31 research outputs found

    Effect of arsenic-phosphorus interaction on arsenic-induced oxidative stress in chickpea plants

    Get PDF
    Arsenic-induced oxidative stress in chickpea was investigated under glasshouse conditions in response to application of arsenic and phosphorus. Three levels of arsenic (0, 30 and 60 mg kg−1) and four levels of P (50, 100, 200, and 400 mg kg−1) were applied to soil-grown plants. Increasing levels of both arsenic and P significantly increased arsenic concentrations in the plants. Shoot growth was reduced with increased arsenic supply regardless of applied P levels. Applied arsenic induced oxidative stress in the plants, and the concentrations of H2O2 and lipid peroxidation were increased. Activity of superoxide dismutase (SOD) and concentrations of non-enzymatic antioxidants decreased in these plants, but activities of catalase (CAT) and ascorbate peroxidase (APX) were significantly increased under arsenic phytotoxicity. Increased supply of P decreased activities of CAT and APX, and decreased concentrations of non-enzymatic antioxidants, but the high-P plants had lowered lipid peroxidation. It can be concluded that P increased uptake of arsenic from the soil, probably by making it more available, but although plant growth was inhibited by arsenic the P may have partially protected the membranes from arsenic-induced oxidative stress

    A Methodology for Data-Driven Decision-Making in the Monitoring of Particulate Matter Environmental Contamination in Santiago of Chile

    No full text
    Atmospheric pollution derives mainly from anthropogenic activities that use combustion and may lead to adverse effects in exposed populations. It is generally accepted that air contamination causes cardiovascular and pulmonary morbidity in addition to increased mortality after exposure, but other epidemiological associations have also been described, including cancer as well as reproductive and immunological toxicity. Thus the concentration of chemicals in the air must be controlled. We propose that monitoring of air quality may be achieved by employing data analytics to generate information within the context of data-driven decision making to prevent and/or adequately alert the population about possible critical episodes of air contamination. In this paper, we propose a methodology for monitoring particulate matter pollution in Santiago of Chile which is based on bivariate control charts with heavy-tailed asymmetric distributions. This methodology is useful for monitoring environmental risk when the particulate matter concentrations follow bivariate Birnbaum-Saunders or Birnbaum-Saunders-t-Student distributions. A case study with real particulate matter pollution from Santiago is provided, which shows that the methodology is suitable to alert early episodes of extreme air pollution. The results are in agreement with the critical episodes reported with the current model used by the Chilean health authority
    corecore