3,183 research outputs found
Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator
Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior ecomorphological research, we predicted that this novel predator would select for increased allocation to the caudal region in R. argentea to enhance burst-swimming performance and hence escape ability. To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes differing in Nile perch invasion history) and through time (before and after establishment of Nile perch in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to the presence of Nile perch with consistent morphological changes and that other factors are driving observed patterns of body shape variation in R. argentea
Comment on ``Lyapunov Exponent of a Many Body System and Its Transport Coefficients''
In a recent Letter, Barnett, Tajima, Nishihara, Ueshima and Furukawa obtained
a theoretical expression for the maximum Lyapunov exponent of a
dilute gas. They conclude that is proportional to the cube root of
the self-diffusion coefficient , independent of the range of the interaction
potential. They validate their conjecture with numerical data for a dense
one-component plasma, a system with long-range forces. We claim that their
result is highly non-generic. We show in the following that it does not apply
to a gas of hard spheres, neither in the dilute nor in the dense phase.Comment: 1 page, Revtex - 1 PS Figs - Submitted to Physical Review Letter
Prediction of contaminant transport in fractured carbonate aquifer-types; case study of the Permian Magnesian Limestone Group (NE England, UK)
Viruses and bacteria which are characterized by finite lives in the subsurface are rapidly transported via fractures and cavities in fractured and karst aquifers. Here, we demonstrate how the coupling of a robust outcrop characterization and hydrogeophysical borehole testing is essential for prediction of contaminant velocities and hence wellhead protection areas. To show this, we use the dolostones of the Permian Magnesian Limestone aquifer in NE England, where we incorporated such information in a groundwater flow and particle tracking model. Within this aquifer, flow in relatively narrow (mechanical aperture of ~ 10⁻¹–1 mm) fractures is coupled with that in pipe cavities (~ 0.20-m diameter) following normal faults. Karstic cavities and narrow fractures are hydraulically very different. Thus, the solutional features are represented within the model by a pipe network (which accounts for turbulence) embedded within an equivalent porous medium representing Darcian flowing fractures. Incorporation of fault conduits in a groundwater model shows that they strongly influence particle tracking results. Despite this, away from faulted areas, the effective flow porosity of the equivalent porous medium remains a crucial parameter. Here, we recommend as most appropriate a relatively low value of effective porosity (of 2.8 × 10⁻⁴) based on borehole hydrogeophysical testing. This contrasts with earlier studies using particle tracking analyses on analogous carbonate aquifers, which used much higher values of effective porosity, typically ~ 10² times higher than our value, resulting in highly non-conservative estimates of aquifer vulnerability. Low values of effective flow porosities yield modelled flow velocities ranging from ~ 100 up to ~ 500 m/day in un-faulted areas. However, the high fracturing density and presence of karstic cavities yield modelled flow velocities up to ~ 9000 m/day in fault zones. The combination of such flow velocities along particle traces results in 400-day particle traces up to 8-km length, implying the need for large well protection areas and high aquifer vulnerability to slowly degrading contaminants
Worries about being judged versus being harmed: Disentangling the association of social anxiety and paranoia with schizotypy
Paranoia is a dimension of clinical and subclinical experiences in which others are believed to have harmful intentions. Mild paranoid concerns are relatively common in the general population, and more clinically severe paranoia shares features with social anxiety and is a key characteristic of schizotypy. Given that subclinical manifestations of schizotypy and paranoia may predict the occurrence of more severe symptoms, disentangling the associations of these related constructs may advance our understanding of their etiology; however no known studies to date have comprehensively evaluated how paranoia relates to social anxiety and schizotypy. The current research sought to examine the association of paranoia, assessed across a broad continuum of severity, with 1) the positive and negative schizotypy dimensions and 2) social anxiety. Specifically, the study tested a series of six competing, a priori models using confirmatory factor analysis in a sample of 862 young adults. As hypothesized, the data supported a four-factor model including positive schizotypy, negative schizotypy, social anxiety, and paranoia factors, suggesting that these are distinct constructs with differing patterns of interrelationships. Paranoia had a strong association with positive schizotypy, a moderate association with social anxiety, and a minimal association with negative schizotypy. The results are consistent with paranoia being part of a multidimensional model of schizotypy and schizophrenia. Prior studies treating schizotypy and schizophrenia as homogenous constructs often produce equivocal or non-replicable results because these dimensions are associated with distinct etiologies, presentations, and treatment responses; thus, the present conceptualization of paranoia within a multidimensional schizotypy framework should advance our understanding of these constructs. © 2014 Horton et al
Psychosocial functioning and intelligence both partly explain socioeconomic inequalities in premature death. A population-based male cohort study
The possible contributions of psychosocial functioning and intelligence differences to socioeconomic status (SES)-related inequalities in premature death were investigated. None of the previous studies focusing on inequalities in mortality has included measures of both psychosocial functioning and intelligence.The study was based on a cohort of 49 321 men born 1949-1951 from the general community in Sweden. Data on psychosocial functioning and intelligence from military conscription at ∼18 years of age were linked with register data on education, occupational class, and income at 35-39 years of age. Psychosocial functioning was rated by psychologists as a summary measure of differences in level of activity, power of initiative, independence, and emotional stability. Intelligence was measured through a multidimensional test. Causes of death between 40 and 57 years of age were followed in registers.The estimated inequalities in all-cause mortality by education and occupational class were attenuated with 32% (95% confidence interval: 20-45%) and 41% (29-52%) after adjustments for individual psychological differences; both psychosocial functioning and intelligence contributed to account for the inequalities. The inequalities in cardiovascular and injury mortality were attenuated by as much as 51% (24-76%) and 52% (35-68%) after the same adjustments, and the inequalities in alcohol-related mortality were attenuated by up to 33% (8-59%). Less of the inequalities were accounted for when those were measured by level of income, with which intelligence had a weaker correlation. The small SES-related inequalities in cancer mortality were not attenuated by adjustment for intelligence.Differences in psychosocial functioning and intelligence might both contribute to the explanation of observed SES-related inequalities in premature death, but the magnitude of their contributions likely varies with measure of socioeconomic status and cause of death. Both psychosocial functioning and intelligence should be considered in future studies
Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations
Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0–7 cm depth) rose from 20.3 to 22.6 Mg ha−1 in the arable-to-ley conversion, compared to 30 Mg ha−1 in hedgerows, but this 2.3 Mg ha−1 difference (or 0.77 Mg C ha−1 yr−1) was not significant). However, the proportion of large macroaggregates (> 2000 μm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0–7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha−1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha−1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha−1 yr−1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations
The rapid formation a large rotating disk galaxy three billion years after the Big Bang
[Abridged] Over the past two decades observations and theoretical simulations
have established a global frame-work of galaxy formation and evolution in the
young Universe. Galaxies formed as baryonic gas cooled at the centres of
collapsing dark matter halos. Mergers of halos led to the build up of galaxy
mass. A major step forward in understanding these issues requires well resolved
physical information on individual galaxies at high redshift. Here we report
adaptive optics, spectroscopic observations of a representative luminous star
forming galaxy when the Universe was only twenty percent of its age. The
superior angular resolution of these data reveals the physical and dynamical
properties of a high redshift galaxy in unprecedented detail. A large and
massive rotating proto-disk is channelling gas towards a growing central
stellar bulge hosting an accreting massive black hole.Comment: Narure, accepted (Released Aug 17th
Hypoxic environments as refuge against predatory fish in the Amazonian floodplains
Several groups of Amazonian fishes exhibit behavioral, morphological and physiological characteristics that allow occupying hypoxic environments, despite the energetic costs of living in such harsh conditions. One of the supposed advantages of occupying hypoxic habitats would be a lower predation pressure resulting from a lower number of piscivorous fishes in those environments. We tested this hypothesis in an area of the Amazon River floodplain through gill net fishing in normoxic and hypoxic habitats. From the 103 species caught, 38 were classified as piscivores. We found no difference in the number of piscivorous species captured in hypoxic and normoxic habitats (χ2 = 0.23; p = 0.63; df = 1) but piscivorous individuals were more numerous in normoxic than in hypoxic sampling stations (χ2 = 104.4; p < 0.001; df = 1). This indicates that environments submitted to low oxygen conditions may in fact function as refuges against piscivorous fishes in the Amazonian floodplains
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of these—and of other
mutations—in terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
- …