread of the
actual positions in different realizations around the mean, gives us a measure of
how precise this molecular step motor works. The characteristic measure of this
precision is the dimensionless Péclet number, Pe = `v/Deff where ` is the length
of one step [38]. Although we use the same notation, v and Deff differ by a factor
of ` and `2 respectively from the mean frequency and effective diffusion coefficient
as defined previously, as they now characterize the position x = `N instead of the
number of steps N itself.

The model

We consider a Brownian stepper which moves along a track in discrete forward
steps (see Fig. 4.12) of length `. Each step is induced by the consumption of a
fuel molecule. This initiation of a step happens according to a rate process with
a rate γ, which is proportional to the concentration of the fuel molecules. After a
step is triggered, the motor molecule performs some conformational changes before
returning back to its initial configuration, however having advanced one step on
the track. This sequence of conformational changes takes some random time τstroke
to perform which is distributed according to wstroke(τ). We control the motor by
periodically modulating the fuel concentration [107]. This leads to a periodically
varying step initiation rate γ(t) while the stroke time distribution wstroke(τ) is
assumed to remain unaffected by the fuel concentration. This Brownian stepper
mimics the behavior of a kinesin on a microtubule, which is known to advance
in discrete steps [92] by consuming one ATP per step [55]. The dependence of
the mean velocity of kinesin on the ATP concentration was measured in [133] for
different external forces. It shows for low ATP concentrations a linear increase
of the logarithm of the mean velocity as a function of the logarithm of the ATP
concentration with a force dependent offset. For high ATP concentrations the
mean velocity finally saturates at some force dependent maximal velocity. This
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velocity dependence is reproduced by our model without driving. Assuming a rate
γ = c[ATP] the mean velocity of the Brownian stepper is given by

v =
`

〈τstroke〉+ 1
c[ATP]

which in the limit of low and high ATP-concentration reduces to

log v ≈ log `+ log c+ log[ATP] as [ATP] → 0

and

log v ≈ log `+ log
1

〈τstroke〉
as [ATP] →∞

respectively. Assuming the constant c as well as the mean stroke time 〈τstroke〉 to
be dependent on the external force, we qualitatively recover in our model the re-
sults measured in [133]. The parameter we use to control the motor in our model,
however, is not the force but the concentration of the fuel molecules and thus the
trigger rate γ = c[ATP]. More precisely we consider periodically modulated fuel

X X*

Figure 4.12: One step of the Brownian stepper. The step is induced by the
binding of a fuel molecule X according to a rate process with a rate γ(t) which
is proportional to the concentration [X](t) of the fuel molecules. Afterwards the
motor molecule undergoes conformational changes, thereby releasing the used fuel
X∗ and advancing by one step Length `. These conformational changes take some
time τstroke which is distributed according to wstroke(τ).

concentrations. One step of the motor thus is composed of a periodically modu-
lated rate process and a somehow distributed waiting time. This is exactly the
discrete model we considered in the previous subsection 4.2.2 to describe a pe-
riodically driven excitable dynamics. Thus we can profit from the mathematical
investigations we have performed there. However this application is different in
spirit from the previous applications as we are not primarily interested in synchro-
nization phenomena but rather in the control of the regularity of the motion of
the Brownian stepper, although a highly regular behavior is inherently connected
to the synchronization with the external periodic driving. This regularity is char-
acterized by the very same quantities we used to characterize synchronization,
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namely the mean velocity v̄ and the effective diffusion constant D̄eff and resulting
therefrom the Péclet number Pe. Taking into account the length ` of a step the
instantaneous mean velocity and effective diffusion coefficients are governed by (cf.
eqs. (4.44))

v(t) = `γ(t)q
(0)
2 (t) (4.48a)

Deff(t) =
`2

2
γ(t)q

(0)
2 (t)− `2γ(t)q

(1)
2 (t), (4.48b)

with q(0)
2 and q(1)

2 obeying the very same equations (4.45),

q
(0)
2 (t) +

∫ ∞

0

dτzstroke(τ)γ(t− τ)q
(0)
2 (t− τ) = 1 (4.49a)

q
(1)
2 (t) +

∫ ∞

0

dτzstroke(τ)γ(t− τ)q
(1)
2 (t− τ) (4.49b)

+

∫ ∞

0

dτzstroke(τ)γ(t− τ)q
(0)
2 (t− τ)(

1

`

∫ τ

0

dτ ′v(t− τ ′)− 1) = 0.

Averaging v(t) and Deff(t) over one period gives the mean velocity v̄ and effective
diffusion coefficient D̄eff from which we obtain the Péclet number Pe = `v̄

D̄eff
to

characterize the regularity of the stepper. Experimentalists often consider instead
the so called randomness r which is the inverse of the Péclet number.

To begin with let us shortly discuss the behavior of the undriven model. With-
out driving the initiation of a step happens with a time independent rate γ = const.
The stepping times then constitute a stationary renewal process, because two steps
are independent of each other. These times between two subsequent steps are dis-
tributed according to

wtot(τ) = (winit ◦ wstroke)(τ) =

∫ τ

0

dτ ′winit(τ
′)wstroke(τ − τ ′) .

Therein winit(τ) = γ exp(−γτ) is the distribution of initiation times. Introducing
the mean and the variance of the step time

〈τ〉 =

∫ ∞

0

dττwtot(τ) and 〈τ 2〉 =

∫ ∞

0

dττ 2wtot(τ)

the mean velocity and effective diffusion coefficient can be expressed as (see section
2.2.2, [22])

v̄ =
`

〈τ〉
and D̄eff =

`2

2

〈τ 2〉 − 〈τ〉2

〈τ〉3
.
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This leads to the Péclet number

Pe = 2
〈τ〉2

〈τ 2〉 − 〈τ〉2
. (4.50)

In our further calculations we take the stroke time to be distributed according
to a Γ-distribution.

wstroke(τ) ≡ wn,T (τ) =
1

Γ(n)

(τn
T

)n exp(− τn
T

)

τ
. (4.51)

In Fig. 4.13 this waiting time distribution is illustrated for different values of
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Figure 4.13: The gamma distribution eq. (4.51) with mean T = 1 and two
different values of n. The plots are non normalized, but scaled such that the
maximum value is 1.

n, ranging from an exponential distribution for n = 1 pertinent to a single rate
process, to a delta distribution for n → ∞ corresponding to a fixed non random
stroke time. In particular, the mean stroke time is

〈τstroke〉 :=

∫ ∞

0

dττwn,T (τ) = T

while its variance reads

〈τ 2
stroke〉 − 〈τstroke〉2 :=

∫ ∞

0

dττ 2wn,T (τ)− 〈τstroke〉2 =
T 2

n
.

Both can be varied independently by appropriately choosing T and n. With this
stroke time distribution the Péclet number eq. (4.50) of the undriven Brownian
stepper reads (see also [11])

Pe = 2
( 1

γ
+ T )2

1
γ2 + T 2

n

. (4.52)
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In the following we will fix the value of T = 5 and use in examples n = 100
and n = 1000. Then in the undriven case Pe from eq. (4.52) ranges between 2 and
200 for n = 100, respectively 2000 for n = 1000 if γ increase from zero to infinity.
Later on, for the driven case we will find values which exceed these values by one
order of magnitude.

To present specific results we consider two types of periodic driving, namely a
dichotomic activation rate

γd(t) =

{
r1 if t ∈ [nT , (n+ 1

2
)T )

r2 if t ∈ [(n+ 1
2
)T , (n+ 1)T )

(4.53)

where T is the period of the modulation and a harmonic driving

γh(t) =
r1 + r2

2
+
r1 − r2

2
cos Ωt. (4.54)
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Figure 4.14: Mean velocity v̄ (solid line and +) and effective diffusion coefficient
D̄eff (dashed line and ×) of the dichotomically driven model with r1 = 0.1, r2 =
1.0, T = 5.0 and n = 20. The step length ` is chosen to be 1. Symbols are
simulations of the driven renewal process, while the lines correspond to the theory
eqs. (4.48a) and (4.48b).

First of all, let us consider a situation where the periodic driving (4.53) or
(4.54) induces a change in the attachment rates γ by one order of magnitude.
i.e. r2/r1 = 10. Fig. 4.14 shows results for v̄ and D̄eff evaluated according to
the theory eqs. (4.48) numerically and compares them with mean velocities v̄
and diffusion coefficients D̄eff obtained from simulations of an ensemble of 100000
Brownian steppers. Both curves agree within simulation precision. Deviations
occur due to finite simulation times. The effective diffusion coefficient exhibits a
sharp minimum near Ω ≈ 1. This minimum corresponds to a 1 : 1 synchronization
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with the periodic driving. The steppers follow the periodic driving with high
precision.

A second synchronization window appears for smaller frequencies, i.e.for longer
periods. During half of the period when the excitation rate γ(t) is large the stepper
succeeds to perform two steps. Again the diffusion coefficients becomes smaller
compared to regions without synchronization.

Fig. 4.14 also allows the discussion of the limits of fast driving Ω →∞ and slow
driving Ω → 0. In the case of fast driving the mean velocity and effective diffusion
coefficient of the stepper coincide with the value of of the undriven case if γ(t) is
replaced by the arithmetic mean of the rate. i.e. γ(t) → (r1 + r2)/2. Otherwise, if
the switching frequency is vanishingly small one can average between the two mean
velocities and effective diffusion coefficients of the undriven situations. Therefore
the mean velocity becomes v = (v1+v2)/2, where v1 is its stationary value with rate
r1, respectively v2 and r2. The limiting values of the effective diffusion coefficient
can be obtained in the same way.

In order to amplify the regularity we increase the difference of the two fuel
attachment rates and decrease the variance of the stroke time. We now put the
ratio r2/r1 = 100. Fig. 4.15 shows again the dependence of the mean velocity,
effective diffusion coefficient and Péclet number on the driving frequency in case
of dichotomic driving (4.53) for these rates.

We observe different regions with high Péclet numbers and thus a very regular
motion of the motor. These regions show a rational relation between driving
frequency and step frequency which is proportional to the velocity. The frequency
locking is accompanied by a low effective diffusion. Between these regions the
effective diffusion coefficient strongly increases, showing a less coherent motion of
the motor.

The behavior of the harmonically driven motor (4.54) is qualitatively the same
as the behavior of the dichotomically (4.53) motor. Again we obtain very high
Péclet numbers with locked velocity and low diffusion if the motion of the stepper is
synchronized with the periodic drive. However, as seen in Fig. 4.16 the harmonical
driving allows a more precise tuning of the driven motor, since the stepper exhibits
also a 3 : 2 synchronization regime, i.e. 3 steps of the motor lie within 2 periods of
the driving. Such behavior was not observed for the dichotomically driven system.

In the high frequency limit both driving types lead to the same behavior, how-
ever for low frequencies the velocity in the harmonically driven system (averaged
over an ensemble with random drive cos(ϕ0)) is higher, while the effective diffusion
coefficient is much lower, leading to an increased Péclet number compared to the
dichotomically driven system.

Next let us compare the periodically driven system in presence and in absence
of synchronization with the corresponding undriven system (see Figs. 4.17). To
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Figure 4.15: Mean velocity (top), effective diffusion coefficient(middle) and Pé-
clet number(bottom) as a function of driving frequency of the dichotomically
driven system. Two situations with different dispersion of the stroke times
are shown. Parameters: r1 = 0.1, r2 = 10.0, T = 5.0, n = 100 (solid
line) r1 = 0.1, r2 = 10.0, T = 5.0, n = 1000 (dashed line). The corre-
sponding two values for the undriven system with initiation rate γ = r1+r2

2
are

v̄ = 0.192(0.192),D̄eff = 0.001(0.00023) and Pe = 93(416) (values in parentheses:
n = 1000). The additional curves in the top figure indicate perfect synchronization
between the motion of the stepper and the periodic drive, the corresponding ratios
are shown in the key.

this end we have chosen the excitation rate of the undriven system between the
maximum rate r2 and the minimum rate r1 of the driven system, such that the
motion is most regular, i.e. the Péclet number is maximal. This optimal value ropt

is depicted in both figures (dashed lines). The Péclet numbers for the driven system
and the undriven system are shown as a function of the variance of the stroke time
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Figure 4.16: Mean velocity (top), effective diffusion coefficient(middle) and Péclet
number(bottom) as a function of driving frequency for the harmonically driven
system. Two situations with different dispersion of the stroke times. Parameters:
r1 = 0.1, r2 = 10.0, T = 5.0, n = 100 (solid line) r1 = 0.1, r2 = 10.0, T =
5.0, n = 1000 (dashed line). The additional curves in the top figure indicate
perfect synchronization between the motion of the stepper and the periodic drive,
the corresponding ratios are shown in the key.

for two different driving frequencies, one lying within the 1 : 1 synchronization
regime and the other in a region without synchronization. We see that in case
of synchronization the coherence of motion can be significantly increased. Out
of synchrony the periodic drive reduces the level of the regularity of the motion.
For smaller values of the stroke time variance the optimal rate is the maximal
rate ropt = r2. In the undriven case a quick attachment of fuel molecules and
small variances of stroke times result in a nearly periodic motion. If this situation
is perturbed periodically by changing to a smaller rate r1 � ropt much disorder
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Figure 4.17: Comparison between the Péclet numbers of the dichotomically driven
(solid line) and the undriven system (+) as a function of the relative variance of
the stroke time varτstroke

〈τstroke〉2
= 1

n
. Left: 1 : 1 synchronization regime. Parameters: r1 =

0.1, r2 = 10.0, T = 5.0, ω = 1.1. Right: Out of synchronization. Parameters:
r1 = 0.1, r2 = 10.0, T = 5.0, ω = 0.8. The rate for the undriven system is chosen
between r1 and r2 such that the Péclet number is maximized. This optimal rate
ropt is indicated by the dashed line.

is added to the motion, since during staying in the state with small rate the
dispersion is ∝ 1/r1. This leads to the significant decrease of the Péclet number
out of synchrony.

The periodic drive might be an instrument for probing the characteristic times
of the configurational change. In case of a significant periodic variation of fuel
attachment rate γ(t) the synchronization between the motor and the periodic
driving, as indicated by a high Péclet number, is observed for driving frequencies
which are equal or slightly less than integer multiples of 2π times the mean stroke
time T of the motor. Thus by tuning the driving frequency and measuring the
Péclet number one can deduce the mean stroke time T . This is presented in
Fig. 4.18 where the bright regions indicate high Péclet numbers as function of
the frequency of the periodic drive Ω and the mean stroke time T . One sees
immediately the several regions of n : m synchronization which might be used to
determine the mean stroke time. Both types of driving, i.e. dichotomic (left) and
harmonical (right) exhibit qualitatively the same behavior. Again the harmonic
drive allows a finer tuning of the stepper.

Recapitulating, the periodic driving, be it dichotomic or harmonic, may reg-
ularize the motion of the molecular motor. Maximal Péclet numbers were found
if the motor synchronizes to the periodic drive. Several regions of n : m synchro-
nizations with locked velocity and small effective diffusion were found. Oppositely,
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Figure 4.18: Péclet number as a function of driving frequency Ω and mean stroke
time T for the dichotomically (left) harmonically driven (right) model with r1 =
0.1, r2 = 10 and n = 100. The solid line correspond to Ω = 2π/T , Ω = 4π/T and
Ω = 6π/T . The synchronization regions as indicated by highest Péclet number
may thus be used to determine the mean stroke time T .

out of synchrony the stepper performs more disordered motion compared with the
stationary undriven case where the attachment rate is optimized to yield maximal
Péclet numbers. We have further shown that periodic driving can be used to fig-
ure out parameters of the Brownian stepper like the mean stroke time. We believe
that more complex models than the Brownian stepper can be synchronized to high
Péclet numbers as well. Therefore the proposed periodic driving of molecular mo-
tors might be a new technique for improvement and regularization of the random
motion.

4.3 An approach based on waiting time distribu-
tions

In the previous section we have developed a method to calculate the drift and
diffusion properties of the number of transitions between the discrete states in a
periodically driven discrete state system, described by a master equation. However
often one does not have a master equation at hand but the time dependent waiting
time distribution w(τ, t), which governs the interval between subsequent events. It
is this time dependent waiting time distribution, on which the calculation of the
mean frequency and effective diffusion coefficient is based in the following [106].

Let us consider the probabilities pk(t) to have had k events up to time t.
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Furthermore let jk(t) be the probability flux from state k to state k + 1, i.e. the
probability per time that the k + 1st event happens at time t. This probability
obeys the continuity equation

d

dt
pk(t) = jk−1(t) − jk(t). (4.55)

If we further assume as initial condition that event 1 happened at time t0, i.e.

j0(t) = δ(t− t0), (4.56)

the relation between the probability fluxes of the renewal process is given by

jk(t) =

∫ t

t0

dt′jk−1(t
′)w(t− t′, t′), k ≥ 1. (4.57a)

Using this relation one readily obtains from the continuity equation (4.55)

pk(t) =

∫ t

t0

dt′jk−1(t
′)z(t− t′, t′), k ≥ 1 (4.57b)

where z(τ, t) = 1−
∫ τ

0
dτ ′w(τ ′, t) is the survival probability to wait longer than τ

until the next event, if the last event happened at t. Eqs. (4.57) generalize eqs.
(2.16) to time dependent waiting time distributions. In the case of a Markovian
renewal process with time dependent rate γ(t) the probability flux jk is related
to the probability pk by jk(t) = γ(t)pk(t). Thus in this case the dynamics can be
completely expressed in terms of the probabilities pk. In the general case however
we need a formulation in terms of pk and jk as expressed in eqs. (4.57). Based on
these probabilities we can define the moments of the number of events as

M
[l]
t0,t :=

∞∑
k=0

klpk(t). (4.58)

These moments define the corresponding cumulants K [l]
t0,t from which finally the

growth coefficients of the cumulants

κ
[l]
t0,t :=

d

dt
K

[l]
t0,t (4.59)

are obtained, which in the limit t0 → −∞ become periodic functions κ[l](t) of t
(see appendix C.1). The first coefficient κ[1](t) is the instantaneous mean frequency
v(t) while κ[2](t) is twice the instantaneous effective diffusion coefficient Deff(t). In
principle they can be calculated from the solutions of eqs. (4.57) according to
eqs. (4.58) and (4.59) . However, in practice this is not feasible, as one has to
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calculate an infinite sum over the pk(t) where each pk, according to eqs. (4.57b)
and (4.57a), is a k-fold integral involving the waiting time distributions w(τ, t) and
the corresponding survival probabilities z(τ, t).

To find a simpler relation between the periodic coefficients κ[n](t) and the time
dependent waiting time w(τ, t), which governs the microscopic dynamics, we again
construct a continuous embedding in the asymptotic limit t0 → −∞. The ideas
are the very same as in section 4.2, where we considered alternating periodic
renewal processes described by a generalized master equation, except that in the
present case we additionally have to relate the discrete probability flux jk(t) to the
probability flux of the continuous embedding.

Consider an envelope P(x, t) of the discrete probabilities pk(t) as a probability
distribution on a continuous state space. Thus, respecting the normalization, we
adopt again the relation (cf. Fig. 4.19)

pk(t) =

∫ k+ 1
2

k− 1
2

dxP(x, t). (4.60)

As in section 4.2 we assume that asymptotically, i.e. when the pk(t) and P(x, t)
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Figure 4.19: Schematic view of the discrete event dynamics pk(t) and the contin-
uous description in terms of x.

approach more and more a uniform distribution, this equation remains valid in the
course of time if the cumulants in both, the discrete and continuous setting grow
in the same way. Again this is assured by assigning a Kramers Moyal equation to
the evolution of the continuous probability density,

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ[n](t)

∂n

∂xn
P(x, t) (4.61)

whose Kramers Moyal coefficients coincide with the periodic cumulant growth
coefficients κ[n](t) of the discrete description. (cf. appendix C.2, [124]).



107

Having related the discrete and continuous probability we can likewise relate
the probability current jk(t) of the discrete system to the probability current
J (x, t) of the continuous envelope description. According to the relation between
the discrete and continuous probability eq. (4.60), the discrete probability current
jk(t) from k to k + 1 is equal to the continuous probability current J (x, t) at
x = k + 1

2
(see Fig. 4.19),

jk(t) = J (k +
1

2
, t). (4.62)

The continuous probability current J (x, t) is related to the probability distribution
P(x, t) by the continuity equation

∂

∂t
P(x, t) = − ∂

∂x
J (x, t). (4.63)

and therefore according to eq. (4.61)

J (x, t) = −
∞∑

n=1

(−1)n

n!
κ[n](t)

∂n−1

∂xn−1
P(x, t) . (4.64)

Thus from eq. (4.62) we deduce

jk(t) = −
∞∑

n=1

(−1)n

n!
κ[n](t)

∂n−1

∂xn−1
P(x, t)

∣∣∣
x=k+ 1

2

(4.65)

Additionally we want to mention that the more general embedding of the dis-
crete process

pk(t) =

∫ k+l

k−1+l

dxP(x, t) and jk(t) = J (k + l, t), l arbitrary, (4.66)

would lead to the same results on κ[i](t) as the embedding chosen in eqs. (4.60)
and (4.62), which corresponds to choosing l = 1

2
in eq. (4.66).

Having fixed the relation between the probabilities and probability fluxes of
the discrete renewal process and the continuous embedding, it is now possible to
relate the coefficients κ[n](t) appearing in the continuous description (4.61) to the
waiting time distribution w(τ, t) of the renewal process, involved in the microscopic
dynamics (4.57a) and (4.57b). As we are considering the asymptotic behavior we
have to pass to the asymptotic limit in eqs. (4.57a) and (4.57b) by shifting the
initial time t0 → −∞. This results in

pk(t) =

∫ ∞

0

dτjk−1(t− τ)z(τ, t− τ). (4.67)
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and

jk(t) =

∫ ∞

0

dτjk−1(t− τ)w(τ, t− τ). (4.68)

Inserting eqs. (4.60) and (4.65) into the above eq. (4.67) we end up with∫ 1
2

− 1
2

d∆xP(x−∆x, t) = −
∫ ∞

0

dτz(τ, t− τ) (4.69)

∞∑
n=1

(−1)n

n!
κ[n](t− τ)

∂n−1

∂xn−1
P(x− 1

2
, t− τ)

with x = k. The probability P(x − ∆x, t − τ) can be expressed in terms of the
probability P(x, t) and its derivatives ∂m

∂xmP(x, t) by performing a Taylor expansion
of P(x−∆x, t− τ) around x, t and converting the time derivatives to derivatives
with respect to the state x using the Kramers-Moyal equation (4.61). This results
in (cf. appendix C.4)

P(x−∆x, t− τ) =

P(x, t) + c
[1]
t (τ,∆x)

∂

∂x
P(x, t) + c

[2]
t (τ,∆x)

∂2

∂x2
P(x, t) +O(3) (4.70)

with

c
[1]
t (τ,∆x) =

∫ τ

0

dτ ′κ[1](t− τ ′)−∆x .

and

c
[2]
t (τ,∆x) =

∆x2

2
−∆x

∫ τ

0

dτ ′κ[1](t− τ ′)

−1

2

∫ τ

0

dτ ′κ[2](t− τ ′) +

∫ τ

0

dτ ′κ[1](t− τ ′)

∫ τ ′

0

dτ ′′κ[1](t− τ ′′)

In eq. (4.70), O(3) denotes terms proportional to ∂m

∂xmP(x, t) with m ≥ 3.
Equating the coefficients of P(x, t) and ∂

∂x
P(x, t) on both sides of eq. (4.69),

we end up with∫ ∞

0

dτκ[1](t− τ)z(τ, t− τ) = 1 (4.71a)

1

2

∫ ∞

0

dτκ[2](t− τ)z(τ, t− τ) =∫ ∞

0

dτκ[1](t− τ)
[ ∫ τ

0

dτ ′κ[1](t− τ ′)− 1

2

]
z(τ, t− τ) . (4.71b)
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Eq. (4.71b) can be further simplified using eq. (4.71a), which leads to∫ ∞

0

dτκ[2](t− τ)z(τ, t− τ) =

2

∫ ∞

0

dτκ[1](t− τ)

∫ τ

0

dτ ′κ[1](t− τ ′)z(τ, t− τ)− 1 . (4.71c)

These two expressions relate the asymptotic drift and diffusion properties of a peri-
odically driven renewal process as expressed by κ[1](t) and κ[2](t) to its microscopic
properties defined by the time dependent survival property z(τ, t).

Equations which govern the higher cumulant growth coefficients κ[n](t), n ≥ 3,
can also be derived using this method by evaluating the coefficients of higher order
derivatives of P(x, t). The coefficients of ∂2

∂x2P(x, t) lead to an equation for κ[3](t),∫ ∞

0

dτκ[3](t− τ)z(τ, t− τ) =

∫ ∞

0

dτz(τ, t− τ) (4.71d)[
3κ[2](t− τ)

∫ τ

0

dτ ′κ[1](t− τ ′) + 3κ[1](t− τ)

∫ τ

0

dτ ′κ[2](t− τ ′)

−6κ[1](t− τ)

∫ τ

0

dτ ′κ[1](t− τ ′)

∫ τ ′

0

dτ ′′κ[1](t− τ ′′)
]

+ 1

Finally one may ask, why it is justified to prescribe a continuous Markovian
envelope dynamics to an inherently non Markovian discrete process. The obvious
idea, that the non Markovian nature of the discrete process is rendered Markovian
by being mapped onto an extended continuous state space is misleading. The
point is, that the continuous Markovian process x(t) as described by eq. (4.61) is
not an envelope dynamics of the full discrete non Markovian process, but it only
covers the asymptotic behavior of the non Markovian process.

4.3.1 Comparison with known results for undriven renewal
processes and periodically driven rate processes

Let us evaluate expressions (4.71) for an undriven renewal process, i.e. z(τ, t) ≡
z(τ). Then it follows that κ[1](t) = κ̄[1] is constant and eq. (4.71a) leads to

κ̄[1] =
1

〈T 〉

with

〈T n〉 :=

∫ ∞

0

dττnw(τ).



110 4.3. AN APPROACH BASED ON WAITING TIME DISTRIBUTIONS

To derive this result we have used the fact that∫ ∞

0

dττnz(τ) =

∫ ∞

0

dτ
τn+1

n+ 1
w(τ) =

1

n+ 1
〈T n+1〉

which holds if z(τ) decreases sufficiently fast for τ →∞. Accordingly eq. (4.71c)
gives

κ[2](t) = κ̄[2] =
〈T 2〉 − 〈T 〉2

〈T 〉3

which agrees with the known results for stationary renewal processes [22], eq.
(2.30). Finally eq. (4.71d) leads to

κ[3](t) = κ̄[3] =
〈T 〉4 − 3〈T 2〉〈T 〉2 + 3〈T 2〉2 − 〈T 〉〈T 3〉

〈T 〉5
.

Next we consider a periodically driven rate process, i.e.

w(τ, t) = γ(t+ τ) exp
(
−
∫ t+τ

t

dτ ′γ(τ ′)
)

and

z(τ, t) = exp
(
−
∫ t+τ

t

dτ ′γ(τ ′)
)
.

Then it can be easily shown that eq. (4.71a) is solved by

κ[1](t) = γ(t).

The first term on the right hand side of eq. (4.71c) can then be simplified using
integration by parts to give 1. Therefore κ[2](t) is governed by∫ ∞

0

dτκ[2](t− τ)z(τ, t− τ) = 1

which is again solved by

κ[2](t) = γ(t)

Using the same reasoning, eq. (4.71d) leads to

κ[3](t) = γ(t).

For more complicated processes with general time dependent waiting time distri-
butions eqs. (4.71a) and (4.71c) can only be solved numerically for the periodic
solution.
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4.3.2 Numerical solution in Fourier space

As eqs. (4.71a) and (4.71c) cannot be solved analytically for arbitrary waiting time
distributions w(τ, t − τ) and corresponding survival probabilities z(τ, t − τ) one
has to resort to numerical methods. To this end we perform a Fourier expansion
of the periodic function κ[1](t) and κ[2](t),

κ[i](t) =
∞∑

k=−∞

κ̂
[i]
k exp(ikΩt), κ̂

[i]
k =

1

T

∫ T

0

dtκ[i](t) exp(−ikΩt), (4.72)

where Ω = 2π/T is the frequency of the external driving. We further expand the
survival probability z(τ, t) with respect to the second periodic argument as

z(τ, t) =
∞∑

k=−∞

ẑk(τ) exp(ikΩt) ẑk(τ) =
1

T

∫ T

0

dtz(τ, t) exp(−ikΩt)

Abbreviating

ẑk,l =

∫ ∞

0

dτ ẑk(τ) exp(−ilΩτ) , ĥk,l =

∫ ∞

0

dττ ẑk(τ) exp(−ilΩτ) (4.73)

eq. (4.71a) can be written as
∞∑

k=−∞

κ̂
[1]
k ẑm−k,m = δm,0, m = −∞, . . . ,∞ (4.74)

while eq. (4.71c) reads
∞∑

k=−∞

κ̂
[2]
k ẑm−k,m = (4.75)

2
∞∑

k=−∞

[ ∞∑
l=−∞,l 6=0

κ̂
[1]
l κ̂

[1]
k

ilΩ
(ẑm−k−l,m−l − ẑm−k−l,m) + κ̂

[1]
0 κ̂

[1]
k ĥm−k,m

]
− δm,0.

These infinite dimensional inhomogeneous linear equations can then be numerically
solved, after being truncated to a finite dimensional system. The corresponding
results for κ[3](t) are presented in appendix C.6

4.3.3 A simple toy model – comparison between theory and
simulations

Consider the periodic renewal process, where the time between subsequent events is
composed of a fixed waiting time, which depends on the signal phase of the previous
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event and a rate process with constant rate γ. The waiting time distribution is
then given by

w(τ, t) = θ(τ − T (t))γe−γ(τ−T (t)). (4.76)

Suppose further that the fixed waiting time is either T0 or T1 depending on whether
the signal phase of the previous event was within [0, π) or [π, 2π), i..e

T (t) =

{
T0 if Ωt mod 2π ∈ [0, π)
T1 if Ωt mod 2π ∈ [π, 2π)

(4.77)

A sketch of this system is shown in Fig. 4.20 while the corresponding waiting time
distribution is plotted in Fig. 4.21.

γ

k + 1

T1

T0
k

Figure 4.20: Depending on whether the periodic signal is in the first or second half
period the system either waits the fixed time T0 or T1. In both cases the system
waits an additional exponentially with rate γ distributed time.

Ωt mod 2π ∈ [π, 2π)
Ωt mod 2π ∈ [0, π)

T1T0

�

τ

w
(τ

,
t)

�� ����� ����� ����� ����

�

� ���

�

� ���

�

Figure 4.21: Waiting time distribution of the toy model eqs. (4.76) and (4.77)
with T0 = 0.5, T1 = 1.5 and γ = 2. Depending on the signal phase of the event,
the system waits either a long (dashed line) or a short time(solid line) plus an
exponentially distributed time until the next event.

The corresponding Fourier coefficients ẑk,l and ĥk,l as defined in eqs. (4.73)
can be analytically evaluated for this waiting time distribution, however the final
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results, being too long and at the same time yielding not much information, will
not be presented here. Having evaluated these Fourier coefficients, we numerically
calculated the mean frequency and the effective diffusion coefficient according to
eqs. (4.74) and (4.75) as well as the third cumulant growth coefficient κ[3] eq.
(C.21) using LAPACK to solve the linear equations. The results are compared
to simulations of the renewal process in Figs. 4.22 and 4.23, showing perfect
agreement.

Although this model shows minima of the effective diffusion coefficient as a
function of the driving frequency Fig. 4.22, these minima do not correspond to
frequency synchronization as the system frequency and the signal frequency do not
have an integer relation. This stands in contrast to the similar model with a fixed
waiting time and a dichotomically periodically modulated rate, used to describe
periodically driven excitable systems in subsection 4.2.2. In this model we found
several different n : m synchronization regions.

Also the full periodically time dependent coefficients κ[1](t) and κ[2](t) as deter-
mined by our theory (4.71a) and (4.71c) agree with results taken from simulations
of the underlying renewal process Fig. 4.23. Interestingly the effective diffusion
coefficient becomes negative for some values of the signal phase. However this
evidently does not imply that the periodic driving can be used to concentrate an
ensemble of these systems as the period averaged effective diffusion coefficient κ̄[2]

is always positive. However κ̄[3] can be negative.
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Figure 4.22: Comparison of the period averaged mean frequency κ̄[1] =
1
T

∫ T
0
dtκ[1](t), the period averaged effective diffusion coefficients κ̄[2] =

1
T

∫ T
0
dtκ[2](t) and the third cumulant growth coefficient κ̄[3] = 1

T

∫ T
0
dtκ[3](t)

(T = 2π/Ω denotes the period of the signal) for the toy model eq. (4.76) with
T0 = 0.5, T1 = 1.5 and γ = 2. The solid lines are results of the theory eqs. (4.71),
numerically evaluated according to eqs. (4.74), (4.75) and (C.21) truncated to 40
coefficients, while the symbols are obtained from direct simulations of the driven
renewal process. The straight lines in the upper plot indicate n : m relations be-
tween system frequency and signal frequency, i.e. frequency locking. Clearly the
system does not show this behavior.
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Figure 4.23: Comparison of the mean frequency κ[1](t) and the effective diffusion
coefficients κ[2](t) for the toy model eq. (4.76) with T0 = 0.5, T1 = 1.5 and
γ = 2 and Ω = 1.7. The solid lines are results of the theory eqs. (4.71a) and
(4.71c), numerically evaluated according to eqs. (4.74) and (4.75) truncated to 20
coefficients, while the symbols are obtained from direct simulations of the driven
renewal process.
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4.3.4 Equivalence with the two state model for excitable
systems

One may wonder whether the two different approaches, based on a time dependent
waiting time distribution as presented in this section or on some general master
equation as presented in section 4.2 lead to the same results. In this subsection we
show this agreement for the two state non Markovian model of excitable systems,
thus confirming that both approaches are consistent with each other.

The waiting time between two events in this model is given by the sum of
the time spent on the excitation loop and the excitation time. The time on the
excitation loop is distributed according w(1)(τ) while the excitation time, being
due to a rate process with time dependent rate γ(t), is distributed according to

w(2)(τ, t) = γ(t+ τ) exp(−
∫ t+τ

t

dτ ′γ(τ ′)). (4.78)

The total time dependent waiting time distribution between two subsequent events,
i.e. between two subsequent excitations is then given by the generalized convolu-
tion

w(τ, t) =

∫ τ

0

dτ ′w(1)(τ ′)w(2)(τ − τ ′, t+ τ ′) (4.79)

=

∫ τ

0

dτ ′w(1)(τ ′)γ(t+ τ) exp(−
∫ t+τ

t+τ ′
dτ ′′γ(τ ′′)).

while the corresponding survival probability reads

z(τ, t) =

∫ τ

0

dτ ′w(1)(τ ′) exp(−
∫ t+τ

t+τ ′
dτ ′′γ(τ ′′)) + z(1)(τ) (4.80)

where z(1)(τ) = 1−
∫ τ

0
dτ ′w(1)(τ) is the probability to spent a time longer than τ

on the excitation loop. From these equations we eventually obtain the relation

γ(t)z(τ, t− τ) = w(τ, t− τ) + z(1)(τ). (4.81)

In the two state model the mean phase velocity ω(t) is governed by eq. (4.44a)
while the effective phase diffusion coefficient obeys eq. (4.44b). The auxiliary
variables q(0)

2 and q(1)
2 as defined by eqs. (4.45) can be eliminated, leading to

γ(t)

∫ ∞

0

dτω(t− τ)z(1)(τ) + ω(t) = 2πγ(t) (4.82)

and

γ(t)

∫ ∞

0

dτDeff(t− τ)z(1)(τ) +Deff(t) = (4.83)

−2π2γ(t) + 2πω(t) + γ(t)

∫ ∞

0

dτω(t− τ)

∫ τ

0

dτ ′ω(t− τ ′)z(1)(τ).
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In the following we show that these equations for ω(t) and Deff(t) are equivalent
to our general eqs. (4.71a) and (4.71c) which taking into account the factor 2π for
ω(t) and 4π2 for Deff(t) read∫ ∞

0

dτω(t− τ)z(τ, t− τ) = 2π (4.84)

and ∫ ∞

0

dτDeff(t− τ)z(τ, t− τ) = (4.85)∫ ∞

0

dτω(t− τ)

∫ τ

0

dτ ′ω(t− τ + τ ′)z(τ, t− τ)− 2π2

Multiplying eqs. (4.84)) and (4.85) by γ(t) and replacing the time dependent
survival probability z(τ, t− τ) according to eq.(4.81) we obtain

γ(t)

∫ ∞

0

dτω(t− τ)z(1)(τ) +

∫ ∞

0

dτω(t− τ)w(τ, t− τ) = 2πγ(t) (4.86)

and

γ(t)

∫ ∞

0

dτ
[
Deff(t− τ)− ω(t− τ)

∫ τ

0

dτ ′ω(t− τ − τ ′)
]
z(1)(τ) + (4.87)∫ ∞

0

dτ
[
Deff(t− τ)− ω(t− τ)

∫ τ

0

dτ ′ω(t− τ − τ ′)
]
w(τ, t− τ) = −2π2γ(t)

The second term on the left hand side in both equations can be further simplified.
To this end we differentiate eqs. (4.84) and (4.85) with respect to t (see appendix
C.7), using eq. (4.84) to simplify the time derivative of eq. (4.85) which results in

ω(t) =

∫ ∞

0

dτω(t− τ)w(τ, t− τ) (4.88)

and

Deff(t) = (4.89)∫ ∞

0

dτ
[
Deff(t− τ)− ω(t− τ)

∫ τ

0

dτ ′ω(t− τ − τ ′)
]
w(τ, t− τ) + 2πω(t).

Note that the above equations can be equivalently derived from eq. (4.68) by
performing the same procedure we have applied to eq. (4.67) in order to obtain
eqs. (4.71a) and (4.71c).

Inserting finally eqs. (4.88) and (4.89) into eqs. (4.86) and (4.87), eventually
leads to the two state model eqs. (4.82) and (4.83).
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Thus we have shown that solutions of Deff(t) and ω(t) of the general driven
renewal process based theory presented in section 4.3 are also solutions of the two
state model for excitable systems investigated in subsection 4.2.2 based on a gen-
eralized master equation. As these solutions, being defined by an inhomogeneous
linear equation, are in general unique we have shown the equivalence between the
two approaches.

4.4 Summary
Based on discrete state renewal processes we have investigated the synchroniza-
tion of bistable and excitable stochastic systems to a periodic signal. To this end
we have derived general concepts to calculate the mean frequency and effective
diffusion coefficient of the number of events of a periodic renewal process. These
quantities were shown to agree with the high and low frequency limit of the spectral
power density of a corresponding delta spike process, as is known for stationary
processes [72]. However this relation was not exploited in the calculation of the
mean frequency and effective diffusion coefficient, as the calculation of the spectral
power density of periodically driven renewal processes is not evident. Instead we
presented a different approach, based on a continuous embedding of the discrete
probabilities of the number of events. Applied to the well known Markovian dis-
crete model for an overdamped particle in a bistable potential we derived analytical
results for the mean frequency, effective diffusion coefficient and Péclet number for
a dichotomic periodic driving. The Péclet number as a measure of stochastic syn-
chronization shows not only a maximum as a function of noise strength, namely
stochastic resonance but also as a function of driving frequency, i.e. a bona fide
resonance. Applied to the non Markovian discrete model for excitable system we
found a complex synchronization behavior with several different frequency locking
regions. The observed phenomena in the excitable FHN system are exactly repro-
duced by the discrete model. The very same model can also be interpreted as a
molecular motor model in a periodically varying ATP concentration. Within this
context we showed that the periodic modulation can lead to a very regular motion
of the motor.



Chapter 5

Coupled Systems

The collective behavior of ensembles of coupled dynamical units and in particular
collective oscillations play an important role in many different fields of science,
ranging from the dramatic consequences of synchronously firing neurons as the
reason of Parkinson disease [129, 131] or, on the other hand a lack of synchro-
nization as a possible reason of autism [135], to chemical [65, 68, 85] and physical
systems and even economical and sociological systems [86, 89]. Starting from the
pioneering work of Winfree [138], who proposed a model of globally coupled phase
oscillators to describe the onset of spontaneous oscillations in a variety of large
populations of biological objects such as flashing fireflies or cardiac pacemaker, a
lot of research has been devoted to refine and analyze this model [3, 68, 118, 126].
Kuramoto [68] put this model on a firmer foundation by showing that arbitrary
nearly identical globally coupled limit cycle oscillators can be described by a phase
oscillator model, similar to the above mentioned Winfree model. This Kuramoto
model has been applied to many different systems, ranging from globally coupled
arrays of semiconductor lasers [66] or Josephson junctions [136] to neutrino fla-
vor oscillations [95] and even delays in the coupling have been investigated [17].
Including a non constant force term into the dynamics of the single phases the
resulting active rotator model introduced in [118] has become one of the most in-
vestigated systems in the study of globally coupled system. This system no longer
only describes oscillatory system but also excitable dynamics are covered. In these
excitable systems the influence of noise, being able to trigger excitations, is no
longer negligible. Within this model the influence of noise on the dynamics of
coupled excitable systems was studied [19, 97, 140] and even the joint effects of
noise and coupling with respect to the response to a weak periodic stimulation
have been investigated [128]. The essential behavior of more realistic models like
FitzHugh-Nagumo [140] or Hodgkin Huxley systems [134] are well reproduced,
however the relative simplicity of the active rotator model provides in many cases
a better understanding of the underlying mechanisms.

119
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We propose a different approach to investigate the collective dynamics of glob-
ally coupled units which is based on the discrete modeling of a single system
introduced in chapter 2. As in the case of the active rotator model, the motivation
of our analysis is the simplicity of the discrete state model, which allows for a
partly analytical treatment, while at the same time the model has the necessary
ingredients to qualitatively reproduce the effects observed in more realistic globally
coupled systems.

We start our analysis in section 5.1 with the derivation of a non linear mean
field master equation for the Markovian two state system, and show that this
model does not exhibit global oscillations. The analysis is then extended to the
non Markovian three state model in section 5.2. General necessary conditions for
the onset of oscillations are investigated and finally the model is analyzed with
sharply peaked waiting times in state 2 and 3 and a Arrhenius type excitation
rate, intended to model excitable behavior. The results qualitatively reproduce
the behavior of globally coupled excitable FHN systems.

The last section 5.3 generalizes the mean field analysis to units whose dynamics
is defined by waiting time distributions which, due to the global coupling, func-
tionally depend on the mean output of the system. The resulting concepts are
then applied to a two state model for the FHN system in the bistable regime.
Again the global behavior of the coupled FHN system as a function of noise level
and coupling strength, namely monostability, oscillations and bistability, is well
predicted by the theory.

5.1 The two state model for double well potential
systems

In order to investigate the behavior of coupled units we start with the simplest
model namely the two state Markovian model for a double well potential system
[83] as introduced in 2.1.1. The response of such globally coupled bistable units to
a periodic signal was studied in [62], showing array enhanced stochastic resonance.
This effect can also be found in locally coupled bistable elements [119]. However we
consider only the undriven case in the following, which serves as an introductory
example to the more complex analysis of the threestate model for excitable system,
investigated in the subsection 5.2.

Consider an ensemble of N double well systems. The global or mean field
coupling is introduced by making the double well potential a single unit is subjected
to, dependent on the global output of the system. On the level of the discrete state
description this leads to transition rates γ1→2 from left to right and γ2→1 from right
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to left, which are no longer constant but become dependent on the global output

x̄(t) =
1

N

N∑
i=1

x(σi(t)),

where σi(t) = 1, 2 denotes the state 1 (left) or 2 (right) of unit i and x(1) and x(2)

is the output of a single unit in state 1 or 2 respectively.
Due to the global coupling we do not have to care which unit is in which state,

but may describe the micro state of the coupled system by the number of units
n(1) and n(2) which are in state 1 or 2 respectively. The output of the system is
then given by x̄(t) = n(1)(t)

N
x(1) + n(2)(t)

N
x(2). The probability pN(n(1), n(2), t) that

n(1) units are in state 1 and n(2) = N − n(1) units are in state 2 at time t is then
governed by the master equation (cf. eq. (2.5))

ṗN(n(1), n(2), t) = (5.1)

(n(2) + 1)γ2→1(
n(1) − 1

N
x(1) +

n(2) + 1

N
x(2))pN(n(1) − 1, n(2) + 1, t)

+(n(1) + 1)γ1→2(
n(1) + 1

N
x(1) +

n(2) − 1

N
x(2))pN(n(1) + 1, n(2) − 1, t)

−(n(1)γ1→2(
n(1)

N
x(1) +

n(2)

N
x(2)) + n(2)γ2→1(

n(1)

N
x(1) +

n(2)

N
x(2))pN(n(1), n(2), t).

The first to terms account for the probability influx from a micro state (n(1) −
1, n(2) +1) or (n(1) +1, n(2)−1) respectively into state (n(1), n(2)) while the last two
terms account for the probability efflux. As there is a certain number of different
units which may perform the corresponding transitions we have to include this
number as a prefactor of the rate.

From the linear microscopic master equation (5.1) it is possible to derive in the
limit N →∞ of infinitely many globally coupled units a nonlinear equation for the
occupation probabilities probabilities p(1)(t) and p(2)(t) of state 1 or 2 respectively.
(For a continuous setting see [24,25,116]). To this end we assume that the relative
number of units in state k, which for any finite N is a stochastic process, tends in
the limit N →∞ to a deterministic function1

lim
N→∞

n(k)(t)

N
= p(k)(t), n(k)(t) =

N∑
i=1

δσi(t),k (5.2)

1For a stochastic dynamics with continuous state space an analogue convergence has been
proven under some assumptions in [24], while in other works [116], the authors claim that such a
convergence is a consequence of the law of large numbers, which is obviously misleading, as the
law of large numbers does not deal with dependent random variables.
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such that for an arbitrary continuous function f we have

lim
N→∞

∞∑
n(1)+n(2)=N

pN(n(1), n(2), t)f(
n(1)

N
,
n(2)

N
) = f(p(1)(t), p(2)(t)). (5.3)

Then obviously

p(k)(t) = lim
N→∞

∑
n(1)+n(2)=N

n(k)

N
pN(n(1), n(2), t) (5.4)

Taking the time derivative of eqs. (5.4), using the microscopic master equation
(5.1) we obtain

ṗ(1)(t) = −ṗ(2)(t) =

lim
N→∞

∑
n(1)+n(2)=N

[
γ2→1(

1

N

2∑
i=1

n(i)x(i))
n(2)

N
pN(n(1), n(2), t)

−γ1→2(
1

N

2∑
i=1

n(i)x(i))
n(1)

N
pN(n(1), n(2), t)

]
(5.5)

Assumption (5.3) eventually leads to the non linear master equation

ṗ(1)(t) = −γ1→2

(
x̄(t)

)
p(1)(t) + γ2→1

(
x̄(t)

)
p(2)(t) (5.6a)

ṗ(2)(t) = γ1→2

(
x̄(t)

)
p(1)(t)− γ2→1

(
x̄(t)

)
p(2)(t) (5.6b)

where the mean output is now given by

x̄(t) =
2∑

i=1

p(i)(t)x(i) (5.6c)

Note that in the case of uncoupled systems the assumption (5.2) is just the law
of large numbers. For an uncoupled system the random variables δσi(t),k are inde-
pendent and thus the law of large numbers states

lim
N→∞

1

N

N∑
i=1

δσi(t),k = p(k) almost sure (5.7)

Depending on the type of the coupling, namely on the dependence of the rates
γ1→2 and γ2→1 on the mean output x̄(t), there might be one or several stationary
solutions, which are obtained by setting ṗ(1)(t) = ṗ(2)(t) = 0 in eqs. (5.6) and
solving the resulting nonlinear equations.
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Let us investigate the possible types of behavior of this system. Due to the
normalization condition p(1)(t)+p(2)(t) = 1 the system is actually one dimensional,
which excludes oscillatory solutions of the mean field (5.6c). As the positivity of
p(1)(t) and p(2)(t) is also preserved, the dynamics is bounded to [0, 1] and thus
there must be at least one stable fixed point (p

(1)
st , p

(2)
st = 1− p

(1)
st ).

The local stability properties of a given fixed point p(1)
st and p(2)

st = 1− p
(1)
st can

be derived by linearizing the non linear master equation (5.6) around this fixed
point. Setting p(1)(t) = p

(1)
st + δp(1)(t) we obtain a linear differential equation for

the deviation δp(1)(t) from the stationary solution p(1)
st ,

d

dt
δp(1)(t) =[
− γ1→2

(
x̄st
)
− γ2→1

(
x̄st
)
− γ′1→2

(
x̄st
)
p

(1)
st + γ′2→1

(
x̄st
)
(1− p

(1)
st )
]
δp(1)(t)

with x̄st = x(1)p
(1)
st +x(2)(1−p(1)

st ). Depending on whether the expression in brackets
(which is the eigenvalue of the characteristic equation) is negative or positive the
stationary solution is either stable or unstable.

Summing up, the only behavior one can observe in such a globally coupled
Markovian two state model for double well potential systems is a stationary state,
which due to a change of control parameters may loose stability and thus relaxes
into another stationary state. More complex behavior like global oscillations or
even chaos can be excluded by the above considerations.

5.2 The three state model for excitable dynamics

Having ruled out complex behavior of the globally coupled Markovian two state
model we are now interested in the behavior of globally coupled excitable systems.
The analysis will be based on the threestate model [88, 103] for excitable systems
introduced in section 2.1.2. In this model the excitable dynamics is mapped onto
three discrete states. Starting from the rest state 1, the system is excited according
to a rate process with rate γ to the firing state 2. In the firing state the system
spends a certain time τ , which is distributed according to w(2)(τ) before passing
into the refractory state 3, where it again spends some time τ distributed according
to w(3)(τ), after which it finally returns to the rest state. To a fair approximation
the output of an excitable system assumes a constant high value x1 in the firing
state, while in the rest and refractory state the system has the same low output
x0. However, to be more general we assume the output to have a value x(i) if the
system is in state i, i.e. we also allow to distinguish the output in refractory and
rest state. The mean output of an ensemble of N three state units is thus given
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by

x̄(t) =
1

N

N∑
i=1

x(σi(t)),

where σi(t) = 1, 2, 3 denotes the state of unit i at time t.
As we have already noticed when considering excitable systems driven by ex-

ternal signals, it is to a good approximation only the dynamics of the excitation
from the rest state to the firing state, which is affected by the signal. In the
globally coupled ensemble this signal is chosen to be the mean output x̄(t) of the
population of excitable systems. Thus we end up with an excitation rate, which
depends on the mean ensemble output x̄(t).

To derive a mean field equation for this system we start with the microscopic
probabilities p(σ1, . . . , σN , t) that unit i = 1, . . . , N is in state σi = 1, 2, 3 at time
t. In this state the excitation rate for system j is given by

γj = γ(
1

N

N∑
i6=j,i=1

x(σi)). (5.8)

The probability p(k)
j (t) that unit j is in state k can be expressed by summing over

the different states of all the other units,

p
(k)
j (t) :=

∑
{σi,i6=j}

p(σ1, . . . σj−1, k, σj+1, σN , t). (5.9)

In the above equation the sum
∑

{σi,i6=j} denotes a summation over all possible
micro states {σ1, . . . σj−1, σj+1, . . . σN}. The dynamics for the single unit probabil-
ities p(k)

j (t) can be derived in the same manner as the dynamics for a single unit
with an excitation rate which depends on the external signal as done in subsection
3.3.1, eq. (3.35). However we have to take into account the dependence of the
excitation rate on the state σi of all other units according to eq. (5.8), eventually
leading to

p
(2)
j (t) =

∫ ∞

0

dτ
∑

{σi,i6=j}

γ(
1

N

N∑
i6=j,i=1

x(σi)) (5.10a)

p(σ1, . . . , σj−1, 1, σj+1, . . . , σN , t− τ)z(2)(τ)

p
(3)
j (t) =

∫ ∞

0

dτ
∑

{σi,i6=j}

γ(
1

N

N∑
i6=j,i=1

x(σi)) (5.10b)

p(σ1, . . . , σj−1, 1, σj+1, . . . , σN , t− τ)

∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′).
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supplemented with the normalization condition p(1)
j (t)+p

(2)
j (t)−p(3)

j (t) = 1. With
the help of definition (5.9) we can replace p(i)

j (t) appearing on the left hand side
in eqs. (5.10) by an appropriate sum of the p(σ1, . . . , σN , t), leading to a closed
equation in the microscopic probabilities p(σ1, . . . , σN , t). Note however, that these
equations are not valid without the summation, i.e. in general (cf. (5.10a))

p(σ1, . . . , σj−1, 2, σj+1, . . . , σN , t) 6=∫ ∞

0

dτγ(
1

N

N∑
i6=j,i=1

x(σi))p(σ1, . . . , σj−1, 1, σj+1, . . . , σN , t− τ)z(2)(τ)

This is due to the fact that in the finite time interval between the time t − τ
when we assume unit j to leave state 1 and the time t at which we consider the
probability of unit j to be in state 2 the other units may arbitrarily change their
state. This is different to the description of the Markovian two state system in
section 5.1, which is local in time.

Due to the global coupling all units are equivalent and we may describe the
system by the probabilities pN(n(1), n(2), n(3), t) that n(i) units are in state i at time
t. These probabilities are related to the micro state probabilities p(σ1, . . . , σN , t)
by

1

N

N∑
j=1

∑
{σi,i6=j}

p(σ1, . . . , σj−1, k, σj+1, . . . , σN , t) =

∑
n(1)+n(2)+n(3)=N

n(k)

N
pN(n(1), n(2), n(3), t)

Eqs. (5.10) can thus be rewritten as∑
n(1)+n(2)+n(3)=N

[n(2)

N
pN(n(1), n(2), n(3), t)− (5.11a)

n(1)

N

∫ ∞

0

dτγ(
3∑

k=1

x(k)n
(k)

N
)pN(n(1), n(2), n(3), t− τ)z(2)(τ)

]
= 0

∑
n(1)+n(2)+n(3)=N

[n(3)

N
pN(n(1), n(2), n(3), t)− n(1)

N

∫ ∞

0

dτ (5.11b)

γ(
3∑

k=1

x(k)n
(k)

N
)pN(n(1), n(2), n(3), t− τ)

∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′)
]

= 0

Next we again assume that in the limit of infinitely many coupled unitsN →∞,
the relative occupation numbers n(i)(t)

N
converge to a deterministic process p(i)(t),
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such that for an arbitrary continuous function f

lim
N→∞

∑
n(1)+n(2)+n(3)=N

pN(n(1), n(2), n(3), t)f(
n(1)

N
,
n(2)

N
,
n(3)

N
)

= f(p(1)(t), p(2)(t), p(3)(t)) (5.12)

In this limit we then obtain from eqs. (5.11)

p(2)(t) =

∫ ∞

0

dτγ(
3∑

k=1

x(k)p(k)(t− τ))z(2)(τ) (5.13a)

p(3)(t) =

∫ ∞

0

dτγ(
3∑

k=1

x(k)p(k)(t− τ))p(1)(t− τ)

∫ τ

0

dτ ′w(2)(τ ′)z(3)(τ − τ ′).

(5.13b)

supplemented with the normalization condition

p(1)(t) = 1− p(2)(t)− p(3)(t). (5.13c)

In the following, we will analyze the behavior of these nonlinear master equa-
tions. Denoting by

〈τ (i)〉 :=

∫ ∞

0

dττw(i)(τ) =

∫ ∞

0

dτz(i)(τ), i = 2, 3

the mean waiting time in state 2 and 3, and by

〈τ (1)〉 :=
1

γ(x̄st)
with x̄st =

3∑
k=1

x(k)p
(k)
st ,

the mean waiting time in state 1, the stationary solution(s) p(i)
st of eqs. (5.13) can

be implicitly determined by

p
(i)
st =

〈τ (i)〉
〈τ (1)〉+ 〈τ (2)〉+ 〈τ (3)〉

(5.14)

i.e. the stationary probability to be in a state is given by the mean waiting time
in this state, divided by the mean time for one cycle 1 → 2 → 3.

In contrast to the case of a single unit, where exactly one stable stationary
solution exists, the behavior of the globally coupled system may be more complex
due to the nonlinearity in eqs. (5.13). Depending on the chosen coupling, i.e. on
the dependence of the excitation rate γ on the mean output of the system and thus
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on p
(2)
st and p

(3)
st , eqs. (5.14) have one or several solutions, which might be locally

stable or unstable. Due to a loss of stability of the stationary solution induced by
the coupling the system might undergo a Hopf bifurcation leading to the onset of
global oscillations. This behavior will be investigated in the following.

The local stability of a stationary solution can be obtained by inserting the
ansatz

p(i)(t) = p
(i)
st + δp(i)(t), δp(i)(t) = a(i) exp(λt) (5.15)

into the nonlinear master equation (5.13). Neglecting the nonlinear terms in
δp(i)(t), this results in

a(2) =
[
s(2)a(2) + s(3)a(3) − (a(2) + a(3))r

]
ẑ(2)(λ) (5.16a)

a(3) =
[
s(2)a(2) + s(3)a(3) − (a(2) + a(3))r

]
ŵ(2)(λ)ẑ(3)(λ) (5.16b)

where we introduced the abbreviations

s(2) = p
(1)
st
∂γ
(
x̄(p

(2)
st , p

(3)
st )
)

∂p
(2)
st

, s(3) = p
(1)
st
∂γ
(
x̄(p

(2)
st , p

(3)
st )
)

∂p
(3)
st

and r = γ
(
x̄st
)

.(5.17)

We further introduced the Laplace transforms of the waiting time distributions
and survival probabilities

ŵ(i)(λ) :=

∫ ∞

0

dτ exp(−λτ)w(i)(τ) and

z(i)(λ) :=

∫ ∞

0

dτ exp(−λτ)z(i)(τ) =
1− ŵ(i)(λ)

λ
.

In order that the linear equation (5.16) has a solution (a(2), a(3)) 6= (0, 0) the
determinant has to vanish. This requirement eventually leads to the characteristic
equation

1 +
1

λ

[
s(2)(ŵ(2)(λ)− 1) + s(3)(ŵ(2)(λ)w(3)(λ)− w(2)(λ))+ (5.18a)

r(1− ŵ(2)(λ)ŵ(3)(λ))
]

= 0.

Sometimes it is more advantageous to express the characteristic equation in
terms of the ẑ(i)(λ) as

1 + (s(3) − s(2))ẑ(2)(λ) + (r − s(3))ẑ(23)(λ) = 0. (5.18b)

Here, ẑ(23)(λ) = ẑ(2)(λ) + ẑ(3)(λ)− λẑ(2)(λ)ẑ(3)(λ) is the Laplace transform of the
survival probability z(23)(τ) in both state 2 and 3 together,

z(23)(τ) = 1−
∫ τ

0

dτ ′(w(2) ◦ w(3))(τ ′).
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The solutions λ ∈ C of the characteristic equation (5.18) determine the lo-
cal stability of the stationary solution. Depending on the chosen waiting time
distributions w(2)(τ) and w(3)(τ) eq. (5.18) possesses several or even countably
infinitely many complex solutions λ as the underlying system eqs. (5.13) may be
more than two dimensional, due to the integral terms. Starting with an ensemble
of uncoupled units, which is known to have exactly one stationary solution which
is stable an increasing coupling may cause this unique stationary solution to be-
come instable, i.e. the real part of some eigenvalues λ passes the imaginary axis.
If the imaginary part of λ is non vanishing, this corresponds to a Hopf bifurca-
tion, probably leading to an oscillatory behavior of the occupation probabilities
p(i)(t) and thus of the systems’ output x̄(t). In general, the concrete solutions of
the characteristic equation (5.18) can only be obtained numerically. However in
the next subsection we consider some general properties the system has to have
in order to observe oscillations. Before we continue we fix some notions. We call
a coupling inhibitory(excitatory) with respect to state k, if the excitation rate is
lower(higher) the more units are in state k. An inhibitory coupling to state 2 thus
implies s(2) ≤ 0 while an excitatory coupling to state 3 means s(3) ≥ 0. For the
threestate model of excitable systems, where we assume a high output of the single
units in the firing state 2 and the same low output in rest state 1 and refractory
state 3 the mean output x̄(t) is completely specified by the number of units in state
2. Therefore, in this case the coupling is with respect to state 2. However there
might be other applications of the threestate model, for which the assumption of
a coupling to state 3 probably makes sense. Therefore we include this possibility
in our considerations.

5.2.1 Conditions which do not allow for spontaneous global
oscillations

In this subsection we investigate under which restrictions the globally coupled
three state system does not exhibit oscillations of the mean field. The strongest
statement can be made in the case of exponentially distributed waiting times in
state 2 and 3 and a coupling to state 3. For this system we can completely ex-
clude stable limit cycles, i.e. oscillating behavior will not occur whatever initial
conditions we choose. If we choose an inhibitory coupling to state 2, allowing for
arbitrary waiting time distributions in state 2 and 3, we can exclude a destabi-
lization of the stable stationary solutions, thus the system will not spontaneously
start to oscillate. Finally if we omit the refractory state 3, the system will not un-
dergo a Hopf bifurcation. However for an excitatory coupling the stable stationary
solution may loose stability, due to a single real eigenvalue becoming positive. If
this bifurcation is subcritical, to judge about which is beyond the linear stability
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analysis we perform, one cannot exclude that the resulting attractor is a limit
cycle.

Inhibitory coupling to state 2 and no coupling to state 3

We consider the situation that the coupling is inhibitory with respect to state 2 and
that there is no coupling to state 3. Thus s(2) ≤ 0 and s(3) = 0 and additionally
r ≥ 0 as, by definition, the excitation rate cannot be negative. Let us assume that
the resulting characteristic equation (cf. eq. (5.18b))

1− s(2)Re ẑ(2)(λ) + rRe ẑ(23)(λ) = 0 (5.19a)
−s(2)Im ẑ(2)(λ) + rIm ẑ(23)(λ) = 0. (5.19b)

has a solution λ with positive real part. Then the imaginary part eq. (5.19b)
has only solutions λ with vanishing imaginary part as the imaginary parts of
ẑ(2)(λ) and ẑ(23)(λ) both have the same inverse sign of Imλ and are zero if and
only if Imλ = 0 (see appendix D.2). However for Imλ = 0 the real part of
the characteristic equation has no solution as in this case the real part of both
ẑ(2)(λ) and ẑ(23)(λ) is positive. Thus we can exclude solutions of the characteristic
equation with positive real part, i.e. the stationary solution always remains stable.

Exponentially distributed waiting times and no coupling to state 2

If the waiting times in state 2 and 3 are exponentially distributed,

w(2)(τ) = γ(2) exp(−γ(2)τ) and w(3)(τ) = γ(3) exp(−γ(3)τ), (5.20)

the transitions between the states become rate processes, rendering the resulting
dynamics in terms of p(1)(t), p(2)(t) and p(3)(t) Markovian. With the corresponding
Laplace transformed quantities

ŵ(2)(λ) =
γ(2)

γ(2) + λ
and ŵ(3)(τ) =

γ(3)

γ(3) + λ
(5.21)

we obtain for the characteristic equation (5.18a)

λ2 + λ(γ(2) + γ(3) + r − s(2)) + γ(2)(r − s(3)) + γ(3)(r − s(2)) + γ(2)γ(3) = 0.

(5.22)

This characteristic equation can be as well obtained from the more familiar master
equation

d

dt
p(2)(t) = −γ(2)p(2)(t) + γ

(
x̄(t)

)
p(1)(t) (5.23)

d

dt
p(3)(t) = −γ(3)p(3)(t) + γ(2)p(2)(t), p(1)(t) = 1− p(2)(t)− p(3)(t)
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which can be shown to be equivalent to eqs. (5.13) for the special waiting time
distributions eq. (5.20).

Eq.(5.22) is a quadratic equation for the eigenvalue λ , which stems from the
fact that due to the rate transitions we are dealing with an ordinary three dimen-
sional system of differential equations for the probabilities p(1)(t), p(2)(t) and p(3)(t)
subjected to the algebraic normalization condition p(1)(t) + p(2)(t) + p(3)(t) = 1. If
there is no coupling to state 2, i.e. s(2) = 0 or likewise x̄(t) = x̄(p(3)(t)), we can
completely exclude oscillatory behavior, i.e. the existence of stable limit cycles
using Dulac’s criterion (see e.g. [48, 125]). To this end we have to consider the
divergence of the flow in the two dimensional phase space spanned by p(2) and p(3)

as defined by eqs. (5.23). It can be evaluated to

−(γ(2) + γ(3) + γ
(
x̄(p(3))

)
)

As the rates are positive the divergence of the flow is everywhere negative, which
excludes the existence of a stable limit cycle in a two dimensional phase space by
Dulac’s criterion. Note that in contrast to the previous subsection, where we only
showed the local stability of a stationary solution, but could not exclude additional
stable limit cycles, in this case we have shown that there are no attractors beside
one or several stable fixed points.

If, however we release the restriction of a coupling only to state 3, the above
argument fails as the divergence of the flow becomes

−(γ(2) + γ(3) + γ
(
p(2), p(3)

)
− (1− p(2) − p(3))∂1γ

(
p(2), p(3)

)
)

This expression cannot in general be assured to be negative in the whole phase
space, due to the additional last term, which stems from the dependence of the
coupling on the occupation of state 2, which we previously have excluded. However
one immediately deduces that if a limit cycle should exists, the coupling to p(2)

has to be necessarily excitatory in some region, i.e. ∂1γ
(
p(2), p(3)

)
> 0 for some

(p(2), p(3)). And indeed, the onset of global oscillations can be observed in this
three state rate system with an excitatory coupling to state 2.

Two states

Let us assume that there is no refractory state but the system directly changes from
the firing state into the rest state and thus can be immediately re-excited. This
corresponds to a vanishing waiting time in the refractory state, i.e. w(3)(τ) = δ(τ)
and thus ŵ(3)(λ) = 1 and ẑ(23)(λ) = ẑ(2)(λ). The resulting characteristic equation,
separated into real and imaginary part is obtained from the general characteristic
equation (5.18b) as

1 + (r − s(2))Re ẑ(2)(λ) = 0

(r − s(2))Im ẑ(2)(λ) = 0.
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Assume that there is a solution λ of these equations with Reλ > 0 and Imλ 6= 0.
Then as shown in appendix D.2 Im ẑ(2)(λ) 6= 0 and thus from the second equation
we deduce r−s(2) = 0. This however contradicts the first equation, and we conclude
Reλ ≤ 0 if Imλ 6= 0. Thus we have show that two states in our setting are not
sufficient to generate oscillations via a Hopf bifurcation of the stationary solution,
i.e. (at least) three states are a necessary condition for the globally coupled system
to start to oscillate. This points out the relevance of a refractory period in globally
coupled excitable systems, like for example neurons, in order to exhibit collective
oscillations.

5.2.2 Application to excitable systems

Having excluded oscillatory behavior for some general settings of the three state
model, we now want to analyze its behavior for a more specific case, intended to
model excitable behavior. Namely we choose the waiting times in state 2 and 3 to
be peaked around some mean waiting times τ (2) and τ (3). To model this behavior
we consider Γ distributions

w(2)(τ) =

(
r(2)τ

τ (2)

)r(2)

exp(− r(2)τ
τ (2) )

τΓ(r(2))
and w(3)(τ) =

(
r(3)τ

τ (3)

)r(3)

exp(− r(3)τ
τ (3) )

τΓ(r(3))

(5.25)

For r(i) = 1 the waiting time distribution are exponentially decaying, i.e. the
transitions are rate processes, rendering the dynamics Markovian. For r(i) → ∞
we deal with fixed waiting times. One thus would expect r(2) and r(3) to increase
with decreasing noise level, however we do not consider the dependence of r(2) and
r(3) on noise strength, but assume them constant. The mean and variance of the
Γ distributions are given by τ (k) and (τ (k))2

r(k) , respectively.
The output of a single unit is considered to assume a high value x1 in state 2

(firing) and a low value x0 in state 1 (rest) and 3 (refractory). The mean output
of the system is therefore given by

x̄(t) = x0(p
(1)(t) + p(3)(t)) + x1p

(2)(t) = (x1 − x0)p
(2)(t) + x0, (5.26)

i.e. it solely depends on the number of units in state 2. The relation between the
excitation rate and the system’s mean output very much depends on the type of
coupling considered. Here we assume that the mean output x̄(t) modulates the
effective potential barrier over which a single unit has to be excited due to noise.
This leads to an Arrhenius type rate with a modulated potential barrier,

γ(x̄(t)) = r0 exp(−∆U(x̄(t))

D
). (5.27)
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According to eq. (5.26) the mean output x̄(t) and thus the excitation rate γ solely
depends on p(2)(t). Therefore we consider in the following γ as a function of p(2)(t),
somehow sloppily using the very same symbol γ.

In order to investigate the behavior of our system we have to examine the
solutions of the characteristic equation (5.18). The Laplace transforms ŵ(2/3)(λ)
of the Γ-distributions eqs. (5.25) are given by

ŵ(2)(λ) =

(
1 +

τ (2)λ

r(2)

)−r(2)

and ŵ(3)(λ) =

(
1 +

τ (3)λ

r(3)

)−r(3)

.

Multiplying eq. (5.18a) by(
1 +

τ (2)λ

r(2)

)r(2) (
1 +

τ (3)λ

r(3)

)r(3)

and assuming r(2) and r(3) to be integer numbers leads to a polynomial character-
istic equation in λ (the terms proportional to 1/λ cancel)(

1 +
τ (2)λ

r(2)

)r(2)(
1 +

τ (3)λ

r(3)

)r(3)(
1− s(2)

λ
+
r

λ

)
+
s(2)

λ

(
1 +

τ (3)λ

r(3)

)r(3)

− r

λ
= 0.

(5.28)

Again in the Markovian case, i.e. for r(2) = r(3) = 1 the characteristic equation
(5.28) reduces to a quadratic equation in λ

τ (2)τ (3)λ2 + (τ (2) + τ (3) + (r − s(2))τ (2)τ (3))λ+ 1− s(2)τ (2) (5.29)
+r(τ (2) + τ (3)) = 0 (5.30)

Contrary, if we assume fixed waiting times in state 2 and 3, which corresponds to
the limit r(2), r(3) →∞ we obtain the characteristic equation

λ− s(2)(1− e−λτ (2)

) + r(1− e−λ(τ (2)+τ (3))) = 0 (5.31)

Such type of characteristic equation which are not polynomial in the eigenvalue λ
but exponential are typical for dynamical systems with a fixed delay [109], which
for example might occur in systems controlled via time delayed feedback [59] or
in systems which include some time delay in the coupling [57, 132]. In our case
the fixed delay is induced by the fixed waiting times in rest and refractory state,
though. Such a characteristic equation has infinitely many solutions λ which re-
flects the fact that although we have only two dynamical variables p(2)(t) and
p(3)(t) (p(1)(t) is determined by the algebraic normalization condition) our system
is nonetheless infinite dimensional due to the fixed delay introduced by the fixed
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waiting times. The complex solutions λ of such exponential equations have been
investigated in [8, 51]. Especially the question under which conditions the real
part of all solutions is negative and thus the corresponding stationary state of the
system is stable, has been considered. However these criteria are not very handy,
therefore we resort to the polynomial equation, (5.28), corresponding to waiting
time distribution w(k)(τ) with some finite r(k), i.e. with a non vanishing variance.
In order to decide whether a general polynomial equation

n∑
i=0

ciλ
n−i = 0 (5.32)

exhibit solutions with positive real part, there exists the Routh-Hurwitz criterion
to evaluate the number of unstable solutions. It is a simple algebraic criterion
based on the coefficients ci of the polynomial equation, To state this criterion we
introduce the quantities sk,l, which are defined by first assigning the coefficients
cn of the polynomial eq. (5.32) to s1,l and s2,l by

s1,1, s1,2, s1,3, . . . = c0, c2, c4, . . . and s2,1, s2,2, s2,3, . . . = c1, c3, c5, . . .

and then iteratively defining the further coefficients s3,l, s4,l, . . . as

sk,l =
sk−1,1sk−2,l+1 − sk−1,l+1sk−2,1

sk−1,1

. (5.33)

Coefficients which appear on the right hand side of this equation but are not
defined are set to zero. Then equation (5.32) has a solution with positive real
part iff all sk,1, k = 0, . . . , n have the same sign. In addition the precise number
of solutions λ of eq. (5.32) with positive real part is given by the number of
pairs (sk,1, sk+1,1), k = 0, . . . , n − 1 which have a different sign. This criterion
is used in the following to numerically determine the bifurcation diagram. To
obtain reasonable results one has to do these calculations with a high precision,
which for large n exceeds machine precision. We have used the arbitrary precision
arithmetic of Mathematica, which automatically keeps track of the errors which
occur in evaluating eq. (5.33).

Let us first consider the influence of the parameters r(2) and r(3). To this end we
have numerically evaluated the number of unstable solutions of the characteristic
polynomial eq. (5.28) using the Routh-Hurwitz criterion. In Fig. 5.1 the number
of unstable solutions of the characteristic equation is shown as a function of the
parameters

γ(p
(2)
st ) = r and γ′(p

(2)
st ) =

s(2)

p
(1)
st

= s(2)(1 + r(τ (2) + τ (3)))
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for three different values of n = r(2) = r(3), namely n = 1, n = 100 and n = 500.
The mean waiting times in state 2 and 3 τ (2) = 65 and τ (3) = 220 are chosen to
correspond to the waiting times in the FHN system eqs. (3.30) as shown with
the corresponding parameters in Fig. 3.2. For large stationary rates γ(p(2)

st ), the
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Figure 5.1: Number of unstable solutions of the characteristic equation (5.28) as a
function of the stationary rate γ(p(2)

st ) and its derivative γ′(p(2)
st ) for different values

of n = r(2) = r(3). From top to bottom: n = 1, 100, 500. The solid lines correspond
to Hopf bifurcations, i.e. two complex conjugate eigenvalues pass the imaginary
axis. The corresponding frequency is shown in the inset. The dashed line indicates
the passage through 0 of a single real solution of the characteristic equation.

stationary solution becomes instable for increasing γ′(p(2)
st ) via a Hopf bifurcation.

This Hopf bifurcation strongly depends on n. The higher n the larger is the region
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Figure 5.2: Number of unstable solutions of the characteristic equation (5.28) as
a function of the stationary rate γ(p(2)

st ) and its derivation γ′(p
(2)
st ) for n = 20 as

in Fig. 5.1. Due to the loop in the Hopf bifurcation line there is a jump in the
frequency of the oscillations.

where the stationary solution is unstable. This implies that a sharply peaked firing
and refractory time avails coherent oscillations and thus the synchronization of the
units. The frequency at the Hopf bifurcation is shown in the insets of Figs. 5.1
and 5.2. Interestingly, the Hopf bifurcation line makes a loop, which leads to a
jump in the frequency along the bifurcation line (see Fig. 5.2).

For small stationary excitation rates γ(p(2)
st ) the stationary solution becomes

instable with increasing coupling γ′(p(2)
st ) due to the passage of a single real eigen-

value through the imaginary axis. This destabilization does not depend on n and
can be understood as follows: A given stationary rate γ(p(2)

st ) uniquely defines the
stationary probability stationary probability p(2)

st according to eq. (5.14),

p
(2)
st =

τ (2)

1

γ(p
(2)
st )

+ τ (2) + τ (3)
. (5.34)

Without coupling and thus γ′(p(2)) ≡ 0 we have exactly one stable stationary
solution (Fig. 5.3 top left). As we are assuming an excitatory coupling, namely
an excitation rate, which increases with increasing number of units in state 2,
the right hand side of eq. (5.34) increases with increasing p

(2)
st . Keeping γ(p

(2)
st )

and thus p(2)
st fixed and increasing γ′(p(2)

st ), which corresponds to moving along a
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horizontal line in the plots of Fig. 5.1, we eventually reach the point where

d

dp
(2)
st

τ (2)

1

γ(p
(2)
st )

+ τ (2) + τ (3)
= 1 or γ′(p

(2)
st ) =

(
1 + (τ (2) + τ (3))γ(p

(2)
st )
)2

τ (2)
.

(5.35)

At this condition not only the functions on the left and right hand side of eq.
(5.34) are identical but also their tangents. This point can be reached in two
ways, concerning the stationary solution p

(2)
st . Either there where already two

additionally solutions generated before (Fig. 5.3 middle left), one of which then
merges at condition 5.35 with the considered solution (Fig. 5.3 middle right). The
other possibility is shown in Fig. 5.3 top right, for which the additional condition

d2

dp
(2)
st

2

τ (2)

1

γ(p
(2)
st )

+ τ (2) + τ (3)
= 0, (5.36a)

has to be fulfilled. This additional condition, which can be transformed to

γ′′(p
(2)
st ) =

2(τ (2) + τ (3))(1 + (τ (2) + τ (3))γ(p
(2)
st ))3

(τ (2))2
, (5.36b)

defines a point (or probably some points) on the line in γ(p
(2)
st ) − γ′(p

(2)
st ) space

defined by eq. (5.35). Increasing γ′(p
(2)
st ) further we necessarily have (at least)

three stationary points (Fig. 5.3 bottom). In terms of r and s(2) condition (5.35)
reads

r =
s(2)τ (2) − 1

τ (2) + τ (3)
.

With this value for r the characteristic equation (5.28) is solved by λ = 0, i.e.
condition (5.35) is represented by the dotted line in the stability diagrams Fig.
5.1 and 5.2 respectively. As argued above the region below this dotted line, where
we have just one unstable eigenvalue, corresponds to (at least) three stationary
solutions, of which the stability of the unstable middle one is considered (Fig.
5.3 bottom). In the region above this line we cannot explicitly exclude several
stationary solutions (compare Fig. 5.3 middle right), we only know for sure that
for vanishing coupling, γ′(p(2)) ≡ 0 only one stationary solution remains.

In the following we investigate the behavior of the coupled units for the Arrhe-
nius type excitation rate (5.27). Assuming further for simplicity an affine relation
between the effective potential barrier and the coupling parameter,

∆U(p(2)(t)) = ∆U0(1− σp(2)(t))
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Figure 5.3: Fixing the stationary rate γ(p(2)
st ) and thus the stationary solutions

p
(2)
st , marked by a star, there are different possible scenarios for a given γ′(p(2)

st ) as
explained in the text.

the rate in dependence on p(2)(t) is given by

γ(p(2)(t)) = r0 exp(−∆U0(1− σp(2)(t))

D
). (5.37)

A given value of γ(p(2)
st ) and γ′(p(2)

st ) uniquely determines σ and D according to

σ =
γ′(p

(2)
st )T

γ′(p
(2)
st )τ (2) + γ(p

(2)
st )T log( r0

γ(p
(2)
st )

)
, T =

1

γ(p
(2)
st )

+ τ (2) + τ (3)

D =
σ∆U0γ(p

(2)
st )

γ′(p
(2)
st )

=
T∆U0γ(p

(2)
st )

γ′(p
(2)
st )τ (2) + γ(p

(2)
st )T log( r0

γ(p
(2)
st )

)

However for a given value of σ and D there might be more that one value of γ(p(2)
st ),

and thus p(2)
st , and γ′(p(2)

st ).
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Choosing ∆U = 0.0002 and r0 = 0.05 in eq. (5.37) which is a very rough
estimate from the FHN system with the parameters from Fig. 3.2 we can now
transform the bifurcation diagrams in γ(p(2)

st )−γ′(p(2)
st ) space Fig. 5.1 to σ−D space.

The result is shown for n = 100 in Fig. 5.4. Increasing the coupling σ the system
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Figure 5.4: Bifurcation diagram in σ−D space for an Arrhenius type rate eq. (5.37)
with ∆U0 = 0.0002 and r0 = 0.05 and Γ distributed waiting times in state 2 and 3
with r(2) = r(3) = 100, τ (2) = 65 and τ (3) = 220. The thick solid line corresponds to
a supercritical Hopf bifurcation, while for the thin solid line, the Hopf bifurcation is
subcritical. The dashed lines correspond to the passage of a single real eigenvalue
through 0. The cross indicates the point where condition (5.36) is fulfilled. The
shaded region corresponds to the existence of three stationary solutions, while for
parameters outside this region there is only one stationary solution.

undergoes a Hopf bifurcation if the noise level is appropriately chosen. Depending
on the noise level this bifurcation is either sub- or supercritical (see appendix
D.1 for a center manifold analysis in an extended phase space which we used to
investigate the criticality of the Hopf bifurcation in this system). Increasing the
noise strength D with a sufficiently high coupling σ there is a transition from non
oscillating to oscillating and back to non oscillating behavior. This behavior has
also been found for the FHN model in [139] using a cumulant expansion method.
In Fig. 5.5 this transition from non oscillating to oscillating and back to non
oscillating behavior is shown in detail and compared with numerically obtained
results for the stationary solutions and oscillation amplitudes of the coupled three
state units. This amplitude of the limit cycle shows a maximum at a certain
noise level indicating some sort of coherence resonance, i.e. most pronounced
oscillations of the mean output at some intermediate noise level. Such an effect was
also reported for a globally coupled networks of Hodgkin-Huxley neuron models
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in [134]. In Fig. 5.6 we have simulated a system of 100000 coupled units in the
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Figure 5.5: Stationary mean output x̄ and minimum and maximum of the mean
output x̄(t) in the case of oscillatory solutions. for an Arrhenius type excitation
rate (5.37) with σ = 2.5. Other parameters as in Fig. 5.4. Symbols: simulations
of a system of 10000 coupled threestate units. Thick gray line and thin black line:
Solution taken from the simulation of the dynamical eqs. (5.13). Thin gray line
and thick black line: Stationary solution (stable and unstable) according to eq.
(5.34), the stability is obtained from the bifurcation diagram Fig. 5.4. The inset
shows in more detail the hysteresis of the subcritical Hopf bifurcation.

oscillatory regime near the super critical Hopf bifurcation at σ = 3.0 and D =
0.0002. Although the oscillation is no longer harmonic and has a high amplitude,
as we are not too close to the Hopf bifurcation line, its frequency ω ≈ 0.0207 agrees
well with the frequency at the Hopf bifurcation, obtained from the linear stability
analysis which for σ = 3.0 and D = 0.00023 is ω = 0.02064.

Comparison with globally coupled FHN systems

Finally we want to compare the results from the globally coupled three state
system with a globally coupled FHN system. To this end consider an ensemble of
N globally coupled FHN models

ẋi = xi − x3
i − yi + cx̄(t) +

√
2Dξi(t) (5.38a)

ẏi = ε(xi + a0 − a1yi) (5.38b)

where x̄(t) = 1
N

∑N
i=1 xi(t) is the mean output of the system and ξi(t) is Gaussian

white noise, 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t+ τ)〉 = δi,jδ(τ). Again the coupling strength
c together with the noise strengthD will serve as control parameters The amplitude
of the oscillations of the mean value x̄(t) of the mean field as a function of noise
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Figure 5.6: Times, at which a unit makes a transition from state 1 to state 2 (black
dots) and corresponding mean output x̄(t) (gray line) of a system of 100000 coupled
three state units (only 2000 of which are shown) with σ = 3.0 and D = 0.0002.
Other parameters as in Fig. 5.4.
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Figure 5.7: Oscillation amplitude of the mean output x̄(t) of a system of 2000
globally coupled FHN systems eq. (5.38a) as a function of coupling strength c and
noise strength D. Other parameters as in Fig. 3.2.

strength D and coupling strength c is shown in Fig. 5.7. We observe qualitatively
the same behavior as for the three state model Fig. 5.4. Also the stationary
solutions and oscillation amplitudes as a function of noise strength for a fixed
value of the coupling show a good agreement between the excitable FHN system
Fig. 5.8 and the three state model Fig. 5.5. Especially the type of the Hopf
bifurcation, subcritical when entering the oscillatory regime with increasing noise
strength and supercritical when leaving it again is well reproduced.
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Figure 5.8: Asymptotic maximum and minimum value of the mean output x̄(t) of
a system of 2000 globally coupled FHN systems eq. (5.38a) as a function of noise
strength D for a coupling of c = 0.04. The non vanishing oscillation amplitude
at high noise levels is an effect of the finite number of units, which inevitably has
a fluctuating mean output x̄(t) (compare Fig. 5.5). Other parameters as in Fig.
3.2.

5.2.3 Delayed Coupling

If we think of the globally coupled excitable units as for example a population of
neurons, connected via synapses, the output of the neurons is delayed, due to the
finite propagation speed, before it is fed back into the neuron population. It is
well known that a delay incorporated in the coupling may completely change the
dynamics of the system, like inducing amplitude death in limit cycle oscillators
[108] or oscillations in bistable systems [56]. With an appropriately chosen delay
one can induce oscillatory behavior at the same time being able to suppress the
oscillations, if the delay is differently adjusted [113]. Such a tuning of a system’s
behavior is not restricted to globally coupled units, but also single system can be
controlled with a time delayed feedback [59,115].

In our discrete state system a delayed coupling can be easily incorporated by
making the excitation rate γ of a single unit dependent on the delayed mean
output x̄(t− τD), where τD is the (fixed) delay time. The stationary solutions are
not modified by the delay, however their stability might change. The delay leads
to an additional prefactor exp(−λτD) of s(2) and s(3) in the characteristic equation
(5.18) which then reads

1 + exp(−λτD)(s(3) − s(2))ẑ(2)(λ) + (r − exp(−λτD)s(3))ẑ(23)(λ) = 0. (5.39)

Due to the additional factor exp(−λτD) the arguments we used to rule out oscil-
latory behavior in subsection 5.2.1 fail.
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To demonstrate this, let us consider the two state system, which we obtained
by neglecting the refractory state 3. Its characteristic equation is given by (cf. eq.
(5.24))

1 + (r − exp(−λτD)s(2))ẑ(2)(λ) = 0. (5.40)

Separating this equation into real and imaginary part, setting λ = λre + iλim and
solving the two resulting equations for r and s(2) gives

r =
Im ẑ(2)(λ) cot(λim τD)− Re ẑ(2)(λ)

|ẑ(2)(λ)|2
(5.41a)

s(2) =
eλre τDIm ẑ(2)(λ) csc(λim τD)

|ẑ(2)(λ)|2
(5.41b)

Let us assume that all parameters except the coupling strength and the time delay
τD are fixed, i.e. r as well as z(2)(τ) are fixed, however s(2) can assume an arbitrary
value by tuning the coupling strength. To show that there are solutions λ with
positive real part λre and arbitrary imaginary part λim 6= 0 let us also fix these
two values. Then eq. (5.41a) is solved for some τD, as Im ẑ(2)(λ) 6= 0 for λim 6= 0
(cf. appendix D.2) and the values of cot(λim τD) can be tuned from −∞ to ∞ by
appropriately choosing the delay τD. Tuning the coupling and thus s(2) then solves
the second equation (5.41b).

For a given τD which solves eq. (5.41a), there is always a corresponding τ̃D =
τD +π/λim which likewise solves eq. (5.41a) as cot(λim τD) = cot(λim τ̃D), however
this corresponding delay leads to an inverse coupling as csc(λim τD) = − csc(λim τ̃D)
in eq. (5.41a), i.e. if the coupling is excitatory for τD it must be inhibitory for τ̃D
and vice versa.

This little example shows that a delay is a very powerful mean to generate and
control oscillations. An appropriate delay and coupling allow to excite coherent
oscillations in the two state system for arbitrary waiting time distributions w(τ)
and stationary excitation rates r. Depending on the delay, either an inhibitory or
an excitatory coupling generates the oscillating behavior. Even the simple globally
coupled Markovian two state model introduced in section 5.1 is known to show
oscillatory behavior if the coupling is delayed [56,57].

5.3 An approach based on waiting time distribu-
tions

In the previous sections we considered the behavior of globally coupled discrete
state models, based on a general master equation description for a single unit,
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which in the limit of infinitely many globally coupled units led to a non linear
mean field equation. In this section we choose a different starting point, based
on waiting time distributions. Again we consider the dynamical behavior of N
globally coupled discrete state units. A single unit i may be in one out of two
states 1 or 2, denoted by σi(t), each having a different output x(1) or x(2). The
waiting time of a single unit in state i is distributed according to w(k)(τ) and is
assumed to be the same for all units. It is again the global output

x̄(t) =
N∑

i=1

x(σi(t)) (5.42)

which influences the dynamics of a single unit, thereby introducing a global cou-
pling. This is done in the most general way by making the waiting time distribu-
tions w(k)(τ) functionally dependent on the system’s mean output x̄(t) and thus
on the running time t for which we introduce the notation w(k)[x̄](τ, t). Let us
consider one of the N units. Denoting p(k)(t) the probability that this unit is in
state k and by j(1)(t) and j(2)(t) the probability flux from state 1 to 2 and from
state 2 to 1 respectively the resulting dynamics is then given by (cf. eqs. (4.57a)
and (4.57b))

j(1)(t) =

∫ t

t0

dt′j(2)(t′)w(1)[x̄](t− t′, t′) + δ(t− t0) (5.43a)

j(2)(t) =

∫ t

t0

dt′j(1)(t′)w(2)[x̄](t− t′, t′) (5.43b)

where we assumed the initial condition that the unit has entered state 1 at time
t0. Introducing the survival probabilities

z(k)[x̄](τ, t) = 1−
∫ τ

0

dτ ′w(k)[x̄](τ ′, t), (5.44)

we may relate the probabilities to the probability fluxes by

p(1)(t) =

∫ t

t0

dt′j(2)(t′)z(1)[x̄](t− t′, t′) (5.45a)

p(2)(t) =

∫ t

t0

dt′j(1)(t′)z(2)[x̄](t− t′, t′). (5.45b)

The above equations for the evolution of a single unit are not closed, as the mean
output x̄(t) of the coupled units is not yet determined. To close the equations we
make the assumption that in the limit of large N the relative number of units in
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state k, is given by the probability that a single units is in the corresponding state,

lim
N→∞

1

N

N∑
i=1

δσi(t),k = p(k)(t). (5.46)

As in section 5.1 and 5.2, this condition will not be proven but we just assume its
validity. Then the coupling parameter x̄(t) (5.42), being the average output of the
coupled system can be expressed as,

x̄(t) = x(1)p(1)(t) + x(2)p(2)(t).

Inserting this expression for the mean output into eqs. (5.43) and (5.45) leads to a
closed non linear mean field equation, where now p(k)(t) can be interpreted as the
portion of units which are in state k. Due to the normalization p(1)(t)+p(2)(t) = 1,
it is sufficient to consider the waiting time distributions and survival probabilities
to be only dependent on say p(2)(t), which will be done in the following. Although
the functional dependence of the waiting time distributions and survival probabil-
ities on p(2) is different from the dependence on x̄(t) = x(1)(1− p(2)(t))+x(2)p(2)(t)
we sloppily use the same notation.

To analyze the asymptotic behavior of this system we have to take the limit
t0 → −∞ in eqs. (5.43) and (5.45) leading to

j(1)(t) =

∫ ∞

0

dτj(2)(t− τ)w(1)[p(2)](τ, t− τ) (5.47a)

j(2)(t) =

∫ ∞

0

dτj(1)(t− τ)w(2)[p(2)](τ, t− τ) (5.47b)

and

p(1)(t) =

∫ ∞

0

dτj(2)(t− τ)z(1)[p(2)](τ, t− τ) (5.48a)

p(2)(t) =

∫ ∞

0

dτj(1)(t− τ)z(2)[p(2)](τ, t− τ) (5.48b)

These equations have one or several stationary solutions p(1)
st , p(2)

st , j(1)
st and j

(2)
st ,

which are implicitly given by

p
(1)
st =

〈τ (1)〉
〈τ (1)〉+ 〈τ (2)〉

and p
(2)
st =

〈τ (2)〉
〈τ (1)〉+ 〈τ (2)〉

(5.49a)

and

j
(1)
st = j

(2)
st ≡ jst =

1

〈τ (1)〉+ 〈τ (2)〉
,
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where

〈τ (k)〉 =

∫ ∞

0

dττw(k)[p
(2)
st ](τ)

is the mean waiting time in either state. As these mean waiting times depend
on the occupation of state 2, p(2)

st , eqs. (5.49) are in general nonlinear implicit
equations for the stationary solutions p(1)

st and p(2)
st .

Due to the coupling, these stationary states may loose their stability, thus prob-
ably leading to a more complex behavior like oscillations, which will be investigated
in the following.

To consider the stability of the stationary solution we introduce small pertur-
bations

j(k)(t) = j
(k)
st + δj(k)(t) and p(k)(t) = p

(k)
st + δp(k)(t)

Using the Ansatz

δj(k)(t) = a(k) exp(λt) and δp(k)(t) = b(k) exp(λt)

the linearized equations (5.47) and (5.48) read

a(1) = a(2)ŵ
(1)
0 [p

(2)
st ](λ) + b(2)j

(2)
st ŵ

(1)
1 [p

(2)
st ](λ) (5.50)

a(2) = a(1)ŵ
(2)
0 [p

(2)
st ](λ) + b(2)j

(1)
st ŵ

(2)
1 [p

(2)
st ](λ) (5.51)

b(1) = a(2)ẑ
(1)
0 [p

(2)
st ](λ) + b(2)j

(2)
st ẑ

(1)
1 [p

(2)
st ](λ) (5.52)

b(2) = a(1)ẑ
(2)
0 [p

(2)
st ](λ) + b(2)j

(1)
st ẑ

(2)
1 [p

(2)
st ](λ) (5.53)

where

ŵ
(k)
0 [p

(2)
st ](λ) :=

∫ ∞

0

dτe−λτw(k)[p
(2)
st ](τ, 0) (5.54a)

ŵ
(k)
1 [p

(2)
st ](λ) :=

∫ ∞

0

dτe−λτ

∫
dx
δw(k)[f ](τ, 0)

δf(x)

∣∣∣
f=p

(2)
st

eλx (5.54b)

ẑ
(k)
0 [p

(2)
st ](λ) :=

∫ ∞

0

dτe−λτz(k)[p
(2)
st ](τ, 0) (5.54c)

ẑ
(k)
1 [p

(2)
st ](λ) :=

∫ ∞

0

dτe−λτ

∫
dx
δz(k)[f ](τ, 0)

δf(x)

∣∣∣
f=p

(2)
st

eλx (5.54d)

Upon using eq. (5.44) we obtain

ẑ
(k)
0 [p

(2)
st ](λ) =

1− ŵ
(k)
0 [p

(2)
st ](λ)

λ
(5.55)

ẑ
(k)
1 [p

(2)
st ](λ) = −ŵ

(k)
1 [p

(2)
st ](λ)

λ
(5.56)
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For eqs. (5.50) to have a solution (a(1), a(2), b(1), b(2)) 6= (0, 0, 0, 0) the determinant
must vanish, which leads to the characteristic equation

0 = 1− ŵ
(1)
0 [p

(2)
st ](λ)ŵ

(2)
0 [p

(2)
st ](λ) +

jst
λ

[
ŵ

(2)
1 [p

(2)
st ](λ)(1− ŵ

(1)
0 [p

(2)
st ](λ))

+ŵ
(1)
1 [p

(2)
st ](λ)(ŵ

(2)
0 [p

(2)
st ](λ)− 1)

]
(5.57)

whose solutions λ determine the stability of the stationary solution(s).

5.3.1 Equivalence with the three state model described by
a master equation

Let us compare these general results with the three state model investigated in sec-
tion 5.2. To this end we associate state 2 in the general model presented here with
the firing state 2 in the three state model introduced in section 5.2. The waiting
time distribution w(2)[p(2)] is thus given by the original waiting time distribution
in the firing state w(2)(τ),

w(2)[p(2)](τ, t) = w(2)(τ)

and is independent of p(2) and thus also of the running time t as the firing time
in the three state model was chosen to be not affected by the global coupling.
State 1 in the general model considered here corresponds to both the rest state
1 and the refractory state 3 in the three state model. The corresponding waiting
time distribution w(1)[p(2)] is thus a convolution of both waiting time distributions,
given by

w(1)[p(2)](τ, t) =

∫ τ

0

dτ ′w(3)(τ ′)w̃(1)[p(2)](τ − τ ′, t+ τ ′)

where

w̃(1)[p(2)](τ, t) = γ(p(2)(τ + t)) exp(−
∫ t+τ

t

dτ ′γ(p(2)(τ ′)))

is the waiting time distribution in the original state 1 (rest state), which is left
by a rate process whose rate depends on p(2)(t). According to eqs. (5.54) these
waiting time distributions immediately lead to

ŵ
(1)
0 [p

(2)
st ](λ) =

γ(p
(2)
st )

γ(p
(2)
st ) + λ

ŵ(3)(λ), (5.58a)

ŵ
(2)
0 [p

(2)
st ](λ) = ŵ(2)(λ) and ŵ

(2)
1 [p

(2)
st ](λ) = 0
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ŵ
(1)
1 [p

(2)
st ](λ) is a little bit more complicated to calculate. One obtains

ŵ
(1)
1 [p

(2)
st ](λ) =

λγ′(p
(2)
st )

γ(p
(2)
st )(γ(p

(2)
st ) + λ)

. (5.58b)

eventually leading to the characteristic equation

0 = 1− γ(p
(2)
st )ŵ(2)(λ)ŵ(3)(λ)

γ(p
(2)
st ) + λ

− jstγ
′(p

(2)
st )(1− ŵ(2)(λ))

γ(p
(2)
st )(γ(p

(2)
st ) + λ)

or assuming γ(p(2)
st ) + λ 6= 0, γ(p(2)

st ) 6= 0 and λ 6= 0

1 +
1

λ

[
γ(p

(2)
st )
[
1− ŵ(2)(λ)ŵ(3)(λ)

]
+

jst

γ(p
(2)
st )

γ′(p
(2)
st )
[
ŵ(2)(λ)− 1

]]
= 0

Noticing that

jst

γ(p
(2)
st )

=

1

γ(p
(2)
st )

〈τ (1)〉+ 〈τ (2)〉

is exactly the stationary probability of the rest state in the threestate model, we
recover the characteristic equation (5.18a) obtained for the three state model using
a different approach based on a non linear mean field master equation.

5.3.2 Application to the FHN system in the bistable regime

Having the general approach at hand, we may apply it to globally coupled FitzHugh-
Nagumo systems in the bistable regime. To this end we choose a coupling in the
y variable,

ẋi = xi − x3
i − yi +

√
2Dξi(t)

ẏi = ε(xi + a0 − cax̄(t)− (a1 + cpx̄(t))yi) (5.59)

where the mean field is again defined as

x̄(t) =
1

N

N∑
i=1

xi(t).

Depending on whether ca is different from 0 or cp is different from zero, the coupling
either shifts the y nullcline up and down or it rotates the y nullcline. For the sake
of notational convenience, to keep the number of parameters small, we consider the
symmetric system a0 = 0. In this symmetric setting the waiting time distribution
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on either stable branch left or right, is given by the same coupling independent
waiting time distribution w(τ), responsible for the motion along the branches
followed by a excitation process, which is a rate process with coupling dependent
rate (for details see subsection 3.3.2, Fig. 3.6). Denoting by (1) the left state (left
stable branch of the cubic nullcline) and by (2) the right state the corresponding
Laplace transformed waiting time distributions (5.54) of the two state model are
therefore given by (compare eqs. (5.58))

ŵ
(i)
0 [p

(2)
st ](λ)=

γ(i)(p
(2)
st )

γ(i)(p
(2)
st ) + λ

ŵ(λ) and ŵ
(i)
1 [p

(2)
st ](λ)=

λγ(i)′(p
(2)
st )

γ(i)(p
(2)
st )(γ(i)(p

(2)
st ) + λ)

.

This symmetric system always has a symmetric stationary state p(1)
st = p

(2)
st = 1

2
,

whose stability will be investigated in the following. Due to the symmetry of
the system the excitation rate from the left branch and from the right branch
are equal if the system is in the symmetric state, γ(1)(p

(2)
st ) = γ(2)(p

(2)
st ) =: γ.

However, depending on whether we choose a parametric or an additive coupling,
the change of the excitation rates due to a deviation from the symmetric state
is different. For the parametric coupling (ca = 0, cp 6= 0) both excitation rates
increase and decrease simultaneously, γ(1)′(p

(2)
st ) = γ(2)′(p

(2)
st ) =: γ′, while for the

additive coupling (ca 6= 0, cp = 0) one excitation rate increases and the other
decreases, γ(1)′(p

(2)
st ) = −γ(2)′(p

(2)
st ) =: γ′, if the units are not balanced between

right and left (see subsection 3.3.2, Fig. 3.6).
According to eq. (5.57) the characteristic equation for the symmetric solution

of the additively driven system is given by

1− γ2ŵ(λ)2

(γ + λ)2
+ 2jstγ

′[1
γ
− ŵ(λ)

γ + λ

]
= 0. (5.60)

while for the parametrically driven case it simplifies to

1− γ2ŵ(λ)2

(γ + λ)2
= 0. (5.61)

In this last equation (5.61) the change of the excitation rate with changing output,
γ′, canceled. As it is this parameter which describes the coupling and it is the cou-
pling which destabilizes the stationary solution, we can argue that the symmetric
solution of the parametrically coupled system remains always stable. Besides, one
can also convince oneself that eq. (5.61) really has no solution with Reλ > 0. To
this end assume that Reλ > 0. Then

|γ
2ŵ(λ)2

(γ + λ)2
| < |w(λ)|2 ≤ 1
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where details of the last step are shown in appendix D.2. Thus eq. (5.61) cannot
have any solutions with Reλ > 0.

Contrary, the symmetric solution of the additively coupled system, may become
unstable, leading to global oscillations. To this end we consider its characteristic
equation (5.60) and assume that Reλ > 0. As γ > 0 we may multiply this equation
with γ(λ+ γ)2, obtaining that either

ŵ(λ) =
γ + λ

γ
or ŵ(λ) = 2jst

γ′

γ
− γ + λ

γ
.

The first equation does not have any solutions λ with Reλ > 0, as one can easily
show by considering its modulus. Considering the real part of the second equation,
taking in to account that |Re ŵ(λ)| < 1 if Reλ > 0 (see appendix D.2), it becomes
evident that γ′ > 0 is a necessary condition for this equation to have a solution
λ with Reλ > 0. Thus the symmetric solution of the additively coupled bistable
system may become instable only if γ′ > 0. According to the definition of γ′ this
means that the excitation rate from the left branch to the right branch is larger
the more systems are on the right branch and vice versa.

After these principle considerations we finally want to compare the behavior of
the two state model with simulations of the globally coupled bistable FHN system.
To this end we fix the parameters of the FHN units eqs. (5.59) in the bistable
regime with additive coupling as

a0 = 0, a1 = 1.5, cp = 0 and ε = 0.01. (5.62)

From the numerically evaluated waiting time distributions of the FHN model we
roughly estimate a mean value τ̄ = 150 of the sharply peaked waiting time w(τ).
We model this sharply peaked waiting time distribution by a Γ distributed waiting
time

w(τ) =
(rτ̄
τ

)r exp(− rτ̄
τ

)

τ̄Γ(r)

with r = 100. We further assume an Arrhenius type excitation rate, whose effective
potential barrier is modulated by the coupling,

γ(x̄(t)) = r0 exp(−∆U0(1− σx̄(t))

D
). (5.63)

The output of a single unit is assumed to be −1 in state 1 and 1 in state 2, leading
to the mean output

x̄(t) = −p(1)(t) + p(2)(t) = 2p(2)(t)− 1.
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We further choose r0 = 0.22 and ∆U0 = 0.0002. These values are in accordance
with the numerically obtained excitation rate γ = 0.03 for the uncoupled system
at D = 0.0001. As already the assumption of an Arrhenius rate (5.63) is only
an approximation, we did not more precisely determine these values, e.g. by con-
sidering different noise values and coupling strength. Additionally the qualitative
agreement we obtain does not much depend on these values.

With these ingredients we evaluated the number of unstable zeros of the charac-
teristic equation (5.60), as done for the excitable system in subsection 5.2.2, using
again the Routh-Hurwitz criterion. The result is shown in the left plot of Fig. 5.9.
For low noise values, i.e. low excitation rates, the stable symmetric solution looses
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Figure 5.9: Left: Number of unstable eigenvalues of the symmetric solution in σ−D
space for an Arrhenius type rate eq. (5.63) with ∆U0 = 0.0002 and r0 = 0.22 and
Γ distributed waiting times in state 2 and 3 with r(2) = r(3) = 100, τ (2) = 65
and τ (3) = 220. The solid line indicates a Hopf bifurcation while the dashed lines
correspond to the passage of a single real eigenvalue through 0. Right: Oscillation
amplitude of the mean output x̄(t) of a system of 2000 globally coupled FHN
systems eq. (5.59) and (5.62) with additive coupling (cp = 0) as a function of
coupling strength ca = c and noise strength D.

stability due to one real eigenvalue becoming positive. Due to the symmetry of
the problem this corresponds to a pitchfork bifurcation, i.e. two additional sta-
ble solutions, one with an excess of units on the right branch and thus a positive
output and one with an excess of units on the left branch and thus a negative
output are generated. For higher noise levels and thus higher excitation rates the
stable symmetric solution becomes instable via a Hopf bifurcation leading to an
oscillating mean output.

Finally, we compare these findings to simulations of the FHN system eqs.
(5.59). The amplitude of the global oscillations is shown in the right plot of
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Fig. 5.9. In Fig. 5.10 we have additionally plotted the minimal and maximal
mean output x̄(t). Taking into account the random initial condition used in the
simulation of the coupled FHN systems, the fluctuating mean values in the lower
right corner of the plot reflect the fact that in this regime we have two stable
solutions with either positive or negative mean output. This behavior, a single
stable symmetric solution without coupling, which for low noise levels bifurcates
with increasing coupling into to stable solutions with non vanishing mean, while
for higher noise levels starts to oscillate, is well predicted by the discrete model.
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Figure 5.10: Minimum (left) and maximum(right) of the mean output x̄(t) of a
system of 2000 globally coupled FHN systems eq. (5.59) and (5.62) with additive
coupling (cp = 0) as a function of coupling strength ca = c and noise strength D.

5.4 Summary
We have investigated the behavior of globally coupled excitable and bistable units.
The analysis was based on a discrete state model for the single units. Due to its
relative simplicity the treatment could be performed analytically to some extent.
Our main focus was on synchronization between the coupled units leading to col-
lective oscillation, i.e. oscillations of the mean output. For the Markovian two
state model for double well systems we have ruled out the existence of global os-
cillations. However, the globally coupled non Markovian three state model for
excitable systems exhibits the possibility of collective oscillations. We have shown
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that three states, in particular the existence of a refractory state, namely a state
with low output but without the possibility of reexcitation, is necessary for the
global oscillations to be generated by a Hopf bifurcation. Another necessary in-
gredient to destabilize the stationary solution and thus to probably observe global
oscillations is an excitatory coupling, i.e. the more units are firing the higher must
be the excitation rate. These prerequisites, however, are dispensable if we allow
for an appropriate delay in the coupling.

A comparison with simulations of globally coupled excitable FHN systems
showed good qualitative agreement. Especially the transitions with increasing
noise strength from non oscillating to oscillating and again back to non oscillating
behavior were well reproduced.

Finally we proposed a different concept, based on waiting time distribution.
These waiting time distributions were assumed to be functionally dependent on
the system’s mean output, thus constituting the global coupling. Within this ap-
proach we investigated a model for globally coupled FHN systems in the symmetric
bistable regime. In contrast to the bistable double well system this bistable system
exhibits global oscillation if appropriately coupled. Again theory and simulations
qualitatively agree.



Chapter 6

Conclusions and Outlook

Simplification and abstraction are common principles in understanding nature.
While a good deal of abstraction is done when setting up a mathematical descrip-
tion of the considered system, the resulting models are often still very complicated
on a mathematical level. One possibility to simplify them is a reduction to a
few discrete states. We investigated the behavior of generic stochastic dynamics,
namely bistable and excitable systems, within a discrete state description. While
a discrete modeling has become a prevalent approach in the analysis of continuous
noisy bistable dynamics, the modeling of excitable dynamics in terms of a few
discrete states is less common. This gap has been closed by the introduction of
a phenomenological discrete state renewal model for excitable systems consisting
of rest, firing and refractory state. To exploit the anticipated advantage of this
model, namely a simplified analysis compared to phase space models of stochastic
excitable dynamics, we have derived general concepts to treat discrete stochastic
systems. Based on these concept we obtained at least partly analytical results.
The various results concerning periodically driven or coupled systems show that
the behavior of the discrete model qualitatively captures the effects of excitable
dynamics as archetypically modeled by the FitzHugh-Nagumo system. Thus the
introduced discrete model represents an appropriate simplification of continuous
excitable dynamics.

The combined influence of noise and periodic signals plays a crucial role in
many fields. We investigated the response of bistable and excitable systems to
weak periodic signal by means of the spectral power amplification and signal to
noise ratio. To this end a method to calculate these quantities for renewal pulse
sequences and delta spike sequences was presented. Applied to the three state
model we obtained analytical expressions for an excitable system’s SPA and SNR
in terms of a few characteristic parameters. In particular optimal signal frequen-
cies, i.e. frequencies which are maximally amplified can be determined. The SNR
in the three state model was shown to be constant, i.e. independent of the fre-
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quency of the signal. As it is the SNR which quantifies the quality of the signal
transmission if the observation is restricted to a finite time interval, this frequency
independence renders all signal frequencies equally well distinguishable from the
noisy background. This finding may be interesting in all contexts where weak
periodic signals are processed by excitable systems, the most prominent of which
are neurons.

For larger periodic signals synchronization of the stochastic system to the signal
was investigated in terms of the diffusion properties of the spike count for excitable
systems and the number of hoppings between the wells for bistable systems. Again
we proposed a general theory to calculate these quantities in discrete state renewal
systems. The analytical results found for bistable systems show only a one to
one synchronization regime. Excitable systems however exhibit different m : n
synchronization regimes.

Besides its application as a model for excitable dynamics, we also considered
the three state model as a simple model of a molecular motor. In this context,
periodic driving as realized by a periodic modulation of the motors fuel molecule
concentration, was shown to lead to a very coherent, regular motion, being proba-
bly an appropriate mean to control such motor proteins in technical applications.

Last but not least we investigated coupled excitable and bistable units. While
globally coupled Markovian bistable units do not exhibit coherent oscillations,
excitable systems may show synchronization. Within the three state model for
excitable systems we deduced some necessary ingredient to observe a spontaneous
onset of synchronous firing and thus oscillations of the mean output. Besides an
excitatory coupling the existence of a refractory period plays a crucial role.

The investigated non Markovian model for excitable system is only a very ide-
alized model. However, even within its limitations, many properties of generic
excitable systems, be it synchronization of globally coupled excitable units or
synchronization properties of periodically driven excitable systems, are well re-
produced and explained. Moreover, the general concepts we have derived, are
amenable to an application to more precise but also totally different models. Es-
pecially the abstract results on diffusion properties, provide a new tool in the
analysis of periodic renewal processes.
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Appendix A

Detailed calculations for chapter 2

A.1 Equivalence between the semi Markovian mas-
ter equation and the three state model master
equation

Consider a three state system with transitions 1 → 2 → 3 → 1. The waiting time
distributions in state i is denoted by w(i)(τ). The corresponding semi Markovian
master equation then reads (compare eqs. (2.14))

d

dt
p(i)(t) =

∫ t

0

dτφ(j)(t− τ)p(j)(τ)−
∫ t

0

dτφ(i)(t− τ)p(i)(τ), (A.1)

(i, j) = (1, 3), (2, 1), (3, 2)

where the memory kernels φ(i)(τ) are defined in terms of their Laplace transforms
as

φ̂(i)(u) =
uŵ(i)(u)

1− ŵ(i)(u)
. (A.2)

For the three state model of excitable systems the transition from 1 to 2 is a rate
process with constant rate γ. The waiting time distribution in state 1 is therefore
w(1)(τ) = γe−γτ and its Laplace transform ŵ(1)(u) = γ/(u + γ). In this case the
convolution kernel φ(1)(τ) can be explicitly calculated as φ(1)(τ) = γδ(τ). Laplace
transforming eqs. (A.1), assuming as initial condition p(1)(0) = 1 we arrive at

up̂(1)(u)− 1 = −γp̂(1)(u) + p̂(3)(u)φ̂(3)(u)

up̂(2)(u) = γp̂(1)(u)− p̂(2)(u)φ̂(2)(u)

up̂(3)(u) = p̂(2)(u)φ̂(2)(u)− p̂(3)(u)φ̂(3)(u).

167



168 A.2. SPECTRAL POWER DENSITY OF RENEWAL PROCESSES

Using the normalization condition which translates into p̂(1)(u)+ p̂(2)(u)+ p̂(3)(u) =
1/u and the definition (A.2) of φ̂(2/3)(u) we eventually arrive after some algebraic
manipulations at

up̂(1)(u)− 1 = −γp̂(1)(u) + γp̂(1)(u)ŵ(2)(u)ŵ(3)(u)

up̂(2)(u) = γp̂(1)(u)− γp̂(1)(u)ŵ(2)(u)

up̂(3)(u) = γp̂(1)(u)ŵ(2)(u)− γp̂(1)(u)ŵ(2)(u)ŵ(3)(u)

and finally using the inverse Laplace transform eqs. (2.15) are recovered.

A.2 Spectral power density of renewal Processes
In this appendix we present a derivation of the spectral power density of a sta-
tionary renewal delta spiketrain χ(t) eq. (2.20) and a renewal pulse sequence η(t)
eq. (2.19). These expressions were first derived by Stratonovich [124].

A.2.1 The spectral power density of renewal delta spike
trains

A renewal delta spike train χ(t) consists of delta spikes located at times ti,

χ(t) =
∑

i

δ(t− ti). (A.3)

The interval between two subsequent spikes is distributed according to a waiting
time distribution w(τ). Due to the renewal property these intervals are uncorre-
lated. In order to calculate the spectral power density as defined by eqs. (2.21)
we have to insert the renewal delta sequence χ(t) into eq. (2.21b) leading to

〈|cωn,T |2〉 =
1

T 2

〈0<tj ,tk<T∑
j,k

exp(−iωn(tj − tk))
〉
, ωn =

2πn

T
.

There are two random components in the above averaging, namely the number
NT of events in the interval (0, T ), which determines the number of terms in
the summation and the actual spiking times ti. Therefore it is not possible to
interchange the mean and the summation. However in the limit T → ∞ which
we are concerned with, the mean and variance of NT grow linearly with T and
therefore the variance of NT/T will tend to zero while NT/T converges to the
mean waiting time 〈τ〉 =

∫∞
0
dττw(τ). Then in this limit T → ∞, which is

assumed in the following

〈|cωn,T |2〉 =
1

T 2

〈NT 〉∑
j,k=1

〈exp(−iωn(tj − tk))〉 (A.4)
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where 〈NT 〉 = T/〈τ〉 is the mean number of events in the interval (0, T ). Intro-
ducing the characteristic function of the waiting time distribution

ŵ(ω) :=

∫ ∞

0

dτe−iωτw(τ) = 〈exp(−iω(ti+1 − ti))〉

the convolution theorems for Fourier transforms directly lead to

(
ŵ(ω)

)j
:=

∫ ∞

0

dτe−iωτw◦j(τ) = 〈exp(−iω(ti+j − ti))〉 (A.5)

where

ω◦j(τ) = (ω◦j−1 ◦ ω)(τ) =

∫ τ

0

dτ ′ω◦j−1(τ ′)w(τ − τ ′)

is the j-fold convolution of the waiting time density w(τ). Inserting eq. (A.5) into
(A.4) and splitting the double sum into the three parts j = k,j < k and j > k
leads to

〈|cωn,T |2〉 =
1

T 2

[
〈NT 〉+

〈NT 〉∑
j=2

j−1∑
k=1

(
ŵj−k(ωn) +

(
ŵj−k(ωn)

)∗)] (A.6)

In evaluating the double sum we have to distinguish two cases namely ωn = 0 and
ωn 6= 0. For ωn = 0 the normalization condition of w(τ) leads to ŵ(0) = 1 and
thus

〈|c0,T |2〉 =
〈NT 〉2

T 2
=

1

〈τ〉2
(A.7)

For ωn 6= 0 it can be shown that in general |ŵ(ωn)| < 1 1 . Thus the geometric
sums in eq. (A.6) converge and one ends up with

〈|cωn,T |2〉 =
1

T 2

[
〈NT 〉+

(
〈NT 〉

ŵ(ωn)

1− ŵ(ωn)
− ŵ(ωn)(1− ŵ〈NT 〉+1(ωn))

(1− ŵ2(ωn))
+ c.c

)]
(A.8)

In the limit T → ∞ and therefore 〈NT 〉 → ∞ the coefficients eq. (A.8) vanish,
however the density of the discrete frequencies ωn which have a distance of 2π/T

1For a lattice distribution with period T , i.e. w(τ) =
∑∞

n=0 wnδ(τ − nT ) this is not true as
|ŵ( 2π

T )| = 1. Such a distribution leads to additional deltaspikes in the spectral power density at
ω = 2π

T .
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increases at the same time thus leading to a finite value of the spectral power
density according to eq. (2.21c),

Sχ(ω) = lim
ε→0

1

ε

∫ ω+ ε
2

ω− ε
2

dω′Sχ(ω′) = 2π lim
T→∞

T

2π
〈|cω,T |2〉

= lim
T→∞

〈NT 〉
T

[
1 +

ŵ(ω)

1− ŵ(ω)
+

ŵ∗(ω)

1− ŵ∗(ω)

]
=

1

〈τ〉
1− |ŵ(ω)|2

|1− ŵ(ω)|2
, ω 6= 0.

In the second step we have used the fact, that in a frequency interval of length
ε there are εT/(2π) discrete coefficients. We further assumed continuity of the
spectral power density at ω. This is not the case at ω = 0. The non vanishing
coefficient for ωn = 0 leads to a delta peak in the spectral power density at ω = 0.
Using again the definition of the spectral power density (2.21c) the weight g0 of
this delta peak can be evaluated to

g0 = lim
ε→0

∫ ε

−ε

dω′Sχ(ω′) = 2π lim
T→∞

〈|c0,T |2〉 =
2π

〈τ〉2
(A.9)

Taken together the spectral power density reads

Sχ(ω) =
2π

〈τ〉2
δ(ω) +

1

〈τ〉
1− |ŵ(ω)|2

|1− ŵ(ω)|2
. (A.10)

A.2.2 The spectral power density of renewal pulse sequence

In the same manner as in the previous section we will derive a formula for the
rectangular renewal spike sequence

η(t) =

{
a if t(0)i < t ≤ t

(1)
i

b if t(1)i < t ≤ t
(0)
i+1

(A.11)

where the intervals t(1)
i − t

(0)
i are taken from a waiting time distribution w(0)(τ)

while the t(0)
i+1 − t

(1)
i are taken from w(1)(τ). Let us first consider the case a = 1

and b = 0. Inserting this process into eq. (2.21b) to evaluate 〈|cωn,T |2〉 we have
again to distinguish the two cases ωn = 0 and ωn 6= 0. For ωn 6= 0 one obtains in
the limit T →∞

〈|cωn,T |2〉 =
1

ω2
nT

2

〈NT 〉∑
j,k=1

〈(
e−iωnt

(1)
j − e−iωnt

(0)
j
)(
eiωnt

(1)
k − eiωnt

(0)
k

)〉
(A.12)

where

〈NT 〉 =
T

〈τ (0)〉+ 〈τ (1)〉
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is the mean number of pulses in the interval (0, T ) and 〈τ (i)〉 denotes the mean
waiting time in state i,

〈τ (i)〉 :=

∫ ∞

0

dττw(i)(τ).

For ωn = 0 one obtains

〈|c0,T |2〉 =
1

T 2

〈NT 〉∑
j,k=1

〈(
t
(1)
j − t

(0)
j

)(
t
(1)
k − t

(0)
k

)〉
=

〈τ (0)〉2

(〈τ (0)〉+ 〈τ (1)〉)2
(A.13)

To further evaluate eq. (A.12) we introduce the characteristic functions of the
waiting time distributions

ŵ(0)(ω) :=

∫ ∞

0

dτe−iωτw(0)(τ) = 〈exp
(
− iω(t

(1)
i − t

(0)
i )
)
〉

ŵ(1)(ω) :=

∫ ∞

0

dτe−iωτw(1)(τ) = 〈exp
(
− iω(t

(0)
i+1 − t

(1)
i )
)
〉

The independence of the waiting times in state 0 and 1 immediately gives

ŵ(0)(ω)ŵ(1)(ω) =
〈
exp

(
− iω(t

(0)
i+1 − t

(0)
i )
)〉

=
〈
exp

(
− iω(t

(1)
i+1 − t

(1)
i )
)〉
.

Then splitting again the double sum into j = k, j < k and j > k eq. (A.12) and
evaluating the resulting geometric sums leads to

〈|cωn,T |2〉 =
〈NT 〉
ω2

nT
2

[
2− ŵ(0)(ωn)−

(
ŵ(0)(ωn)

)∗
+( ŵ(0)(ωn)ŵ(1)(ωn)

1− ŵ(0)(ωn)ŵ(1)(ωn)

(
2− ŵ(0)(ωn)− 1

ŵ(0)(ωn)

)
+ c.c

)]
+O(

1

T
)

=
〈NT 〉
ω2

nT
2
2Re

(1− ŵ(0)(ω))(1− ŵ(1)(ω))

1− ŵ(0)(ω)ŵ(1)(ω)
+O(

1

T
)

where O(1/T ) denotes the terms which decrease faster than 1/T as T → ∞.
Performing the same calculations as in the previous section one finally arrives at

Sη(ω) =
2π〈τ (0)〉2

(〈τ (0)〉+ 〈τ (1)〉)2
δ(ω)

+
2

ω2(〈τ (0)〉+ 〈τ (1)〉)
Re

(1− ŵ(0)(ω))(1− ŵ(1)(ω))

1− ŵ(0)(ω)ŵ(1)(ω)

To relax the restriction a = 1 and b = 0 we notice that the general process ηa,b(t)
can be obtained from our special choice η1,0(t) by

ηa,b(t) = (a− b)η1,0(t) + b.



172 A.3. THE WIENER-KHINCHINE THEOREM

The factor (a− b) obviously leads to a factor (a− b)2 in the spectral power density
while the additional constant b only modifies the weight of the delta peak in the
spectral power at ω = 0. Thus eventually one obtains the final result

Sη(ω) =
2π(a〈τ (0)〉+ b〈τ (1)〉)2

(〈τ (0)〉+ 〈τ (1)〉)2
δ(ω)

+
2(a− b)2

ω2(〈τ (0)〉+ 〈τ (1)〉)
Re

(1− ŵ(0)(ω))(1− ŵ(1)(ω))

1− ŵ(0)(ω)(ŵ(1)(ω)

A.3 The Wiener-Khinchine theorem
The spectral power density of a stochastic process can be related to its autocorre-
lation function. This relation is called Wiener-Khinchine theorem and is possible
for either stationary (see e.g. [1]) or periodic processes [60, 61]. In the follow-
ing two subsection we present the Wiener-Khinchine theorem with a short proof
for both cases. To this end we split the process x(t) into the sum of its (in
the case of a periodic process time dependent) mean value 〈x(t)〉 and the process
x̃(t) := x(t)−〈x(t)〉 which has zero mean value. Then the auto correlation function
cx,x(t, t

′) := 〈x(t)x(t′)〉 can also be split into two parts, namely

cx,x(t, t
′) := cx̃,x̃(t, t

′) + 〈x(t)〉〈x(t′)〉 with cx̃,x̃(t, t
′) := 〈x̃(t)x̃(t′)〉.

According to the definition (2.21c), the spectral power density is given by

Sx(ω) = lim
ε→0

1

ε

∫ ω+ ε
2

ω− ε
2

dω′Sx(ω
′) = 2π lim

T→∞

T

2π
〈|cω,T |2〉 = Sx̃(ω) + Sδ(ω)

(A.14)

where in the second step we have used the fact that the frequency of two subse-
quent Fourier coefficients is separated by 2π/T and thus there are 2πε/T Fourier
coefficients contributing to the integral. The two parts Sx̃(ω) and Sδ(ω) are given
by

Sx̃(ω) = lim
T→∞

1

T

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)cx̃,x̃(t, t
′) (A.15)

Sδ(ω) = lim
T→∞

1

T

∫ T

0

dte−iωt〈x(t)〉
∫ T

0

dt′eiωt′〈x(t′)〉 (A.16)

To further evaluate Sx̃(ω) we apply a variable transformation (t, t′) → (s, τ) =
(t, t′ − t) (see Fig. A.1) in eq. (A.15) which leads to

Sx̃(ω) = (A.17)

lim
T→∞

1

T

[ ∫ 0

−T

dτ

∫ T

−τ

ds eiωτcx̃,x̃(t, t+ τ) +

∫ T

0

dτ

∫ T−τ

0

ds eiωτcx̃,x̃(t, t+ τ)
]
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T

T

t
′

t

t
′ −

t
=

0

t

T

t
′

− t

−T

t ′
=

0

T

Figure A.1: A schematic view of the variable transformation (t, t′) → (τ, s) =
(t− t′, t′) and its corresponding area of integration

To treat expression (A.16) we need the following result which holds in a distri-
butional sense:

lim
T→∞

1

T

∫ T

0

dte−i(ω−kΩ)t

∫ T

0

dt′ei(ω−lΩ)t′ = δk,lδ(ω − kΩ) = δk,l

∫ ∞

−∞
dτei(ω−kΩ)τ

(A.18)

A.3.1 Stationary processes

The autocorrelation function cx,x(t, t
′) = 〈x(t)x(t′)〉 of a stationary stochastic pro-

cess x(t) only depends on the time difference, i.e. in this case cx,x(t, t
′) ≡ cx,x(t−t′).

Therefore from eq. (A.17) we obtain

Sx̃(ω) = lim
T→∞

[ ∫ 0

−T

dτ(1 +
τ

T
)eiωτcx̃,x̃(τ) +

∫ T

0

dτ(1− τ

T
)eiωτcx̃,x̃(τ)

]
The autocorrelation function cx̃,x̃(τ) of x̃(t) can be assumed to decrease sufficiently
fast to 0 for large τ such that

lim
T→∞

1

T

∫ T

0

dττe−iωτcx̃,x̃(τ) = 0 ∀ω.

Therefore we obtain

Sx̃(ω) =

∫ ∞

−∞
dτeiωτcx̃,x̃(τ).
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For a stationary process the mean value ist constant and thus from eq. (A.16) we
obtain according to eq. (A.18)

Sδ(ω) =

∫ ∞

−∞
dτeiωτ 〈x〉2.

Summing up both components, we obtain the Wiener-Khinchine theorem for sta-
tionary processes,

Sx(ω) =

∫ ∞

−∞
dτeiωτcx,x(τ) =

∫ ∞

−∞
dτe−iωτcx,x(τ) (A.19)

where in the last step we used the symmetry cx,x(τ) = cx,x(−τ).

A.3.2 Periodic processes

For a periodic process x(t) the autocorrelation function cx,x(t, t
′) no longer only

depends on t− t′ but periodically on both arguments,

cx,x(t, t
′) = cx,x(t+ T , t′ + T ).

Due to the periodicity we may expand cx̃,x̃(t, t+ τ) in a Fourier series as

cx̃,x̃(t, t+ τ) =
∞∑

k=−∞

ĉx̃,x̃,k(τ) exp(ikΩt) (A.20)

with all ĉx̃,x̃,k(τ) going rapidly to 0 as τ goes to ∞. Also the mean value 〈x(t)〉 is
periodic in time. We expand it in a Fourier series as

〈x(t)〉 =
∞∑

k=−∞

x̂k exp(ikΩt) (A.21)

From eq. (A.17) we obtain by inserting the expansion (A.20)

Sx̃(ω) = lim
T→∞

[ ∫ 0

−T

dτ(1 +
τ

T
)eiωτ ĉx̃,x̃,0(τ) +

∫ T

0

dτ(1− τ

T
)eiωτ ĉx̃,x̃,0(τ)

]
+

lim
T→∞

[∑
k 6=0

i

kΩT

[ ∫ 0

−T

dτ(ei(ω−kΩ)τ − eikΩT eiωτ )ĉx̃,x̃,k(τ) +

∫ T

0

dτ(eiωτ − eikΩT ei(ω−kΩ)τ )ĉx̃,x̃,k(τ)
]]
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Due to the assumed rapid decrease of ĉx̃,x̃,k(τ) the second term is zero as well as
the parts containing τ

T
in the first term. Writing the zeroth Fourier coefficient

ĉx̃,x̃,0(τ) as a period averaged,

ĉx,x,0(τ) =
1

T

∫ T

0

dtcx̃,x̃(τ, t) =: c̄x̃,x̃(τ),

we thus eventually obtain

Sx̃(ω) =

∫ ∞

−∞
dτe−iωτ c̄x̃,x̃(τ).

Next we have to calculate the part of the spectral density which stems from
〈x(t)〉〈x(t + τ)〉. Inserting the expansion (A.21) into eq. (A.16) one immediately
obtains

Sδ(ω) =
∑
k,l

x̂kx̂
∗
l lim

T→∞

1

T

∫ T

0

dte−i(ω−kΩ)t

∫ T

0

dt′ei(ω−lΩ)t′

=
∑

k

|xk|2
∫ ∞

−∞
dτei(ω−kΩ)τ

where in the last step we used eq. (A.18). Noticing that according to eq. (A.21)

1

T

∫ T

0

dt〈x(t)〉〈x(t+ τ)〉 =
∑

k

|xk|2e−ikΩτ

we obtain the Wiener-Khinchine theorem for periodic processes,

Sx(ω) =

∫ ∞

−∞
dτeiωτ c̄xx(τ) =

∫ ∞

−∞
dτe−iωτ c̄xx(τ), (A.22)

namely the spectral power density is the Fourier transform of the period averaged
correlation function. In the last step we used that the period averaged autocorre-
lation function is symmetric, i.e. c̄xx(τ) = c̄xx(−τ). Notice however that the full
autocorrelation function is not symmetric, i.e.

cxx(t, t+ τ) 6= cxx(t, t− τ).
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Appendix B

Detailed calculations for chapter 3

B.1 Sum of powers of a Markov operator
Consider the operator L acting on the space L1([0, 2π]) of integrable complex
valued functions on the interval [0, 2π]. We assume that it has the properties

Lf ≥ 0 if f ≥ 0 and ‖Lf‖ = ‖f‖.

Such an operator is called a Markov operator. We assume further that L has a
unique invariant probability density, P st = LP st. Then (cf. theorem 5.2.2 in [71])
the sequence {AnP}n with

An :=
1

n

n−1∑
k=0

Lk

converges strongly for all probability densities P to the unique stationary proba-
bility density P st, i.e.

lim
n→∞

‖AnP − P st‖ = 0. (B.1)

Next we relax the restriction of P being a probability density but allow for arbitrary
functions f . Such a function can be decomposed into

f = c+P+
r − c−P−

r + i(d+P+
i − d−P−

i )

where P±
r/i are all probability densities. Then according to eq. (B.1)

0 ≤ lim
n→∞

‖Anf − (c+ − c− + id+ − id−)P st‖

≤ lim
n→∞

(
|c+|‖(AnP

+
r − P st)‖+ |c−|‖(AnP

−
r − P st)‖

+|d+|‖(AnP
+
i − P st)‖+ |d−|‖(AnP

−
i − P st)‖

)
= 0
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and thus using (c+ − c− + id+ − id−) = 〈1, f〉C we obtain the strong convergence

lim
n→∞

Anf = 〈1, f〉CP st (B.2)

Now

1

n2

n−1∑
k=0

k∑
j=0

Ljf =
1

2
Anf −

n−1∑
k=0

k − n
2

n2
Lkf.

Because L is a Markov operator we have ‖Lkf‖ = ‖f‖ and thus

‖
n−1∑
k=0

k − n
2

n2
Lkf‖ ≤ ‖f‖|

n−1∑
k=0

k − n
2

n2
| = ‖f‖ 1

2n
.

Taken together we have

lim
n→∞

1

n2

n−1∑
k=0

k∑
j=0

Ljf =
〈1, f〉C

2
P st

and finally we obtain

lim
T→∞

1

T 2

〈NT 〉∑
k=1

k∑
j=1

Ljf = L lim
T→∞

1

τ̄ 2〈NT 〉2
〈NT 〉−1∑

k=0

k∑
j=0

Ljf =
〈1, f〉C

2τ̄ 2
P st. (B.3)

B.2 The Fourier coefficients of the time periodic
master operator

Consider the master equation

M(i)
t [p(1), . . . , p(n)] = 0 (B.4)

The master operator is assumed to be periodic with period T = 2π/Ω, M(i)
t =

M(i)
t+T and to act linearly on a tuple (p(1), . . . , p(n)) of functions on R. Introducing

the operators

M(i,j)
t [f ](t) := M(i)

t [0, . . . , f, 0, . . .︸ ︷︷ ︸
f at position j

](t),

M(i) can be written, due to its linearity, as

M(i)
t [p(1), . . . , p(n)](t) =

n∑
j=1

M(i,j)
t [p(j)](t).
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Next we consider periodic functions p(j) with the period Ω of the driving signal
and expand them into a Fourier series as

p(j)(t) =
∑

k

p
(j)
k exp(ikΩt).

Again due to the linearity the action of the master operator on these periodic
functions may be written as

M(i,j)
t [p(j)](t) =

∑
k

p
(j)
k M

(i,j)
t [exp(ikΩ·)](t)

The arising functions M(i,j)
t [exp(ikΩ·)](t) are also periodic as can be seen exploit-

ing the time translational invariance as follows:

M(i,j)
t [exp(ikΩ·)](t+ T ) = M(i,j)

t+T [exp(ikΩ·)](t+ T )

= M(i,j)
t [exp(ikΩ(· − T ))](t) = M(i,j)

t [exp(ikΩ(·))](t)

Thus they can likewise be expanded into a Fourier series as

M(i,j)
t [exp(ikΩ·)](t) =

∑
l

M(i,j)
k,l exp(ilΩt)

with

M(i,j)
k,l =

1

T

∫ T

0

dt exp(−ilΩt)M(i,j)
t [exp(ikΩ·)](t). (B.5)

With these Fourier coefficients the master equation (B.4) restricted to periodic
probabilities p(i)(t) can be expressed in Fourier space as

n∑
j=1

∞∑
l=−∞

M(i,j)
k,l p

(j)
l = 0.

B.3 The order in the driving signal amplitude

If the periodicity of the renewal process is due to a harmonic periodic signal s(t) =
Ain exp(iΩt) + c.c., we wonder what is the order in the signal amplitude Ain of the
different quantities occurring in the calculation of the SPA and SNR.
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B.3.1 The order in the signal amplitude of the Fourier co-
efficients of a general master operator

We assume that the time periodic master operator M(i,j)
t [f ](t) ≡ M(i,j)

t [f, s](t)
is a smooth functional of the periodic signal s(t) which generates its periodicity
M(i,j)

t = M(i,j)
t+T . Under this assumption we show that for a harmonic signal s(t) =

Ain exp(iΩt) + c.c. the Fourier coefficients (B.5) are of order O(|Ain||k−l|).
Due to the assumed smooth dependence of M(i,j)

t [f, s](t) on s we can perform
a functional Taylor expansion around s = 0,

M(i)
t [f, s](t) =

∞∑
ν=0

1

ν!

∫
dx1 . . . dxνρν [f ](t, x1, . . . , xν)s(x1) . . . s(xν).

with

ρν [f ](t, x1, . . . , xν) :=
δνM(i)

t [f, h](t)

δh(x1) . . . δh(xν)

∣∣∣
h≡0

(B.6)

Taking into account the time translational invariance

M(i)
t [f, s](t) = M(i)

0 [f(·+ t), s(·+ t)](0) (B.7)

we obtain

M̂(i,j)
k,l =

1

T

∫ T

0

dt
∞∑

ν=0

1

ν!

∫
dx1 . . . dxνρν [exp(ilΩ(·+ t))](0, x1, . . . , xν)

ν∏
n=0

(
Aine

iΩ(xn+t) + A∗
ine

−iΩ(xn+t)
)
exp(−ikΩt) (B.8)

The product
∏ν

n=0(Aine
iΩ(xn+t) + A∗

ine
−iΩ(xn+t)) can be further evaluated leading

to
ν∏

n=0

(
Aine

iΩ(xn+t) + A∗
ine

−iΩ(xn+t)
)

=
ν∑

n=0

An
inA

∗
in

ν−neiΩ(2n−ν)tcn,ν

where cn,ν is given by

cn,ν =
∑
σν,n

exp

(
iΩ

ν∑
i=1

(−1)σixi)

)

and the sum over σν,n denotes the sum over all ν-tuple consisting of n times 0 and
ν − n times 1.
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Introducing

ρ̃n,ν [f ] :=
1

ν!

∫
dx1 . . . dxνcn,νρν [f ](0, x1, . . . , xν).

which, being a linear functional of f, obviously obeys

ρ̃n,ν [exp(ilΩ(·+ t))] = ρ̃n,ν [exp(ilΩ·)] exp(ilΩt)

we obtain from eq. (B.8)

M̂(i,j)
k,l =

∞∑
ν=0

ν∑
n=0

ρ̃n,ν [exp(ilΩ·)]An
inA

∗
in

ν−n

1

T

∫ T

0

dt exp(iΩ(2n− ν)t) exp(iΩlt) exp(−ikΩt)

Taking into account that 1
T

∫ T
0
dt exp(iΩ(2n−ν)t) exp(iΩlt) exp(−ikΩt) = δk−l,2n−ν

and changing the summation variables according to

∞∑
ν=0

ν∑
n=0

→
∞∑

n=0

∞∑
ν=n

→
∞∑

n=0

∞∑
µ:=ν−n=0

M̂(i,j)
k,l =

∞∑
µ=0

∞∑
n=0

ρ̃n,µ+n[exp(ilΩ·)]An
inA

∗
in

µδk−l,n−µ

=

{ ∑∞
µ=0 ρ̃k−l+µ,k−l[exp(ilΩ·)]Ak−l+µ

in A∗
in

µ k − l ≥ 0∑∞
n=0 ρ̃n,l−k[exp(ilΩ·)]An

inA
∗
in

l−k+n k − l ≤ 0

Thus M̂(i,j)
k,l is of order O(|A|k−l|

in |).

B.3.2 The order in the signal amplitude of the Fourier coef-
ficients of a time dependent waiting time distribution

Consider the Fourier coefficients

ŵk(t) =

∫ ∞

0

dτ exp(−ikΩτ)w(τ, t)

of the time dependent waiting time distribution w(τ, t) for a fixed entrance time t
as a functional of the driving signal s(t),

ŵk(t) = ŵk[s](t).
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We assume that this functional depends sufficiently smooth on s, such that we can
perform a functional Taylor expansion around s = 0,

ŵk[s](t) = ŵk[0](t) +
∞∑

ν=1

1

ν!

∫
dx1 . . . dxν

δνŵk[f ](t)

δf(x1) . . . δf(xν)

∣∣∣
f≡0

s(x1) . . . s(xν).

Now ŵk[0](t) = ŵk[0] are the Fourier coefficients of the waiting time distribution
without signal and thus time independent. We further exploit the time translation
property, that the waiting time density and thus its Fourier coefficients as gen-
erated by a signal s observed at a time t + ∆t are the same as the waiting time
density generated by a shifted signal s(· −∆t) observed at a time t,

ŵk[s](t+ ∆t) = ŵk[s(· −∆t)](t).

Thus

ŵk[s](t+ ∆t) = ŵk,0 +
∞∑

ν=0

1

ν!

∫
dx1 . . . dxν

δνŵk[f ](t)

δf(x1) . . . δf(xν)

∣∣∣
f≡0

s(x1 −∆t) . . . s(xν −∆t)

Now for a harmonic signal s(t) = Ain exp(iΩt) + c.c we have

ŵk[s](t+ ∆t) = ŵk[0] + Ain

∫
dx
δŵk[f ](t)

δf(x)

∣∣∣
f≡0

eiΩ(x−∆t) + c.c.

+O(A2
in)

= ŵk[0] + Ainck(t)e
−iΩ∆t + A∗

inc−k(t)e
iΩ∆t +O(A2

in)

with

ck(t) =

∫
dx
δŵk[f ](t)

δf(x)

∣∣∣
f≡0

exp(iΩx)

The Fourier coefficients with respect to t, ŵk,l are defined by

ŵk,l =
1

T

∫ T

0

dtŵk(t) exp(−ikΩt)

= δl,0ŵk[0] +
1

T

∫ T

0

dt(Ainck(0)e
−i(k+1)Ωt + A∗

inc−k(0)e
−i(k−1)Ωt) +O(A2

in)

Therefrom one easily deduces that ŵk,0 is of order O(A0), ŵk,±1 is of order O(Ain)
and all higher Fourier coefficients ŵk,l, l ≥ 2 are of order O(Al

in), l ≥ 2. Actu-
ally, if one takes into account also higher expansion coefficients in the functional
Taylor expansion one can show that ŵk,l is of order O(A

|l|
in).



Appendix C

Detailed calculations for chapter 4

C.1 Periodically modulated linear growth of the
cumulants of a periodic point process

Consider a periodic point process {ti}i. This can for example be a periodic re-
newal process, but also other, stronger correlated periodic point processes can be
considered. By K [n]

t0,t we denote the nth cumulants of the number of events Nt0,t in
the interval (t0, t]. We further define the change in time as

κ
[n]
t0,t :=

d

dt
K

[n]
t0,t. (C.1)

The first of these coefficients gives the change in time of the mean number of events,
which is the instantaneous mean frequency. The second coefficients is the change
in time of the variance of the event number, which is twice the instantaneous
effective diffusion coefficient. Our aim is to show that asymptotically

κ[n](t) := lim
t0→−∞

κ
[n]
t0,t (C.2)

become periodic functions of time with the period of the external driving. To
this end we introduce following [63, 124] the generating functional Lt0,t[v] of the
considered driven renewal process as

Lt0,t[v] = 〈
Nt0,t∏
i=1

(1 + v(ti)]〉

where ti are the times of the events in the interval (t0, t]. Then the nth moment
M

[n]
t0,t of event number Nt0,t is given by

M
[n]
t0,t := 〈Nn

t0,t〉 =
∂n

∂un
Lt0,t[e

u − 1]
∣∣∣
u=0

. (C.3)
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PROCESS

The generating functional Lt0,t can be expressed in terms of the distribution func-
tions fs(t1, . . . , ts), which govern the probability

dP = fs(t1, . . . , ts)dt1 . . . dts

to find one event in each of the intervals (ti, ti +dti), i = 1, . . . , s regardless of how
many events are outside these intervals, as [63, 124]

Lt0,t[v] = 1 +
∞∑

s=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τs−1

t0

dτs fs(τ1, τ2, . . . , τs) v(τ1) . . . v(τs) .

(C.4)

The generating functional can also be expressed in terms of the correlation func-
tions gs(t1, . . . , ts) as

Lt0,t[v] = exp
[

∞∑
s=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τs−1

t0

dτs gs(τ1, τ2, . . . , τs) v(τ1) . . . v(τs)
]
. (C.5)

Eq. (C.5) together with eq. (C.4) define the correlation functions in terms of the
distribution functions.

According to eqs. (C.5) and (C.3) the moments eq. (C.3) can be expressed as

M
[n]
t0,t =

∂n

∂un
exp

[ ∞∑
s=1

Gs(t0, t)(e
u − 1)s

]∣∣∣
u=0

(C.6)

where

Gs(t0, t) :=

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τs−1

t0

dτs gs(τ1, τ2, . . . , τs) .

From formula (C.6) we can evaluate the corresponding cumulants K [n]
t1,t2 as (see

appendix C.3)

K
[n]
t0,t =

∂n

∂un

∞∑
s=1

Gs(t0, t)(e
u − 1)s

∣∣∣
u=0

. (C.7)

As the considered renewal processes are periodic in time with period T , the
distribution functions and therefore also the correlation functions are likewise pe-
riodic in time,

gs(τ1, . . . , τs) = gs(τ1 + T , . . . , τs + T ). (C.8)
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Then the time derivative of the function Gs(t0, t) yields

d

dt
Gs(t0, t) =

∫ t

t0

dτ2 . . .

∫ τs−1

t0

dτsgs(t, τ2, . . . , τs)

=
1

(s− 1)!

∫ t

t0

dτ2 . . .

∫ t

t0

dτsgs(t, τ2, . . . , τs)

=
1

(s− 1)!

∫ t−t0

0

dτ2 . . .

∫ t−t0

0

dτsgs(t, t− τ2, . . . , t− τs)

which can be expressed in the asymptotic limit as

lim
t0→−∞

d

dt
Gs(t0, t) =

1

(s− 1)!

∫ ∞

0

dτ2 . . .

∫ ∞

0

dτsgs(t, t− τ2, . . . , t− τs). (C.9)

To ensure that this limit exists, we additionally suppose that gs(τ1, . . . , τs) de-
creases sufficiently fast to zero for any pair of time difference |τi−τj| → ∞. In [63]
this property is called cluster property.

According to eq. (C.8) the asymptotic time derivative eq. (C.9) is a periodic
function in t and thus (cf. eq. (C.7)) the coefficients

κ[n](t) = lim
t0→−∞

d

dt
K

[n]
t0,t. (C.10)

are periodic in time, as well.

C.2 Relation between the Kramers-Moyal coeffi-
cient and the growth of the cumulants

Consider the stochastic process x(t) whose probability distribution is governed by
the Kramers-Moyal equation

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ[n](t)

∂n

∂xn
P(x, t) (C.11)

We are interested in the grows of the cumulants K [n](t) of x(t). To this end we
first consider the corresponding moments of x(t),

M [n](t) := 〈xn(t)〉 =

∫ ∞

−∞
dxxnP(x, t)

They obey

d

dt
M [n](t) =

∫ ∞

−∞
dxxn ∂

∂t
P(x, t) =

∞∑
j=1

(−1)j

j!
κ[j](t)

∫ ∞

−∞
dxxn ∂

j

∂xj
P(x, t)



186
C.2. RELATION BETWEEN THE KRAMERS-MOYAL COEFFICIENT AND THE GROWTH OF THE

CUMULANTS

Assuming further that P(x, t) decreases sufficiently fast to 0 for x → ±∞ such
that

lim
x→±∞

xnP(x, t) = 0

the above expression can be evaluated using integration by parts to give

d

dt
M [n](t) =

∞∑
j=1

κ[j](t)

j!

∫ ∞

−∞
dx[

∂j

∂xj
xn]P(x, t)

=
n∑

j=1

κ[j](t)

j!

∫ ∞

−∞
dx

n!

(n− j)!
xn−jP(x, t)

=
n∑

j=1

κ[j](t)

(
n

j

)
M [n−j](t) (C.12)

Generally, the moments and cumulants are related by

∞∑
k=0

zk

k!
M [k](t) = exp

[ ∞∑
k=1

zk

k!
K [k](t)

]
. (C.13)

and thus by differentiating this equation with respect to t

∞∑
k=0

zk

k!

d

dt
M [k](t) =

∞∑
k=1

zk

k!

d

dt
K [k](t)

∞∑
l=0

zl

l!
M [l](t).

Inserting the moments dynamic eq. (C.12) into the left hand side of this equation
we obtain

∞∑
k=0

zk

k!

k∑
j=1

κ[j](t)

(
k

j

)
M [k−j](t) =

∞∑
j=1

∞∑
k=j

zk

k!
κ[j](t)

(
k

j

)
M [k−j](t)

=
∞∑

j=1

zj

j!
κ[j](t)

∞∑
k=0

zk

k!
M [k](t)

As the M [k] and z are arbitrary we eventually deduce

d

dt
K [n](t) = κ[n](t).
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C.3 Relation between moments and cumulants
Consider the function the moments M [n] defined by

M [n] =
∂n

∂zn
f(z)

∣∣∣
z=0

. (C.14)

for some analytic function f(z) which is called the moment generating function
(see eg. [63]). The relation between moments M [n] and cumulants K [n] is defined
by

∞∑
k=0

zk

k!
M [k] = exp

[ ∞∑
k=1

zk

k!
K [k]

]
. (C.15)

From eq. (C.14) one immediately obtains
∞∑

k=0

zk

k!
M [k] = f(z),

Then according to eq. (C.15)
∞∑

k=1

zk

k!
K [k] = log f(z)

and thus

K [n] =
∂n

∂zn
log f(z)

∣∣∣
z=0

.

C.4 Expansion of the probability density governed
by a Kramers-Moyal equation

Consider a probability distribution P(x, t) governed by a Kramers-Moyal equation
with state independent but time dependent expansion coefficients κ[n](t),

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ[n](t)

∂n

∂xn
P(x, t) (C.16)

Our aim is to express the probability distribution P(x − ∆x, t − τ) in terms of
P(x, t) and its derivatives with respect to x, ∂n/∂xnP(x, t). To this end we start
by expanding P(x−∆x, t− τ)) in a Taylor series around x and t,

P(x−∆x, t− τ) =
∞∑

n=0

∞∑
m=0

(−∆x)n(−τ)m

n!m!

∂n+m

∂xn∂tm
P(x, t)
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To process the time derivatives we use the Kramers-Moyal equation (C.16) taking
care of the explicit time dependence of κ[i](t) which leads to

P(x−∆x, t− τ) = P(x, t)−
[
∆x+

∞∑
m=1

(−τ)m

m!

∂m−1κ[1](t)

∂tm−1

] ∂
∂x
P(x, t)

+
[∆x2

2
+ ∆x

∞∑
m=1

(−τ)m

m!

∂m−1κ[1](t)

∂tm−1
+

1

2

∞∑
m=1

(−τ)m

m!

∂m−1κ[2](t)

∂tm−1

+
∞∑

m=2

(−τ)m

m!

m−1∑
l=1

(
m− 1

l

)
∂m−1−lκ[1](t)

∂tm−1−l

∂l−1κ[1](t)

∂tl−1

] ∂2

∂x2
P(x, t) +O(3).

where O(3) denotes third or higher derivatives of P(x, t) with respect to x. The
sums containing the coefficients κ[n](t) in a linear way be further evaluated, leading
to

∞∑
m=1

(−τ)m

m!

∂m−1κ[n](t)

∂tm−1
= −

∞∑
m=0

1

m!

∂mκ[n](t)

∂tm

∫ τ

0

dτ ′(−τ ′)m

= −
∫ τ

0

dτ ′κ[n](t− τ ′)

The last term can be simplified to give
∞∑

m=2

(−τ)m

m!

m−1∑
l=1

(
m− 1

l

)
∂m−1−lκ[1](t)

∂tm−1−l

∂l−1κ[1](t)

∂tl−1

=
∞∑
l=0

∞∑
m=0

(−τ)m+l+2

(m+ l + 2)!

(
m+ l + 1

l + 1

)
∂mκ[1](t)

∂tm
∂lκ[1](t)

∂tl

=

∫ τ

0

dτ ′
∞∑

m=0

(−τ ′)m

m!

∂mκ[1](t)

∂tm

∫ τ ′

0

dτ ′′
∞∑
l=0

(−τ ′′)l

l!

∂lκ[1](t)

∂tl

=

∫ τ

0

dτ ′κ[1](t− τ ′)

∫ τ ′

0

dτ ′′κ[1](t− τ ′′)

Thus we eventually arrive at

P(x−∆x, t− τ) = P(x, t) + c
[1]
t (τ,∆x)

∂

∂x
P(x, t)

+c
[2]
t (τ,∆x)

∂2

∂x2
P(x, t) +O(3) (C.17)

where

c
[1]
t (τ,∆x) =

∫ τ

0

dτ ′κ[1](t− τ ′)−∆x (C.18)
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and

c
[2]
t (τ,∆x) =

∆x2

2
−∆x

∫ τ

0

dτ ′κ[1](t− τ ′) (C.19)

−1

2

∫ τ

0

dτ ′κ[2](t− τ ′) +

∫ τ

0

dτ ′κ[1](t− τ ′)

∫ τ ′

0

dτ ′′κ[1](t− τ ′′)

C.5 The phase velocity and effective diffusion for
the excitable system in Fourier Space

We start by expressing the periodic functions ω(t), Deff(t), q(0/1)(t) and γ(t) in a
Fourier series as

ω(t) =
∞∑

k=−∞

ωk exp(ikΩt), Deff(t) =
∞∑

k=−∞

Dk exp(ikΩt),

q(0/1)(t) =
∞∑

k=−∞

q
(0/1)
k exp(ikΩt) and γ(t) =

∞∑
k=−∞

γk exp(ikΩt).

We further introduce

wk :=

∫ ∞

0

dτ exp(−ikΩτ)w(τ), vk :=

∫ ∞

0

dτ exp(−ikΩτ)τw(τ),

zk :=

∫ ∞

0

dτ exp(−ikΩτ)z(τ) and dk :=

∫ ∞

0

dτ exp(−ikΩτ)τz(τ).

From the relation

z(τ) = 1−
∫ τ

0

dτ ′w(τ ′)

between a waiting time distribution w(τ) and the corresponding survival proba-
bility z(τ) one obtains

zk =
1− wk

ikΩ
and dk =

wk − 1

k2Ω2
− vk

ikΩ
if k 6= 0

and

z0 = v0 = 〈τ〉 and d0 =
1

2
〈τ 2〉.

where 〈τn〉 :=
∫∞

0
dττnw(τ) denotes the moments of the waiting time. We further

introduce

wk,l :=

∫ ∞

0

dτ exp(−ikΩτ)w(τ)

∫ τ

0

dτ ′ exp(−ilΩτ ′) =

{ wk−wk+l

ilΩ
l 6= 0

vk l = 0

zk,l :=

∫ ∞

0

dτ exp(−ikΩτ)z(τ)
∫ τ

0

dτ ′ exp(−ilΩτ ′) =

{ zk−zk+l

ilΩ
l 6= 0

dk l = 0
.
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Then eqs. (4.45) can be written as

∞∑
j=−∞

Ak,jq
(0)
j = δk,0 and

∞∑
j=−∞

Ak,jq
(1)
j = rk (C.20a)

with

Ak,j = δk,j + zkγk−j (C.20b)

and

rk =
∞∑

l=−∞

q
(0)
l

[ ∞∑
j=−∞

ωjγk−j−lzk−j,j − Lzkγk−l

]
. (C.20c)

The Fourier coefficients Dk and ωk are then, according to eqs. (4.44a) and (4.44b),
given by

ωk = L

∞∑
j=−∞

q
(0)
j γk−j (C.20d)

Dk =
∞∑

j=−∞

[
− Lq

(1)
j +

L2

2
q
(0)
j

]
γk−j. (C.20e)

For the sake of completeness we present the Fourier coefficients γk for a dichotomic
and a harmonic rate γ(t) as well as the coefficients wk, wk,l, zk and zk,l for a Γ-
distributed waiting time. Namely for the dichotomic periodic rate

γ(t) =

{
r1 if t ∈ [nT , (n+ 1

2
)T )

r2 if t ∈ [(n+ 1
2
)T , (n+ 1)T )

, T =
2π

Ω

we obtain

γ0 =
r1 + r2

2
and γk = i(r1 − r2)

1− cos kπ

2kπ
=

{
0 k 6= 0 even
r1−r2

kπ
k odd

while the harmonic periodic rate

γ(t) =
r1 + r2

2
+
r1 − r2

2
cos Ωt.

leads to

γ0 =
r1 + r2

2
, γ±1 =

r1 − r2
4

and γk = 0, k 6= 0,±1.
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A Γ-distributed waiting time

w(τ) =
1

Γ(n)

(τn
T

)n exp(− τn
T

)

τ

corresponds to

wk =

(
n

n+ ikΩT

)n

, vk = T

(
n

n+ ikΩT

)n+1

and 〈τ 2〉 = (1 +
1

n
)T 2

A fixed, i.e. delta distributed waiting time T is obtained in the limit n → ∞.
Thus for w(τ) = δ(T − τ) we have

wk = exp(−ikΩT ), vk = T exp(−ikΩT ) and 〈τ 2〉 = T 2

With these expressions eqs. (C.20) can be solved numerically after truncation to
a finite number of coefficients.

C.6 The defining equation for κ[3](t) in Fourier space

In this appendix we present the linear infinite dimensional inhomogeneous system
of equations for the Fourier coefficients

κ̂
[3]
k =

1

T

∫ T

0

dtκ[3](t) exp(−ikΩt),

of the third cumulant growth coefficient

κ[3](t) =
∞∑

k=−∞

κ̂
[3]
k exp(ikΩt)

as given by eq. (4.71d). Using the Fourier decomposition of κ[1](t) and κ[2](t), eqs
(4.72) as well as

ĵk,l =
1

2

∫ ∞

0

dττ 2ẑk(τ) exp(−ilΩτ).
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and ẑk,l and ĥk,l as defined in eq. (4.73) one eventually obtains form eq. (4.71d)
∞∑

k=−∞

κ̂
[3]
k ẑm−k,m = (C.21)

3
∞∑

k=−∞

[[ ∞∑
l=−∞,l 6=0

κ̂
[2]
l κ̂

[1]
k + κ̂

[1]
l κ̂

[2]
k

ilΩ
(ẑm−k−l,m−l − ẑm−k−l,m)

]
+
[
κ̂

[2]
0 κ̂

[1]
k + κ̂

[1]
0 κ̂

[2]
k

]
ĥm−k,m

]
−6

∞∑
k=−∞

[[ ∞∑
l=−∞,l 6=0

∞∑
j=−∞,j 6=0,−l

κ̂
[1]
k κ̂

[1]
l κ̂

[1]
j

jΩ2

(1
l
(ẑm−k−l−j,m−j − ẑm−k−l−j,m−j−l)

+
1

j + l
(ẑm−k−l−j,m−j−l − ẑm−k−l−j,m)

)]
+

∞∑
l=−∞,l 6=0

κ̂
[1]
k κ̂

[1]
l κ̂

[1]
−l

l2Ω2

(
ẑm−k,m − ẑm−k,m−l + ilΩĥm−k,m

)
+

∞∑
l=−∞,l 6=0

κ̂
[1]
k κ̂

[1]
l κ̂

[1]
0

ilΩ
(ĥm−k−l,m−l − ĥm−k−l,m) + κ̂

[1]
k κ̂

[1]
0 κ̂

[1]
0 ĵm−k,m

]
+δm,0.

C.7 Time derivatives of integrals involving time
dependent survival probabilities

For any sufficiently well behaved function g(t) we have
d

dt

∫ ∞

0

dτg(t− τ)z(τ, t− τ) = g(t)−
∫ ∞

0

dτg(t− τ)w(τ, t− τ). (C.22)

This can be seen as follows:
d

dt

∫ ∞

0

dτg(t− τ)z(τ, t− τ)

=

∫ ∞

0

dτ
(
− d

dτ
g(t− τ)z(τ, t− τ) + g(t− τ)

d

dτ ′
z(τ ′, t− τ)

∣∣
τ ′=τ

)
= −g(t− τ)z(τ, t− τ)

∣∣∣∞
τ=0

−
∫ ∞

0

dτg(t− τ)w(τ, t− τ)

= g(t)−
∫ ∞

0

dτg(t− τ)w(τ, t− τ).
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where in the last step we assumed that g(t − τ)z(τ, t − τ) converges to zero as
τ →∞.

We further have the identity

d

dt

∫ ∞

0

dτg(t− τ)

∫ τ

0

dτ ′g(t− τ + τ ′)z(τ, t− τ)

=

∫ ∞

0

dτ
(
− d

dτ

[
g(t− τ)

∫ τ

0

dτ ′g(t− τ + τ ′)z(τ, t− τ)
]

+g(t− τ)g(t)z(τ, t− τ)− g(t− τ)

∫ τ

0

dτ ′g(t− τ + τ ′)w(τ, t− τ)
)

= g(t)

∫ ∞

0

dτg(t− τ)z(τ, t− τ) (C.23)

−
∫ ∞

0

dτg(t− τ)

∫ τ

0

dτ ′g(t− τ + τ ′)w(τ, t− τ).
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Appendix D

Detailed calculations for chapter 5

D.1 Investigation of the criticality of the Hopf bi-
furcation in the globally coupled threestate
model

In this appendix we investigate the criticality of the Hopf bifurcation of the system
eq. (5.13) with Γ-distributed waiting times in state 2 and 3, eq. (5.25). Although
there exists a center manifold theorem [30,51] for functional differential equations
it is more convenient to enlarge the phase space in order to be able to represent
the dynamics as an ordinary differential equation. This possibility relies on the
property of the Γ-distribution of order r with mean τ to be a convolution of r
ordinary exponential distributions with rate r

τ
. The states 2 and 3, whose proba-

bilities p(2) and p(3) obey a non Markovian dynamics are represented by a number
r(2) and r(3) of substates (2, i) and (3, i). The transitions between these substates
are rate transitions, finally leading to a set of 1 + r(2) + r(3) ordinary differential
equations for the probabilities p(1), p(2)

i and p
(3)
i replacing the integral equations

195
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D.1. INVESTIGATION OF THE CRITICALITY OF THE HOPF BIFURCATION IN THE GLOBALLY

COUPLED THREESTATE MODEL

(5.13),

d

dt
p(1)(t) = −γ(

r(2)∑
i=1

p
(2)
i (t))p(1)(t) +

r(3)

τ (3)
p

(3)

r(3)(t)

d

dt
p

(2)
1 (t) = γ(

r(2)∑
i=1

p
(2)
i (t))p(1)(t)− r(2)

τ (2)
p

(2)
1 (t)

d

dt
p

(2)
i (t) =

r(2)

τ (2)
(p

(2)
i−1(t)− p

(2)
i (t)), i = 2, . . . , r(2)

d

dt
p

(3)
1 (t) =

r(2)

τ (2)
p

(2)

r(2)(t)−
r(3)

τ (3)
p

(3)
1 (t)

d

dt
p

(2)
i (t) =

r(3)

τ (3)
(p

(3)
i−1(t)− p

(3)
i (t)), i = 2, . . . , r(3)

(D.1)

In order to decide whether the Hopf bifurcation occurring in the system eqs. (D.1)
is super- or subcritical we rewrite these equations in terms of the new variables
si(t), which describe the deviation from the stationary state p(1)

st , p(2)
i,st =

p
(2)
st

r(2) and

p
(3)
i,st =

p
(3)
st

r(3) , i.e.

s1(t) = p(1)(t)− p
(1)
st , si+1(t) = p

(2)
i (t)− p

(2)
st

r(2)
and si+1+r(2)(t) = p

(3)
i (t)− p

(3)
st

r(3)
.

In terms of these variables eqs. (D.1) can then be rewritten as (we use a sum
convention, i.e. the same indices are summed over)

ṡi = Ai
jsj +Bi

jksjsk + Ci
jklsjsksl +O(s4),

where the tensors Aj
i , B

jk
i and Cjkl

i are given by

A1
1 = −γst, A1

1+r(2)+r(3)

= r(3)

τ (3)

A1
j = −γ′stp

(1)
st , j = 2 . . . r(2) + 1

A2
1 = γst, A2

2 = − r(2)

τ (2)

A2
j = γ′stp

(1)
st , j = 2 . . . r(2) + 1

Aj
j−1 = r(2)

τ (2) , Aj
j = − r(2)

τ (2) , j = 2 . . . 1 + r(2)

A2+r(2)
1+r(2)

= r(2)

τ (2) , A2+r(2)
2+r(2)

= − r(3)

τ (3)

Aj
j−1 = r(3)

τ (3) , Aj
j = − r(3)

τ (3) , j = 2 + r(2) . . . 1 + r(2) + r(3).

B1
1j = B1

j1 = −γ′st, j = 2 . . . r(2) + 1

B1
kj = −γ′′st

2
, k, j = 2 . . . r(2) + 1

B2
1j = B2

j1 = γ′st, j = 2 . . . r(2) + 1

B2
kj =

γ′′st
2
, k, j = 2 . . . r(2) + 1
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C1
1jk = C1

j1k = C1
jk1 = −γ′′st

2
, j, k = 2 . . . r(2) + 1

C1
jkl = −γ′′′st

6
, j, k = 2 . . . r(2) + 1

C2
1jk = C2

j1k = C1
jk1 =

γ′′st
2
, j, k = 2 . . . r(2) + 1

C2
jkl =

γ′′′st
6
, j, k = 2 . . . r(2) + 1

At the Hopf bifurcation the matrix A has two imaginary eigenvalues ±iω.
We choose a real basis {vi}i and corresponding dual basis {uj}j, i.e. 〈ui,vj〉 =

Uk
i V

T j
k = δi,j such that the first two span the center eigenspace. where

Uk
i = uik and V k

i = vik

In the new coordinates qi = Uk
i sk the dynamical equations then read

d

dt
qi = Ãi

j
qj + B̃i

jk
qjqk + C̃i

jkl
qjqkql +O(q4). (D.2)

with

Ãi
j

= Ui
mAm

nV T
n

j
, B̃i

jk
= Ui

mBm
noV T

n
j
V T k

o

C̃i
jkl

= Ui
mCm

nopV T
n

j
V T

o
k
V T

p
l

Due to the choice of the new basis we have

Ã =


0 −ω 0 · · · 0
ω 0 0 · · · 0

0 0 Ã2
2 · · · Ã1+r(2)+r(3)

2
...

...
... . . . ...

0 0 Ã2
1+r(2)+r(3) · · · Ã1+r(2)+r(3)

1+r(2)+r(3)

 (D.3)

The first two coordinates parameterize the center manifold. In the following, Greek
indices run from 1 to 2 while Latin indices run from 3 to 1+ r(2) + r(3). The center
manifold can be parameterized in terms of the two coordinates q1 and q2 which
span the center space,

qi = hi(q1, q2) = h[2]µν

i qµqν + h[3]µνρ

i qµqνqρ +O(q4) (D.4)

where O(q4) which are at least of 4th order in q1 and q2. The constant and linear
terms in the expansion are zero due to the fact that h(0) = 0 and Dh(0) = 0 as
the center manifold is parallel to the center space at q = 0. In order to determine
the unknown coefficients h[2]µν

i and h[3]µνρ

i we compare the dynamics of the qi as
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obtained from eq. (D.4) with the original dynamics (D.2). From eq. (D.4) we
obtain on the center manifold

d

dt
qi = h[2]µν

i (
[ d
dt
qµ
]
qν + qµ

[ d
dt
qν
]
) + h[3]µνρ

i (
[ d
dt
qµ
]
qνqρ +

qµ
[ d
dt
qν
]
qρ + qµqν

[ d
dt
qρ
]
) +O(q4)

= h[2]µν

i (Ãρ
µqρqν + Ãj

µh
[2]ρλ

j qρqλqν + qµÃ
ρ
νqρ + qµÃ

j
νh

[2]ρλ

j qρqλ) +

h[3]µνρ

i (Ãλ
µqλqνqρ + qµÃ

λ
νqλqρ + qµqνÃ

λ
ρqλ) +O(q4) (D.5)

(D.6)

where in the last step we used eqs. (D.2) and (D.4).
On the other hand the dynamics of qi is according to eq. (D.2) given by

d

dt
qi = Ãµ

i qµ + Ãj
ih

[2]µν

j qµqν + Ãj
ih

[3]µνρ

j qµqνqρ (D.7)

+B̃µν
i qµqν + B̃jν

i h
[2]µρ

j qµqρqν + B̃µj
i h

[2]νρ

j qµqνqρ + C̃µνρ
i qµqνqρ +O(q4)

The first summand on the right hand side is 0 due to the special coordinate system
we have chosen (see eq. (D.3)). From eqs. (D.5) and (D.7) we can obtain the center
manifold as defined by h[2]µν

i and h[3]µνρ

i by equating the coefficients of qµqν and
qµqνqρ. We obtain

h[2]ρν

i Ã
µ
ρ + h[2]µρ

i Ã
ν
ρ − Ãj

ih
[2]µν

j − B̃µν
i + (µ↔ ν) = 0 (D.8)

and

h[2]λν

i Ã
j
λh

[2]ρµ

j + h[2]νλ

i Ã
j
λh

[2]ρµ

j + h[3]λνρ

i Ãµ
λ + h[3]νλρ

i Ãµ
λ + h[3]ρνλ

i Ãµ
λ (D.9)

−Ãj
ih

[3]µνρ

j − B̃jν
i h

[2]µρ

j − B̃µj
i h

[2]νρ

j − C̃µνρ
i + (µ↔ ν ↔ ρ) = 0

Having solved these equations for the h[2]µν

i and h[3]µνρ

i we obtain the dynamics
of q1 and q2 on the center manifold from equation (D.7) by setting i = 1, 2 as

d

dt
q1 = f1(q1, q2) and

d

dt
q2 = f2(q1, q2)

Therefrom we can calculate the parameter (see [48])

a : =
1

16
(f1,q1q1q1 + f2,q1q1q2 + f1,q1q2q2 + f2,q2q2q2)

+
1

16ω

(
f1,q1q2(f1,q1q1 + f1,q2q2)− f2,q1q2(f2,q1q1 + f2,q2q2)

−f1,q1q1f2,q1q1 + f1,q2q2f2,q2q2

)
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with

fρ,qµqν :=
dfρ(q1, q2)

dqµdqν

∣∣∣
q1=0,q2=0

This parameter a is less than 0 if the Hopf bifurcation is supercritical and greater
than 0 if it is subcritical.

The fρ,qµqν and fλ,qµqνqρ can be further evaluated according to eq. (D.7) as

fρ,qµqν = Ãj
ρh

[2]µν

j + B̃µν
ρ + (µ↔ ν)

and

fλ,qµqνqρ = Ãj
λh

[3]µνρ

j + B̃jν
λ h

[2]µρ

j + +B̃µj
λ h

[2]νρ

j + C̃µνρ
λ + (µ↔ ν ↔ ρ).

D.2 Some properties of Laplace transforms of wait-
ing time distributions and survival probabili-
ties

Let

ŵ(λ, t) :=

∫ ∞

0

dτ exp(−λτ)w(τ, t)

denote the Laplace transform of the waiting time distribution w(τ, t). Splitting
the complex argument λ into real and imaginary part, λ = λre + iλim we obtain

|ŵ(λ, t)| = |
∫ ∞

0

dτ exp(−λτ)w(τ, t)|

≤
∫ ∞

0

dτ exp(−λre τ)w(τ, t).

Therefrom one immediately deduces

|Re ŵ(λ, t)| < 1 and |Im ŵ(λ, t)| < 1.

if λre > 0.
The corresponding survival probability z(τ, t) is a positive monotonously de-

creasing function of τ . Its Laplace transform is related to ŵ(λ, t) by

ẑ(λ, t) =
1− ŵ(λ, t)

λ
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Assuming again that λre > 0 we obtain

Im ẑ(λ, t) =

∫ ∞

0

dτ sin(−λim τ) exp(−λre τ)z(τ, t).

As z(τ, t) is positive and monotonously decreasing, exp(−λre τ)z(τ, t) is also a
positive strictly monotonously decreasing function of τ and therefore the integral
in the above equation is either positive for λim < 0 or negative for λim > 0 and
assumes the value 0 if and only if λim = 0,

sgn Im ẑ(λ, t) = sgn λim (D.10)
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37
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