100 research outputs found

    Use of apomorphine in Parkinsonian patients with neuropsychiatric complications to oral treatment

    Get PDF
    Neuropsychiatric side effects often complicate anti-Parkinsonian therapy and pose a significant problem in the optimal management of idiopathic Parkinson's disease. Several publications report a relative lack of neuropsychiatric side effects in Parkinsonian patients treated with subcutaneous apomorphine. To investigate this further, we have used subcutaneous apomorphine to treat 12 non-demented IPD patients with previous oral drug-related neuropsychiatric problems. Treatment with apomorphine allowed alteration of anti-Parkinsonian medication and led to the abolition or reduction of neuropsychiatric complications in all patients. The mechanism remains unclear but may be due, in part, to a reduction in oral medication or a psychotropic action of apomorphine, possibly due to the piperidine moiety in its structure, or both

    The Chiral Phase Transition in Dissipative Dynamics

    Get PDF
    Numerical simulations of the chiral phase transition in the (3+1)dimensional O(4)-model are presented. The evolutions of the chiral field follow purely dissipative dynamics, starting from random chirally symmetric initial configurations down to the true vacuum with spontaneously broken symmetry. The model stabilizes topological textures which are formed together with domains of disoriented chiral condensate (DCC) during the roll-down phase. The classically evolving field acts as source for the emission of pions and σ\sigma mesons. The exponents of power laws for the growth of angular correlations and for emission rates are extracted. Fluctuations in the abundance ratios for neutral and charged pions are compared with those for uncorrelated sources as potential signature for the chiral phase transition after heavy-ion collisions. It is found that the presence of stabilizing textures (baryons and antibaryons) prevents sufficiently rapid growth of DCC-domain size, so observability of anomalous tails in the abundance ratios is unlikely. However, the transient formation of growing DCC domains causes sizable broadening of the distributions as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure

    RMT 555 - PERSEKITARAN PERUNDANGAN APRIL-MAY 06.

    Get PDF
    Abstract. We present a linear time algorithm for computing an implicit linear space representation of a minimum cycle basis (MCB) in weighted partial 2-trees, i.e., graphs of treewidth two. The implicit representation can be made explicit in a running time that is proportional to the size of the MCB. For planar graphs, Borradaile, Sankowski, and Wulff-Nilsen [Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time, FOCS 2010] showed how to compute an implicit O(n log n) space representation of an MCB in O(n log 5 n) time. For the special case of partial 2-trees, our algorithm improves this result to linear time and space. Such an improvement was achieved previously only for outerplanar graphs [Liu and Lu: Minimum Cycle Bases of Weighted Outerplanar Graphs, IPL 110:970–974, 2010]

    The hydration state of HO^-(aq)

    Full text link
    The HO^-(aq) ion participates in myriad aqueous phase chemical processes of biological and chemical interest. A molecularly valid description of its hydration state, currently poorly understood, is a natural prerequisite to modeling chemical transformations involving HO^-(aq). Here it is shown that the statistical mechanical quasi-chemical theory of solutions predicts that HO[H2O]3\mathrm{HO\cdot[H_2O]_3{}^-} is the dominant inner shell coordination structure for HO^-(aq) under standard conditions. Experimental observations and other theoretical calculations are adduced to support this conclusion. Hydration free energies of neutral combinations of simple cations with HO^-(aq) are evaluated and agree well with experimental values.Comment: 10 pages, 1 figur

    The triangular Ising antiferromagnet in a staggered field

    Get PDF
    We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the ground states into sectors specified by the number of ``strings''. We show that the effect of the staggered field is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling constant J becoming infinitely large, we prove the existence of a phase transition in this system and obtain a finite lower bound for the transition temperature. For finite J, we study the equilibrium properties of the system using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration times for low field values increase rapidly with system size at low temperatures. Due to this difficulty in equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical results does not permit a definite conclusion about the existence of a phase transition for finite values of J. A surprising feature in the system is the fact that unlike usual glassy systems, a zero-temperature quench almost always leads to the ground state, while a slow cooling does not.Comment: 12 pages, 18 figures: To appear in Phys. Rev.

    Steiner t-designs for large t

    Full text link
    One of the most central and long-standing open questions in combinatorial design theory concerns the existence of Steiner t-designs for large values of t. Although in his classical 1987 paper, L. Teirlinck has shown that non-trivial t-designs exist for all values of t, no non-trivial Steiner t-design with t > 5 has been constructed until now. Understandingly, the case t = 6 has received considerable attention. There has been recent progress concerning the existence of highly symmetric Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can exist. In this paper, we announce that essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008, ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in Computer Scienc

    Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions

    Get PDF
    Fragment properties of hot fragmenting sources of similar sizes produced in central and semi-peripheral collisions are compared in the excitation energy range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact quasi-projectiles sources in velocity space similar to those of fused systems (central collisions) is proposed. The two major results are related to collective energy. The weak radial collective energy observed for quasi-projectile sources is shown to originate from thermal pressure only. The larger fragment multiplicity observed for fused systems and their more symmetric fragmentation are related to the extra radial collective energy due to expansion following a compression phase during central collisions. A first attempt to locate where the different sources break in the phase diagram is proposed.Comment: 23 pages submitted to NP

    Metastability Driven by Soft Quantum Fluctuation Modes

    Full text link
    The semiclassical Euclidean path integral method is applied to compute the low temperature quantum decay rate for a particle placed in the metastable minimum of a cubic potential in a {\it finite} time theory. The classical path, which makes a saddle for the action, is derived in terms of Jacobian elliptic functions whose periodicity establishes the one-to-one correspondence between energy of the classical motion and temperature (inverse imaginary time) of the system. The quantum fluctuation contribution has been computed through the theory of the functional determinants for periodic boundary conditions. The decay rate shows a peculiar temperature dependence mainly due to the softening of the low lying quantum fluctuation eigenvalues. The latter are determined by solving the Lam\`{e} equation which governs the fluctuation spectrum around the time dependent classical bounce.Comment: Journal of Low Temperature Physics (2008) Publisher: Springer Netherland

    Hydrodynamic Modeling and the QGP Shear Viscosity

    Full text link
    In this article, we will briefly review the recent progress on hydrodynamic modeling and the extraction of the quark-gluon plasma (QGP) specific shear viscosity with an emphasis on results obtained from the hybrid model VISHNU that couples viscous hydrodynamics for the macroscopic expansion of the QGP to the hadron cascade model for the microscopic evolution of the late hadronic stage.Comment: 10 pages, 4 figures, EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics
    corecore