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We study the equilibrium properties of the nearest-
neighbor Ising antiferromagnet on a triangular lattice in the
presence of a staggered field conjugate to one of the degen-
erate ground states. Using a mapping of the ground states
of the model without the staggered field to dimer coverings
on the dual lattice, we classify the ground states into sectors
specified by the number of “strings”. We show that the effect
of the staggered field is to generate long-range interactions
between strings. In the limiting case of the antiferromagnetic
coupling constant J becoming infinitely large, we prove the
existence of a phase transition in this system and obtain a
finite lower bound for the transition temperature. For finite
J , we study the equilibrium properties of the system using
Monte Carlo simulations with three different dynamics. We
find that in all the three cases, equilibration times for low
field values increase rapidly with system size at low tempera-
tures. Due to this difficulty in equilibrating sufficiently large
systems at low temperatures, our finite-size scaling analysis
of the numerical results does not permit a definite conclusion
about the existence of a phase transition for finite values of
J . A surprising feature in the system is the fact that un-
like usual glassy systems, a zero-temperature quench almost
always leads to the ground state, while a slow cooling does
not.

PACS numbers: 05.50.+q,05.70.Jk,64.60.Cn,05.10.Ln

I. INTRODUCTION

The triangular Ising antiferromagnet (TIAFM), de-
scribed by the Hamiltonian

H = J
∑
〈i,j〉

sisj J > 0, (1)

where si = ±1 and 〈i, j〉 denotes nearest-neighbor sites
on a triangular lattice, provides an interesting exam-
ple of a frustrated system without disorder. Unlike
the nearest-neighbor Ising antiferromagnet on a square
lattice, this model does not have a finite-temperature
phase transition. It has an exponentially large number
of degenerate ground states, which implies that the zero-
temperature entropy per spin is finite. The zero-field par-

tition function can be computed exactly, leading to the
result S(T = 0) = 0.3383... [1] for the zero-temperature
entropy per spin. At zero temperature, the system is
critical and the two-spin correlation function decays as a
power law, c(r) ∼ cos(2πr/3)/r1/2, along the three prin-
cipal directions [2]. The ground states of the TIAFM can
be mapped exactly to dimer coverings on the dual lattice
which is hexagonal [3]. Using this mapping, it is possi-
ble to classify the ground states into sectors specified by
the number of “strings” which represent the difference
between two dimer coverings.

The exponential degeneracy of the ground state of the
TIAFM can be removed in various ways, e.g., by choos-
ing different coupling constants along the three principal
directions, or by introducing a uniform field. Both these
cases have been extensively studied. For anisotropic cou-
plings, the problem is exactly solvable [4] and one finds
a usual Ising-like second-order phase transition except in
some special cases for which the transition temperature
goes to zero. In the case of a uniform field, simulations
and renormalization-group arguments [5] indicate that
there is a second-order transition belonging to the 3-state
Potts model universality class.

A particularly interesting special case is the limit in
which the system is restricted to remain within the man-
ifold of the TIAFM ground states. This can be achieved
by making the coupling constant J infinitely large. One
then considers the effects of degeneracy breaking terms.
In this limit, the nature of the transition changes. In
the case of anisotropic couplings, the transition changes
from Ising-like to Kastelyn-type (K-type) [6]. Below
Tc, the system freezes into the ground state and the
specific heat vanishes identically. As Tc is approached
from the high-temperature side, the specific heat shows
a (T − Tc)

−1/2 singularity. In the case of a uniform ap-
plied field, the transition is believed to be of Kosterlitz-
Thouless type [7]. This case is treated by first mapping
the problem to a solid-on-solid model and then using
renormalization-group arguments.

In this paper, we study the behaviour of the TIAFM in
the presence of a staggered field chosen to be conjugate
to one of the ground states. Our work is motivated in
part by similar studies on glassy systems [8] with expo-
nentially large number of metastable states. These stud-
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ies consider the thermodynamic behavior of such systems
in the presence of a field conjugate to a typical config-
uration of an identical replica of the system. As the
strength of the field is increased from zero, the system
is found to undergo a first-order transition in which the
overlap with the selected configuration changes discon-
tinuously. This transition is driven by the competition
between the energy associated with the field term and
the configurational entropy arising from the presence of
an exponentially large number of metastable states. Like
these glassy systems, the TIAFM has frustration and an
exponentially large number of ground states. Thus it is
of interest to investigate whether a similar behaviour is
present in the TIAFM which is a simpler model with
no externally imposed quenched disorder. Besides, the
question of whether a phase transition can occur in the
TIAFM in the presence of an ordering field is interesting
by itself. For systems with a finite number of ground
states, such as the purely ferromagnetic Ising model and
the Ising antiferromagnet on a bipartite lattice, it can be
proved that no phase transition can occur in the presence
of ordering fields [9]. However, no such general proof ex-
ists for systems with an exponentially large number of
ground states, and the question of whether a competi-
tion between the energy associated with the ordering field
and the extensive ground-state entropy can drive a phase
transition in such systems remains open.

The staggered field considered by us is conjugate to a
ground state with alternate rows of up and down spins.
In the lattice gas picture of the Ising model, this corre-
sponds to an applied potential which is periodic in the
direction transverse to the rows. In the presence of the
field, there are a large number of low-lying energy states
and this suggests the possibility of an interesting phase
transition as the temperature is varied. We consider the
case where the coupling constant J is finite, as well as
the limit J → ∞. In the latter limit, one considers only
the set of states which are ground states of the TIAFM
Hamiltonian of Eq. (1). In this limit, we show that the
problem of evaluating the partition function reduces to
calculating the largest eigenvalue of a one-dimensional
fermion Hamiltonian with long-range coulombic interac-
tions. We have not been able to solve this problem but
have obtained a finite lower bound for the transition tem-
perature. The transition appears to be K-type.

For finite J , we have studied the equilibrium behav-
ior of the system by Monte Carlo (MC) simulations us-
ing three different kinds of dynamics: (1) single-spin-
flip Metropolis dynamics, (2) cluster dynamics and (3)
“string” dynamics in which all the spins on a line are
allowed to flip simultaneously. We find that in all three
cases, equilibration times at low fields and low tempera-
tures increase rapidly with system size. The last dynam-
ics is found to be the most efficient one for equilibrat-
ing the system in this regime. Finite-size scaling anal-
ysis of the data for small fields suggests the existence
of a characteristic temperature near which the correla-
tion length becomes very large. However, because of the

long equilibration times, we have not been able to study
large enough systems to be able to answer conclusively
the question of whether this corresponds to a true phase
transition.

One surprising finding of our study concerns zero-
temperature quenches of the system, starting from ran-
dom initial configurations. We show that the system al-
most always reaches the ground state in such quenches.
On the other hand, a slow cooling of the system leads to
a metastable state. This is contrary to what happens in
usual glassy systems where a fast quench usually leads to
the system getting stuck in a higher energy state, while a
slow cooling leads to the ground state with a high prob-
ability

The paper is organized as follows. In section II, we
consider the TIAFM in zero field and describe the map-
ping from the ground states to dimer coverings and the
subsequent classification of the ground states into sec-
tors. Many of the results in this section are well-known,
but we have included them for the sake of completeness.
Also our description is somewhat different from the ex-
isting ones. In section III, we consider the TIAFM with
an applied staggered field in the limit J → ∞. The map-
ping of this system to a one-dimensional fermion model
is described and a finite lower bound for the transition
temperature is derived. In section IV, we present our nu-
merical results for the equilibrium properties at finite J .
These results are obtained from exact numerical evalua-
tion of averages using transfer matrices and also through
MC simulations. We also discuss the dynamic behaviour
of the system under different MC procedures. Section V
contains a summary of our main results and a few con-
cluding remarks.

II. MAPPING OF TIAFM GROUND STATES TO

DIMER COVERINGS AND CLASSIFICATION

INTO STRING SECTORS

The frustration of the TIAFM arises from the fact that
it is impossible to satisfy all three bonds of any elemen-
tary plaquette of the triangular lattice. At most we can
have two bonds satisfied. The lowest energy configura-
tion of the system is one in which every elementary trian-
gle is maximally satisfied. This condition can be satisfied
for a large number of configurations and for future refer-
ence we shall denote the set of all such states by G. We
now show the correspondence between the ground states
and dimer coverings on the dual lattice. The dual lat-
tice is formed by taking the centers of all the triangles.
Consider any two triangles which share a bond. If the
bond is not satisfied, we place a dimer connecting the
centers of the two triangles. The fact that every triangle
has one and only one unsatisfied bond implies that ev-
ery point of the dual lattice forms the end-point of one
and only one dimer. Hence we obtain a dimer covering.
This mapping is not unique, since flipping all spins in any
given spin configuration leads to the same dimer covering.
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FIG. 1. A ground state configuration and the correspond-
ing dimer covering for a 6× 6 lattice. Periodic boundary con-
ditions are applied in the horizontal and vertical directions.
The crosses correspond to repeated points.

In Fig. 1 we show a ground-state configuration and the
corresponding dimer covering. Another dimer covering
which corresponds to a ground state with alternate rows
of up and down spins is shown in Fig. 2. We shall call
this the standard configuration. It is important to choose
the boundary conditions in a convenient manner and we
follow the convention used in Fig. 1 with periodicity in
the x and y directions.

A useful classification of the ground states is obtained
by superposing the standard dimer configuration with
any other dimer configuration. This results in string
configurations as shown, for example, in Fig. 3 which
is obtained by superposing the standard configuration of
Fig. 2 with the configuration of Fig. 1. Clearly there is
a one-to-one correspondence between string and dimer
configurations.

It is easy to prove the following points: (i) the number
of strings passing though every row is conserved; (ii) the
strings do not intersect; (iii) the number of strings can
be any even number from 0 to L, where L is the number
of spins in a row; (iv) the periodic boundary conditions
mean that the strings have to match at the boundaries
and form closed loops.

We classify the ground states into different sectors,
with each sector specified by the number of strings. The
number of states in each sector can be counted exactly
using transfer matrices. Let us label the bonds on suc-
cessive rows of the lattice in the manner shown in Fig. 4.
The position of the strings on each row is specified by
the set of numbers {b1, b2, ...bn}, where bk gives the po-
sition of the kth string. Note that {bk} give the posi-
tions of the satisfied bonds in a row. In a sector with
n strings we consider the LCn × LCn matrix which has
non-vanishing entries equal to one if the two states can
be connected by string configurations. We need two dif-
ferent transfer matrices, namely T (1), which transfers

from odd numbered rows to even numbered ones and
T (2), which transfers from even to odd ones. The total
number of states in any given sector is then given by:

FIG. 2. The standard configuration of dimers.
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FIG. 3. A configuration of strings obtained by superposing
the dimer configurations in Fig. 1 and Fig. 2.

1 2 3 4 5 6

1 2 3 4 5 6

5 64321 1

1

FIG. 4. Labelling of successive rows on a 6 × 6 lattice.
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N (n) = Tr(T (1)T (2))L/2, (2)

where we choose, for convenience, the length of the lat-
tice, L, to be even.

As an example let us consider the transfer matrix in
the two string sector. This is given by

T
(1)
(l1,l2)|(l3,l4)

= δl1,l3δl2,l4 + δl1,l3−1δl2,l4 + δl1,l3δl2,l4−1

+δl1,l3−1δl2,l4−1 for l2 6= l1 + 1,

T
(1)
(l1,l1+1)|(l3,l4) = δl1,l3δl1+1,l4 + δl1,l3δl1+1,l4−1

+δl1,l3−1δl1+1,l4−1. (3)

The matrix is diagonalized by the antisymmetrized
plane-wave eigenstates

al1,l2 = ei(q1l1+q2l2) − ei(q1l2+q2l1) , q1 < q2. (4)

The periodic boundary condition leads to the following
values for the wave vectors: qi = (2ni + 1)π/L, with
ni = 0, 1, 2, ...L − 1. The eigenvalues are given by

λ
(1)
q̄ = (1 + eiq1 )(1 + eiq2). (5)

The matrix T (2) has the same set of eigenvectors while
the eigenvalues are given by

λ
(2)
q̄ = (1 + e−iq1)(1 + e−iq2). (6)

The results for the two-string sector can be general-
ized to any of the other sectors. The transfer matrices
T (1) and T (2) in any sector are diagonalized by antisym-
metrized plane wave states. This just reflects the fact
that the strings can be thought of as the world lines of
non-interacting fermions. The eigenvalues in the n-string
sector are:

λ
(1)
q̄ =

n∏
k=1

(1 + eiqk),

λ
(2)
q̄ =

n∏
k=1

(1 + e−iqk), (7)

with qks as before. The number of states in the n-string
sector is thus given by:

N (n) = Tr(T (1)T (2))L/2

=
∑

q1<q2....qn

[

n∏
k=1

(1 + eiqk)(1 + e−iqk)]L/2 (8)

In the large L limit, only the dominant term in the above
sum contributes and we finally obtain:

N (p) = eL2α(p),

α(p) = p ln 2 +
2

π

∫ πp/2

0

dx ln(cos(x)), (9)

where p = n/L is the fraction of strings (“string den-
sity”). Thus every sector with non-zero p has an expo-
nentially large number of states.

We note that the function α(p) is peaked at p = 2/3
and the entropy of this sector, S = α(2/3), repro-
duces the well-known result of Wannier for the zero-
temperature entropy of the TIAFM. Thus we have red-
erived Wannier’s result and also shown that most of the
states are in the sector with string density equal to 2/3.

III. SPLITTING OF LEVELS IN THE PRESENCE

OF A STAGGERED FIELD: THE J → ∞ LIMIT

In the presence of a staggered field h that is conjugate
to one of the ground states of the TIAFM, the macro-
scopic degeneracy of the ground state is lifted. The field
we consider is conjugate to the state corresponding to
the standard dimer configuration (Fig. 2). There are two
such spin configurations and we choose the one which has
all up spins on the first row. Note that in the presence of
the field, any two states related by the flipping of all the
spins have the same string representation but different
energies. To remove this ambiguity, we use an additional
label for the string states, which we take as the sign of
the first spin in the first row. The spin configuration on
any row is then fully specified by the set (s, b1, b2, ...bn).

Let us now look at the effect of the field in splitting
the energy levels in each sector. In the zero-string sector
there are two states, one corresponding to the ground
state and the other, obtained by flipping all spins, to
the highest energy state. The lowest energy states in
the two-string sector can be generated by starting with
the ground-state spin configuration and flipping a line
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-
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FIG. 5. A configuration of two strings which corresponds
to the lowest energy state in this sector. This configuration
is obtained by starting with the ground state and flipping a
line of spins (the circled ones). The strings are closely packed
and all the spins in the region between them point opposite
to the local applied fields.

4



+   +   

+   +   +   

+   +   +   

- - -

- -

-

-

+   

-

+   

+   

--+   

+   +   -

-+   

- +   

-

+   +   -

+   

- -

FIG. 6. A higher energy configuration in the two-string
sector. It can be seen that the strings divide the lattice into
two domains with the spins in one domain being along the
applied field and opposite to it (the circled spins) in the other
domain.

of spins as shown in Fig. 5. Fig. 6 shows a higher energy
two-string state. Note that the strings separate the lat-
tice into two domains, one in which all the spins point
along the staggered field directions and another in which
they point opposite to the field. This is in general true
for any n-string state where the strings divide the lattice
into n domains, with spins in alternate domains pointing
along and opposite to the staggered fields. The lowest en-
ergy configuration in any sector is clearly the state with
alternate pairs of strings tightly packed. For the sector
in which the string density is p, the lowest energy per
spin is

eg(p) = −(1 − p)h, (10)

where for the case J → ∞ being considered here, we have
subtracted the infinite constant energy term −J .

Because of the conservation of the number of strings
across rows, the transfer matrix is block diagonal, each
block corresponding to a fixed string sector. In the zero
field case the strings are noninteracting and the problem
reduced essentially to that of free fermions on a line. In
the present case, however, the energy increases when the
separation between two strings is increased. In fact it is
easy to see that this case reduces to a one-dimensional
fermion problem in which every alternate pair of fermions
interact with each other via an attractive linear poten-
tial. It is then no longer simple to diagonalize the trans-
fer matrix. However, through the following argument
we prove the existence of a phase transition and obtain
a lower bound for the transition temperature. At zero
temperature, the system will be in the ground state in
the zero-string sector. As the temperature is increased,
the entropic factor associated with the other sectors be-
comes important and can cause either a gradual or a
sharp transition to other sectors. To determine which
of the two possibilities actually occurs, we consider the

simpler case where the strings do not interact and all con-
figurations belonging to the sector with string density p
have the same energy Neg(p) where N = L2 is the total
number of spins. Since all the states in this sector have
energies greater than or equal to Neg(p) in the interact-
ing model, a sharp transition in the non-interacting case
implies a sharp transition in the interacting model. In
particular, if the non-interacting model exhibits a transi-
tion at temperature Tc, so that it is frozen in the ground
state in the zero-string sector for T ≤ Tc, then the in-
teracting model must also be in the ground state for all
T ≤ Tc. In other words, the transition temperature of
the non-interacting model provides a lower bound to the
transition temperature of the interacting model.

The partition function of the non-interacting model
may be written as

Z =
∑

p

eNα(p)−βNeg(p)

= eN(α(pm)−βeg(pm)), (11)

where β = 1/T and pm is the value of p corresponding
to the minimum of the function f(p) = −α(p) + βeg(p).
Using Eq. (9) and Eq. (10), we get

pm = 0, T < Tc,

pm =
2

π
cos−1(

eh/T

2
), T > Tc, (12)

with Tc = h/ ln(2). Thus, there exists a sharp transi-
tion at a finite temperature Tc, the number of strings
being identically zero below this temperature. In Fig. 7,
we show the dimensionless free energy function f(p) at
two different temperatures, one above and one below Tc.
It can be seen that for T < Tc, the function f(p) has
its lowest value at p = 0. The minimum of f(p) moves

0 0.2 0.4 0.6 0.8 1
p

−1

−0.8

−0.6

−0.4

−0.2

0

f(p
)

T1=2.5h� 
T2=h

FIG. 7. The dimensionless free energy f(p) of the
non-interacting model, plotted as a function of the string den-
sity p at two different temperatures, T1 = 2.5h which is above
Tc, and T2 = h, which is below Tc.
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continuously away from p = 0 as the temperature is in-
creased above Tc, approaching p = 2/3 in the T → ∞
limit.

In Fig. 8, we have plotted pm, the equilibrium value
of the string density obtained from Eq. (12), as a func-
tion of T/h. It is easy to see from Eq. (12) that pm

grows as (T − Tc)
1/2 as T is increased above Tc. Since

the internal energy is proportional to pm in the non-
interacting model, the specific heat vanishes identically
for T < Tc and diverges as (T − Tc)

−1/2 for T ap-
proaching Tc from above. Thus we get a K-type tran-
sition which is expected because of the equivalence of
our system to dimer models. While this proves the ex-
istence of a transition in the interacting model too, it
is not clear whether the nature of the transition is the
same. It is quite possible that the long-range interactions

0 1 2 3 4
T/h

0

0.1

0.2

0.3

0.4

0.5

0.6

p m

FIG. 8. The equilibrium string density pm plotted as a
function of the temperature T (measured in units of h) for
the non-interacting string model.

between the strings would result in a transition in a dif-
ferent universality class. This issue is addressed in the
next section.

It is interesting to compare our model with the model
with anisotropic couplings studied by Blöte and Hil-
horst [6]. Consider the case when the horizontal cou-
plings have strength (J−∆) and the remaining two are of
strength J . In the limit J → ∞, we need to consider only
the states within G. In this case too, the ground state lies
in the zero-string sector but is two-fold degenerate since
the up-down symmetry is retained. The excitations are
again in the form of strings but are non-interacting and
so equivalent to the excitations in the simplified model
considered by us. In fact the expression for the free en-
ergy in Eq. (11) follows directly from Eq. (2) in Ref. [6]
if we make the identification h = 2∆.

IV. MC SIMULATIONS AND TRANSFER

MATRIX CALCULATIONS FOR FINITE J

For finite J , we have carried out MC simulations to
determine whether the phase transition persists and its
nature if it does. A problem with the simulations is that
equilibration times are very long for small values of h/J
and T/J . We have tried to overcome this problem by per-
forming simulations with three kinds of dynamics. How-
ever, even with the fastest dynamics, we have been able
to obtain reliable data only for relatively small system
sizes (L ≤ 18). We have also carried out exact numerical
evaluation of averages using transfer matrices for small
samples. The results obtained from these numerical cal-
culations are described below.

A. Single-spin-flip Metropolis dynamics

In Fig. 9 we show the results of a MC simulation using
the standard single-spin-flip Metropolis dynamics [10].
We have plotted the staggered magnetization m as a
function of temperature T for a heating run and a cool-
ing run on a 6 × 6 system. The staggered field and the
coupling constant are set to h = 0.05 and J = 1.0, re-
spectively (Unless otherwise stated, all the numerical re-
sults reported in this section are for J = 1.0). The data
shown were obtained by averaging over 106 MC steps
per spin (MCS). The heating run was started from the
ground state in the zero-string sector and the cooling run
started from a random spin configuration. It is clear from
the data that even for this small system, equilibration is
not obtained for temperatures lower than about 0.3. We
also examined the states obtained by starting the system

0 0.2 0.4 0.6
T

0

0.2

0.4

0.6

0.8

1

m

Cooling run
Heating run
Exact:  Full
Exact: 2/3 sector

FIG. 9. Results for the staggered magnetization m, ob-
tained from single-spin-flip MC heating and cooling runs for
a 6 × 6 system with h = 0.05 and J = 1. Also shown are the
results of exact numerical evaluation of the staggered mag-
netization for J = 1, and the staggered magnetization in the
p = 2/3 sector for J → ∞.
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in a random configuration and then quenching it instan-
taneously to zero temperature. We find that the system
then goes to the lowest-energy state in one of the many
sectors. For example, in the simulation corresponding to
Fig.9, the system reached the zero-string ground state.
On heating, the system continues to be in the zero-string
sector until at some temperature value it jumps to the
high-temperature phase. On the other hand, a slow cool-
ing from the high temperature phase leads to the lowest
energy state in the p = (2/3) sector and the true zero-
string ground state is not reached.

These results can be understood as follows. As dis-
cussed in the preceding section, the ground state lies
in the zero-string sector, and the excitations within G
from the ground state correspond to the formation of
an even number of strings. The single-spin-flip dynam-
ics is reasonably efficient in exploring the states within
a sector with a fixed number of strings. However, at
low temperatures, it is extremely ineffective in changing
the number of strings. In fact, even with zero external
field, the single-spin-flip dynamics at zero temperature is
non-ergodic and only samples states within a given sec-
tor. At finite temperatures, the only way to change the
number of strings is through moves which take the sys-
tem out of G. These moves cost energy of order J . At
low temperatures, the probability of acceptance of such
moves becomes extremely small. Thus in Fig. 9, during
the heating run, the system starts from the ground state
in the zero-string sector and stays stuck in it till the tem-
perature is sufficiently high. At high temperatures, the
p = 2/3 sector is most probable (note that at very high
temperatures, the string picture is no longer valid) and
during the cooling run, the system starts from this sector
and again stays stuck in this sector since the dynamics
cannot reduce the number of strings. Thus the cooling
curve basically shows equilibrium properties within the
p = 2/3 sector.

We have verified the above picture by an exact numer-
ical evaluation of the staggered magnetization for a 6×6
system. This is done by numerically computing the two
sums that occur in the expression

m =
1

N
〈M〉 =

1

N

Tr[M(V (1)V (2))L/2]

Tr[(V (1)V (2))L/2]
, (13)

where V (1),(2) are the usual row-to-row transfer matri-
ces and M is a diagonal matrix corresponding to the
staggered magnetization. Similarly one can compute the
staggered susceptibility χ defined as

χ =
1

N
[〈M2〉 − 〈M〉2]. (14)

This exact evaluation can, however, be done only for
small systems since this procedure involves using very
large matrices. For finite J , we have been able to do this
calculation only for L ≤ 6. For J → ∞, the transfer ma-
trices become block diagonal, and this means that one
can perform separately the computations in each block

which are of smaller size. In this case, we have been able
to go up to system size L = 12. Note that in this limit, we
can also compute the thermodynamic properties in each
sector. In Fig. 9, we have plotted the exact results for m
obtained from the full partition function with J = 1, as
well as the results for m in the p = 2/3 sector for infinite
J . It is readily seen that our picture of the system get-
ting stuck in the p = 2/3 sector during the cooling run is
correct.

The counter-intuitive results of the quenching process
can also be understood using the above picture. After the
quench, domains of spins pointing in and opposite to the
direction of the staggered field begin forming. Only spins
on the boundaries of the domains can flip, leading to mo-
tion of the domain walls. This motion is biased, favour-
ing the growth of the domains aligned with the staggered
field. Now we recall that any non-zero string configura-
tion will have domains of misaligned spins spanning the
entire lattice. Clearly it is extremely unlikely that the
biased domain growth process will lead to such configu-
rations. We have checked in our simulations that as the
system size is increased, the probability of the quench
leading to the zero-string sector approaches unity. To
further clarify this process, we show in Fig. 10 differ-
ent stages in the evolution of a 24 × 24 system following
a zero-temperature quench from a random initial state.
The field is set at the value h = 0.05. It can be seen that
the domains of misaligned spins rapidly vanish. On the
other hand, in Fig. 11 we show a T = 0.4 equilibrium
spin configuration and the result of quenching it to T = 0.
In this case the system gets stuck in the p = 2/3 sector.

FIG. 10. Three stages in the evolution of the system, fol-
lowing a zero-temperature quench from a random initial state.
The first is the initial configuration and the other two are con-
figurations obtained after 2 and 4 MC sweeps. The dark and
bright regions indicate spins pointing along and opposite to
the direction of the staggered fields, respectively.

B. String dynamics

To speed up the dynamics, it is necessary to be able
to efficiently change the number of strings. A straight-
forward way of doing this is to introduce moves which
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FIG. 11. A configuration which is at equilibrium at
T = 0.4 and the configuration resulting from quenching it
to T = 0. It can be seen that the final configuration consists
of tightly bound strings and is the lowest energy state in the
p = 2/3 sector.

attempt to flip an entire vertical line of spins. Such moves
are accepted or rejected according to the usual Metropo-
lis rules. Combining these moves with the single-spin-flip
ones makes the dynamics ergodic at zero-temperature in
the absence of the field. In Fig. 12, we show the results
of simulations with the string dynamics, again for a 6×6
system. The values of J and h are the same as those for
the data shown in Fig. 9, and the averaging is over the
same number of MCS. The excellent agreement with the
exact results shows that equilibration times have been
greatly reduced. We have also shown in Fig. 12 simu-
lation results for a 12 × 12 system. Again there is very
good agreement with the exact results, which, as noted
above, were obtained by setting J → ∞.

To determine the existence of a phase transition,

0.05 0.1 0.15 0.2
T

0.2

0.4

0.6

0.8

1

m

L=6
L=12
L=18
Exact

FIG. 12. Staggered magnetization m versus temperature
T for h = 0.05, J = 1. The data for system sizes L = 6,
12 and 18 were obtained from MC simulations using string
dynamics. Exact transfer-matrix results for L = 6 and for
L = 12 (J → ∞) are also shown.

we have performed simulations with the above dynamics
and studied the dependence of the staggered susceptibil-
ity χ on the system size for different values of the field.
The results are summarized in Figs. 13, 14 and 15. The
data in Fig. 13 correspond to a low field value, h = 0.05.
The number of MCS used for computing the averages is
106, 107 and 4 × 108 for the three system sizes, L = 6,
12 and 18, respectively. For system sizes L = 6 and
L = 12, we also show the exact transfer-matrix results.
Even though the L = 12 transfer matrix results are for
J → ∞, we find very good agreement with the simulation
data. This is because excitations out of G, which involve
energies of order J , are very much suppressed at the low
temperatures considered. The L = 18 MC data are not
as smooth as the data for smaller sample sizes, indicating
that the errors in the calculation of averages are signif-
icant in spite of averaging over a very large number of
MCS. Thus, even with the string dynamics, we have not
been able to attain equilibration for systems with L > 18.
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T
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 χ
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FIG. 13. Staggered susceptibility χ versus temperature
T for h = 0.05, J = 1. The data for system sizes L = 6,
12 and 18 were obtained from MC simulations using string
dynamics. Exact transfer-matrix results for L = 6 and for
L = 12 (J → ∞) are also shown.

The close agreement between the MC results for J = 1
and the exact transfer-matrix results for J → ∞ indi-
cates that the MC results for the system sizes considered
are representative of the J → ∞ limit. In section III, we
established the existence of a finite-temperature phase
transition in this limit. Our MC results indicate that
this transition occurs near T ≃ 2.5h, which is substan-
tially higher than the lower bound, h/ ln(2), derived in
section III. To determine whether this transition is K-
type, we have examined the dependence of χp, the peak
value of the staggered susceptibility χ, on the system
size L. In the J → ∞ limit, the staggered susceptibil-
ity is proportional to the specific heat which diverges as
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(T − Tc)
−1/2 in a K-type transition. This implies that

the susceptibility exponent γ = 1/2, and the correlation
length exponent ν is equal to 3/4. According to standard
finite-size scaling [11], χp then should be proportional to

Lγ/ν = L2/3. As shown in Fig. 16, our numerical data are
in good agreement with this expectation. We, therefore,
conclude that our model undergoes a K-type transition
in the J → ∞ limit.

In Fig. 14, we show simulation results for an inter-
mediate field value, h = 0.25. In this case, for system
sizes L = 6, 12, 18 and 24, equilibrium values were ob-
tained by averaging over 2 × 106, 5 × 106, 2 × 107 and
5 × 107 MCS, respectively. As in the h = 0.05 case, the
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FIG. 14. Staggered susceptibility χ versus temperature T
for h = 0.25, J = 1. The data for system sizes L = 6, 12,
18 and 24 were obtained from MC simulations using string
dynamics. Exact transfer-matrix results for L = 6 are also
shown.
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FIG. 15. Staggered susceptibility χ versus temperature T
for h = 0.4, J = 1. The data for system sizes L = 6, 12,
18 and 24 were obtained from MC simulations using string
dynamics. Exact transfer-matrix results for L = 6 are also
shown.
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FIG. 16. The susceptibility maximum χp plotted against
the system size L for three different values (0.05, 0.25 and
0.4) of the staggered field h. The solid lines correspond to the
power-law form χp ∝ L2/3.

peak of χ occurs near T ≃ 2.5h, and the peak value of χ
increases as L is increased. Finally, in Fig. 15, we have
shown the results for a high field value, h = 0.4. In this
case, equilibration times are quite small and we can sim-
ulate relatively large systems without any difficulty. All
the MC data shown in Fig. 15 were obtained with averag-
ing over only 2× 105 MCS. We find that in this case, the
staggered susceptibility saturates for L ≥ 12, and clearly
there is no phase transition.

In Fig. 16, we have plotted χp, the value of the stag-
gered susceptibility at the peak, against the system size
L for the three different fields. As noted above, we get
χp ∼ L2/3 for h = 0.05. For h = 0.25, the values of χp

for L = 6 and L = 12 are consistent with this power-law
form, but the data for higher values of L show devia-
tions from this form and signs of saturation. Finally, for
h = 0.4, the peak value of χ clearly saturates for L ≥ 12.

Taken at face value, these results would imply that
for J = 1, there is a K-type transition for h = 0.05,
but no transition for h = 0.25 and h = 0.4. In other
words, there is a phase transition for small h, which dis-
appears beyond a critical value of the field. This naive
interpretation of the data is questionable because a line
of continuous phase transitions in the h-T plane is very
unlikely to end abruptly at some point . A more plau-
sible interpretation is that the system with finite J does
not exhibit a true phase transition for any value of the
staggered field – the signature of a phase transition found
in the scaling behavior of the data for small h is a rem-
nant of the transition in the J → ∞ limit. The behavior
of a system with finite J would differ from that in the
J → ∞ limit only if the values of the parameters J , T
and L are such that excitations out of the manifold G are
not strongly suppressed. Since the typical value of the
local field in a configuration in G is 2J , the typical en-
ergy cost associated with a single-spin-flip excitation out
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of this manifold is 4J . Since this excitation can occur
at any site of the lattice, the free energy cost of such an
excitation is approximately given by δF ≃ 4J − 2T lnL.
Such excitations are likely to occur if δF ≤ 0, which
corresponds to L ≥ Lc = e2J/T . The values of Lc at
temperatures near the peak of χ are ≈ 107, 28 and 7.4
for h = 0.05, 0.25 and 0.4, respectively. In view of the
very large value of Lc for h = 0.05, it is not surprising
that the MC results for m and χ for h = 0.05, J = 1.0,
and L ≤ 18 are essentially identical to the results for the
same value of h in the J → ∞ limit. The power-law
scaling of the data for χp at h = 0.05 can then be at-
tributed to the occurrence of a phase transition in the
J → ∞ limit. The observation that for h = 0.25, the
numerical data for χp show deviations from power-law
scaling with L and signs of saturation for L ≥ 24 is also
consistent with this interpretation. The small value of
Lc for h = 0.4 implies that the effects of J being finite
should be evident even in the small samples we consider.
The fact that the data for h = 0.4 clearly indicate the
absence of any phase transition is, thus, consistent with
the interpretation that there is no phase transition for
finite J .

While the scenario described above is consistent with
all our numerical data, we can not be absolutely sure
that it is correct – data for much larger systems would be
needed for a conclusive answer to the question of whether
a phase transition occurs for finite J . We note that even
if our interpretation is correct, the behavior of finite sam-
ples with finite J would look very similar to that near a
true phase transition if h/J is small. In such cases, the
value of χp will continue to grow with L as a power law
until L becomes comparable to Lc, at which point χp

will saturate. Since Lc depends exponentially on J/h, it
would be very large for h/J ≪ 1.

C. Cluster dynamics

We have also performed simulations using a cluster
method. We briefly report our results here. This method
was introduced by Kandel et al. [12] for the study of
frustrated systems. Recently Zhang and Cheng [13] have
applied this algorithm to the zero-field TIAFM. We have
modified this algorithm to take into account the presence
of the staggered field. The cluster algorithm is usually
implemented in two steps. In the first step, one performs
a “freeze-delete” operation on the bonds using a fixed
set of rules [12,13], which results in the formation of in-
dependent clusters. The second step consists in flipping
these clusters. In our modified algorithm, the first step
is unchanged. The freeze-delete operations are exactly
as in Ref. [13] and are effected without considering the
energy associated with the staggered field. In the sec-
ond step, we calculate the staggered-field energy of every
cluster and then flip it using heat-bath rules. It can be
proved that this procedure satisfies the detailed balance

condition.
The cluster dynamics performs better than the single-

spin-flip dynamics and we have been able to obtain equi-
librium averages for a L = 6 system (J = 1, h = 0.05)
with 106 MCS. However, for bigger system sizes (L ≥ 12),
we have not been able to achieve equilibration even with
runs over 108 MCS. Thus this dynamics is much slower
than the string dynamics. This is due to the following
reason. While the cluster dynamics does allow the num-
ber of strings to change, the clusters formed at low tem-
peratures are quite large and the probability of flipping
them becomes very small. In order to obtain quantita-
tive comparisons of the three different dynamics, we have
studied the autocorrelation function,

C(τ) =
〈M(τ)M(0)〉 − 〈M〉2

〈M2〉 − 〈M〉2
, (15)

where M is the total staggered magnetization and τ is the
“time” measured in units of MCS. In Figs. 17 and 18, we
plot the results for C(τ) obtained from simulations using
different dynamics at two different temperatures. The
data correspond to a L = 6 lattice and the averaging was
carried out over 107 MCS in all the cases. We note that
the single-spin-flip dynamics leads to a two-step relax-
ation – a fast one corresponding to equilibration within
a sector and a slower one in which different sectors are
sampled. The results shown in these figures also demon-
strate the superiority of the string dynamics over the
other two methods at both high and low temperatures.
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FIG. 17. Autocorrelation function C(τ ) of the staggered
magnetization, obtained from the three different dynamics at
a comparatively high temperature, T = 0.4. The data are
for a 6 × 6 sample with J = 1, h = 0.05. The “time” τ is
measured in units of MC steps per spin.
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FIG. 18. Autocorrelation function C(τ ) of the staggered
magnetization, obtained from string and cluster dynamics at
a low temperature, T = 0.125. The data are for a 6×6 sample
with J = 1, h = 0.05. The “time” τ is measured in units of
MC steps per spin.

V. SUMMARY AND DISCUSSION

In summary, we have studied the equilibrium proper-
ties of a triangular Ising antiferromagnet in the presence
of an ordering field which is conjugate to one of the degen-
erate ground states. We have addressed the question of
whether a phase transition can occur in this system. Us-
ing a mapping of the TIAFM ground states to dimer cov-
erings, we find that it is possible to obtain a very detailed
description of the low-lying energy states. In the limit-
ing case of the coupling constant J → ∞, we show that
the problem reduces to that of a set of non-intersecting
strings with long-range interactions. For this limiting
case, we prove existence of a transition which appears to
be K-type. For finite J , we have studied the system using
exact numerical evaluation of the staggered magnetiza-
tion and susceptibility by transfer matrix methods, and
also by MC simulations using three different dynamics.
We find that the dimer description also helps in under-
standing the dynamics and in finding methods of improv-
ing the efficiency of the MC simulation. A single-spin-flip
dynamics is very inefficient in sampling different string
sectors and at low temperatures, the system stays stuck
within a sector and shows thermodynamic behaviour cor-
responding to that sector. A cluster dynamics method
improves over the single-spin-flip dynamics, but is still
very slow at low temperatures. We have developed a dy-
namics which allows moves that add or remove pairs of
strings. As expected, this greatly reduces equilibration
times. However, even with this increased efficiency, we
have not been able to equilibrate systems with L > 18

in the interesting region of low field values (h/J << 1).
Hence our results on possible phase transitions for finite
J are inconclusive, although there are indications that a
true phase transition does not occur for finite J .

We close with a few comments on possible connections
of the system studied here with supercooled liquids near
the structural glass transition. The phase transition we
found in our model in the J → ∞ limit is similar in na-
ture to the Gibbs-Di Marzio scenario [14] for the struc-
tural glass transition. In the Gibbs-Di Marzio picture,
the structural glass transition is supposed to be driven by
an “entropy crisis” resulting from a vanishing of the con-
figurational entropy as the transition is approached from
the high-temperature side. A similar vanishing of the en-
tropy occurs at the phase transition in our model. It is
interesting to note in this context that a “compressible”
TIAFM model in which the ground-state degeneracy is
lifted by a coupling of the spins with lattice degrees of
freedom has been proposed [15] as a simple spin model
of glassy behavior. In view of these similarities with the
structural glass problem, a detailed study of the dynamic
behavior of our model would be very interesting.
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[6] H. W. J. Blöte and H. J. Hilhorst, J. Phys. A: Math.

Gen. 15, L631 (1982).
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