446 research outputs found

    Role of Boreal Vegetation in Controlling Ecosystem Processes and Feedbacks to Climate

    Get PDF
    In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state

    Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Get PDF
    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments

    Nutrient availability as the key regulator of global forest carbon balance

    Get PDF
    Forests strongly affect climate through the exchange of large amounts of atmospheric CO2 (ref. 1). The main drivers of spatial variability in net ecosystem production (NEP) on a global scale are, however, poorly known. As increasing nutrient availability increases the production of biomass per unit of photosynthesis2 and reduces heterotrophic3 respiration in forests, we expected nutrients to determine carbon sequestration in forests. Our synthesis study of 92 forests in different climate zones revealed that nutrient availability indeed plays a crucial role in determining NEP and ecosystem carbon-use efficiency (CUEe; that is, the ratio of NEP to gross primary production (GPP)). Forests with high GPP exhibited high NEP only in nutrient-rich forests (CUEe = 33 ± 4%; mean ± s.e.m.). In nutrient-poor forests, a much larger proportion of GPP was released through ecosystem respiration, resulting in lower CUEe (6 ± 4%). Our finding that nutrient availability exerts a stronger control on NEP than on carbon input (GPP) conflicts with assumptions of nearly all global coupled carbon cycle-climate models, which assume that carbon inputs through photosynthesis drive biomass production and carbon sequestration. An improved global understanding of nutrient availability would therefore greatly improve carbon cycle modelling and should become a critical focus for future research

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    Get PDF
    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs

    Guiding concepts for park and wilderness stewardship in an era of global environmental change

    Get PDF
    The major challenge to stewardship of protected areas is to decide where, when, and how to intervene in physical and biological processes, to conserve what we value in these places. To make such decisions, planners and managers must articulate more clearly the purposes of parks, what is valued, and what needs to be sustained. A key aim for conservation today is the maintenance and restoration of biodiversity, but a broader range of values are also likely to be considered important, including ecological integrity, resilience, historical fidelity (ie the ecosystem appears and functions much as it did in the past), and autonomy of nature. Until recently, the concept of "naturalness" was the guiding principle when making conservation-related decisions in park and wilderness ecosystems. However, this concept is multifaceted and often means different things to different people, including notions of historical fidelity and autonomy from human influence. Achieving the goal of nature conservation intended for such areas requires a clear articulation of management objectives, which must be geared to the realities of the rapid environmental changes currently underway. We advocate a pluralistic approach that incorporates a suite of guiding principles, including historical fidelity, autonomy of nature, ecological integrity, and resilience, as well as managing with humility. The relative importance of these guiding principles will vary, depending on management goals and ecological conditions
    corecore