1	Nutrient availability as the key regulator of global forest carbon balance
2	Authors: M. Fernández-Martínez ^{*1,2} , S. Vicca ³ , I. A. Janssens ³ , J. Sardans ^{1,2} , S. Luyssaert ⁴ ,
3	M. Campioli ³ , F.S. Chapin III ⁵ , P. Ciais ⁴ , Y. Malhi ⁶ , M. Obersteiner ⁷ , D. Papale ⁸ , S.L.
4	Piao ^{9,10} , M. Reichstein ¹¹ , F. Rodà ^{2,12} , J. Peñuelas ^{1,2}
5	Affiliations:
6	¹ CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona,
7	Catalonia, Spain
8	² CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
9	³ Research Group of Plant and Vegetation Ecology, Department of Biology, University of
10	Antwerp, 2610 Wilrijk, Belgium.
11	⁴ LSCE CEA-CNRS-UVSQ, Orme des Merisiers, F-91191 Gif-sur-Yvette, France
12	⁵ Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
13	⁶ Environmental Change Institute, School of Geography and the Environment, University of
14	Oxford, Oxford OX1 3QY, UK
15	⁷ International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg,
16	Austria
17	⁸ DIBAF, University of Tuscia, 01100 Viterbo, Italy
18	⁹ College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
19	¹⁰ Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085,
20	China
21	¹¹ Max Planck Institute for Biogeochemistry, Jena, German
22	¹² Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de
23	Barcelona, 08193 Barcelona, Catalonia, Spain
24	*Correspondence to: M. Fernández-Martínez, m.fernandez@creaf.uab.cat
25	

26 Summary paragraph

Forests strongly affect climate through the exchange of large amounts of atmospheric CO_2^{-1} . 27 The main drivers of spatial variability in net ecosystem production (NEP) on a global scale 28 are, however, poorly known. Since increasing nutrient availability increases the production of 29 biomass per unit of photosynthesis² and reduces heterotrophic³ respiration in forests, we 30 expected nutrients to determine carbon sequestration in forests. Our synthesis study of 92 31 forests in different climate zones revealed that nutrient availability indeed plays a crucial role 32 in determining NEP and ecosystem carbon-use efficiency [CUEe, i.e. the ratio of NEP to 33 gross primary production (GPP)]. Forests with high GPP exhibited high NEP only in nutrient-34 rich forests (CUEe = $33 \pm 4\%$; mean \pm SE). In nutrient-poor forests, a much larger proportion 35 of GPP was released through ecosystem respiration, resulting in lower CUEe ($6 \pm 4\%$). Our 36 finding that nutrient availability exerts a stronger control on NEP than on carbon input (GPP) 37 conflicts with assumptions of nearly all global coupled carbon cycle-climate models, which 38 39 assume that carbon inputs through photosynthesis drive biomass production and carbon sequestration. An improved global understanding of nutrient availability would therefore 40 greatly improve carbon cycle modeling and should become a critical focus for future research. 41

43 Main Text

The net ecosystem production (NEP) of an ecosystem represents its C balance at daily to decadal scales. Despite considerable study, the main drivers of NEP are still unclear. Climate 4.5, climatic trends ⁶, nitrogen deposition ^{7,8}, disturbance and management ^{8,9} have been suggested to influence NEP. These studies, however, were either unable to explain a substantial percentage of the spatial variability in NEP or collected data in a restricted subset of climatic space, indicating that it is not yet known what factor(s) most strongly govern NEP, one of the critical pathways by which terrestrial ecosystems feedback to climate.

At the ecosystem scale, nitrogen deposition has been suggested to enhance the NEP of 51 forests ^{3,7}. Nutrient availability is indeed a key variable explaining patterns of carbon 52 allocation in forests; nutrient-rich forests exhibit higher biomass production (BP), biomass 53 production efficiency (BPE, defined as BP-to-GPP ratio) and shoot-to-root biomass 54 production ratio². By converting a larger fraction of GPP to woody biomass and thereby 55 increasing the residence time of the assimilated carbon (C), forests growing on more fertile 56 soils can be expected to exhibit higher NEP. Carbon-use efficiency at the ecosystem level 57 (CUEe), defined as NEP of an ecosystem per unit of GPP, measures the proficiency of an 58 59 ecosystem to store C absorbed from the atmosphere. We thus hypothesize that both NEP and CUEe increase with increasing nutrient availability in forest ecosystems. 60

To test this hypothesis, we updated and analyzed a global forest data set of mean annual 61 carbon flux [GPP, ecosystem respiration (Re) and NEP], stand biomass, stand age and 62 information on management. The resulting data set of 92 forests included scattered data from 63 1990 to 2010 from boreal, temperate, Mediterranean and tropical forests ⁹ (Supplementary 64 Fig. 1). We added all published information on the nutrient status of these forests and we 65 classified them as forests with high nutrient availability (without apparent nutrient limitation) 66 and low nutrient availability (apparently strongly nutrient-limited, sensu Vicca et al.², 67 considering a holistic combination of availability of nutrients and soil characteristics). We 68

based the nutrient availability classification on a multivariate factor analysis containing 69 information about soil type, soil and foliar nutrient concentrations (N, P), soil pH, soil C:N 70 ratio, nitrogen deposition and mineralization, history of the stand, specific reports of nutrient 71 availability and an assessment by the principal investigator of the site (Supplementary Table 72 1). This analysis clearly separated nutrient-rich from nutrient-poor forests (Supplementary 73 Fig. 2). We also established a medium category that was used for additional testing; it 74 contained forests with information indicating moderate availability of nutrients or with few 75 information about their nutrient status. Mean annual temperature and precipitation (MAT, 76 MAP) from the WorldClim database¹⁰ and water deficit (WD) derived from MODIS 77 evapotranspiration time series (MOD15A2 product) were used as climatic predictors. We then 78 used generalized linear models to disentangle the effects of climate, management and stand 79 age from those of nutrient availability on NEP and CUEe (see Methods for details on datasets 80 and methodology). 81

NEP in nutrient-rich forests averaged $33 \pm 4\%$ (mean \pm SE) of GPP, whereas nutrientpoor forests only accumulated $6 \pm 4\%$ of the photosynthesized carbon (CUEe in Fig. 1, difference = $27 \pm 7\%$, ANOVA *P* < 0.001). Only nutrient-rich forests showed a clear positive relationship between GPP and NEP (Fig. 1). In contrast, nutrient-poor forests channelled a larger proportion of GPP into Re (Fig. 2), with NEP being almost independent of GPP. Higher nutrient availability thus appears to channel C fixed by GPP toward storage in biomass and soils, rather than being respired back to the atmosphere.

A common protocol in eddy covariance CO_2 flux studies is to estimate GPP by adding Re (e.g. extrapolated from nocturnal measurements) to the measured net ecosystem exchange (NEE, a proxy for short-term NEP). In this protocol any error in Re would therefore be directly propagated into a biased estimation of GPP, potentially imposing a spurious correlation between GPP and Re^{11,12}. This correlation, however, in addition to being irrelevant on an annual scale ¹³, was present in nutrient-poor forests but not in nutrient-rich 95 forests (Fig. 2). The correlation between GPP and Re observed across nutrient-poor forests is 96 thus unlikely an artefact from the processing of eddy-covariance data for separating these 97 gross fluxes. We instead hypothesize that the positive relationship between Re and GPP only 98 in nutrient-poor forests is due to different patterns of ecosystem functioning in nutrient-poor 99 versus nutrient-rich forests.

Our statistical analyses using generalized linear models, including GPP, nutrient 100 availability and stand age, explained 74, 93 and 43% of the variance in NEP, Re (Table 1) and 101 CUEe across sites, respectively (Supplementary Table 2). Nutrient availability alone 102 explained 19% of the variance in NEP. When summed with its interactions with GPP (15%) 103 and age (1%), nutrient availability accounted for 35% of the variance in NEP. GPP alone 104 explained 18% of the cross-site variability in NEP. When additional interactions with nutrient 105 availability and age (9%) were included, GPP explained 42% of the variability in NEP. The 106 relationship between NEP and stand age, however, was only significant when GPP was 107 previously included in the models, which emphasises the smaller effect of stand age on NEP 108 as compared to GPP (Supplementary Figs. 3 and 4). Finally, MAT was positively correlated 109 with NEP and explained 9% of its variance. In contrast to NEP, GPP alone explained 64% of 110 the variance in Re, with nutrient availability and its interactions explaining 9% and age and its 111 interactions explaining only 5%. For CUEe, nutrient availability explained 12%, and GPP 112 14% of the variance in CUEe. Stand age also played an important role, interacting with GPP 113 114 (reducing the positive effect of GPP on CUEe as forests matured) and explaining 17% of the variance in CUEe. 115

The relative contribution of explanatory variables thus differed among the NEP, Re and CUEe models, but the key and robust result is that nutrient status was a key factor for NEP and CUEe (Fig. 3, Table 1 and Supplementary Table 2), despite the use of nutrient status as a binary variable (high vs. low nutrient availability). Other possible predictors such as management and climate (MAP and WD), were not selected to enter in the general model by

121 the stepwise model selection procedure, i.e., they did not significantly affect neither NEP nor Re (Table 1). Model-averaging techniques (see Supplementary Information) also indicated 122 little importance of climate or management on NEP and Re. In contrast to NEP and Re. GPP 123 was clearly climatically driven, being positively correlated with MAT and negatively 124 correlated with WD, which accounted for 65% and 10%, respectively, of the variance in GPP. 125 The significant positive effect of nutrient availability on NEP proved to be robust in 126 weighted models (Supplementary Fig. 5) and when controlling for effects of potentially 127 confounding factors, for example: i) when using only data derived from eddy covariance 128 measurements (Table 1), ii) when excluding forests with GPPs > 2500 gC m⁻² year⁻¹ (i.e. 129 mostly tropical forests) from the analyses (no nutrient-rich forests were available for 130 comparison at GPP higher than this threshold, Figs. 1 and 2), iii) when using only managed 131 forests (Supplementary Figs. 6 and 7), iv) when using an alternative classification of nutrient 132 status to analyse sensitivity to possible classification errors (Tables 1 and Supplementary 133 Table 2) and v) when using the first factor of the factor analysis for nutrient classification as a 134 nutrient richness covariate (Table 1, nutrient richness factor). Furthermore, when including 135 the moderate nutrient availability forests, this group showed an intermediate behaviour 136 between the nutrient-rich and the nutrient-poor forests (Supplementary Fig. 8). On the other 137 hand, when nutrient status was excluded from the analyses, management played the role of 138 nutrients in our models, albeit the models explained less of the variance than did the models 139 140 containing nutrient availability (Table 1), and the second-order Akaike information criterion (AICc) increased considerably (by 18.6 and 17.2 points for NEP and Re, respectively). These 141 results were expected because managed forests are mostly nutrient-rich forests 142 (Supplementary Fig. 7) for the generation of profits from fertile lands. 143

The positive effect of nutrient availability on a more efficient use of photosynthates and a larger sequestration of carbon at the ecosystem level is likely not driven by a single mechanism or a single compartment of the ecosystem but rather by a combination of autotrophic and heterotrophic processes. Autotrophic processes are mainly related to different
patterns of carbon allocation in nutrient-rich and nutrient-poor forests ^{2,14}, whereas
mechanisms related to heterotrophic processes involve primarily changes in substrate quality
and the composition of the community of decomposers (mainly fungal and bacterial) ^{3,15}.

For the autotrophic compartment, we detected two differences in the distribution of 151 biomass across different organs between the different nutrient classes, despite also 152 considering other factors such as climate and management. 1) Although only marginally 153 significant, the ratio of fine-root biomass to total biomass was almost three times higher in 154 nutrient-poor forests than in nutrient-rich forests (P = 0.06, N = 17; Supplementary Fig. 9A), 155 indicating a higher proportional investment of GPP into fine roots for increasing access to 156 nutrients ^{16,17}. 2) The leaf area index per unit of fine-root biomass was twice as large in 157 nutrient-rich forests (P = 0.013, N = 19; Supplementary Fig. 9B), indicating a shift in carbon 158 allocation towards photosynthetic tissues when nutrients are not limiting growth and trees 159 need to invest less in nutrient-acquiring structures. Accordingly, an earlier study, using a 160 subset of our database, pointed out that nutrient-rich forests allocate larger proportions of their 161 photosynthates to wood production compared to nutrient-poor forests at the cost of producing 162 less root biomass². These changes in allocation patterns thus suggest enhanced carbon 163 fixation in nutrient-rich forests. 164

An increase in the production of leaves in nutrient-rich forests, at the expense of producing less fine roots, could decrease the benefit of increasing aboveground allocation in terms of CUEe if that aboveground carbon is not stabilised. On the other hand, although some studies have reported higher root respiration per unit mass at high root nutrient concentrations ^{18,19}, a substantial decrease in root biomass may counterbalance this increase in autotrophic respiration and even reduce it at the ecosystem level ³. In addition, when soil nutrients are poorly available, plants engage in active nutrient transport through the cell to increase nutrient uptake, spending energy for nutrient acquisition and therefore reducing energy available for
 plant growth²⁰. The net effect of root physiological adjustments to nutrient supply is unclear.

Changes in patterns of photosynthate allocation are also relevant for the heterotrophic 174 compartment. For example, the higher proportion of GPP in nutrient-rich forests partitioned to 175 tissues with long turnover times such as wood ^{2,14} may decrease heterotrophic respiration, 176 because wood is generally composed of rather recalcitrant molecules that decompose slowly 177 ²¹. Furthermore, numerous studies suggest that under high nutrient availability, forests 178 allocate less C to fungal root symbionts², and to exudation that stimulates heterotrophic 179 respiration in the rhizosphere³. Together, these nutrient effects would reduce microbial 180 biomass and respiration, relative to nutrient-poor forests. In addition, communities of 181 microbes and detritivores that consume nutrient-rich organic matter have higher growth 182 efficiencies (less respiration per unit of organic matter decomposed) than do communities that 183 decompose nutrient-poor organic matter^{15,22}. This difference could reduce heterotrophic 184 respiration in nutrient-rich forests ^{3,15} and potentially enhance carbon sequestration and 185 accumulation in nutrient-rich forests. 186

Our results indicate a key effect of nutrient availability on forest carbon balance and 187 particularly on the capacity of forests to sequester carbon. Only when nutrient availability is 188 high can forests sequester large amounts of carbon. This knowledge is crucial, especially 189 given the human-induced alterations of nutrient availability and stoichiometry in many 190 regions of the planet ^{23,24}. Earth system models should evolve from considering only the 191 effects of nitrogen on plant growth^{25,26} to considering the interactions of nitrogen as well as 192 other nutrients with the entire carbon cycle²⁷. The relationship between GPP and NEP appears 193 to be strongly controlled by the nutrient status of the forest, which implies that Earth system 194 models will be unable to accurately predict the carbon balance of forest ecosystems without 195 information on both background (pre-industrial) and regional changes in nutrient availability 196 ²⁸ resulting from direct human activities (e.g. nitrogen deposition) and from indirect human 197

activities (e.g. climate change and elevated CO_2 altering soil and plant nutrient cycling). Moreover, because GPP and surrogates are widely available from remotely sensed data, the assessment of nutrient status could allow estimation of NEP with remote sensing of GPP and ground based measurements of CUEe. This way, estimates of global terrestrial carbon sequestration could be improved, and guidance for improved management of forest carbon could be provided. Finally, experimental research and environmental monitoring would benefit substantially by considering nutrient availability as carefully as climate.

206 **References and Notes:**

207	1.	Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science (80).
208		263, 185–90 (1994).

- 209 2. Vicca, S. *et al.* Fertile forests produce biomass more efficiently. *Ecol. Lett.* 15, 520–6
 210 (2012).
- Janssens, I. a. *et al.* Reduction of forest soil respiration in response to nitrogen deposition. *Nat. Geosci.* 3, 315–322 (2010).
- 4. Valentini, R. *et al.* Respiration as the main determinant of carbon balance in European forests. *Nature* 404, 861–5 (2000).
- 5. Kato, T. & Tang, Y. Spatial variability and major controlling factors of CO 2 sink
 strength in Asian terrestrial ecosystems: evidence from eddy covariance data. *Glob. Chang. Biol.* 14, 2333–2348 (2008).
- Piao, S. *et al.* Footprint of temperature changes in the temperate and boreal forest carbon balance. *Geophys. Res. Lett.* 36, L07404 (2009).
- De Vries, W. *et al.* The impact of nitrogen deposition on carbon sequestration by
 European forests and heathlands. *For. Ecol. Manage.* 258, 1814–1823 (2009).
- 8. Fernández-Martínez, M. *et al.* Spatial variability and controls over biomass stocks,
 carbon fluxes and resource-use efficiencies in forest ecosystems. *Trees, Struct. Funct.*224 28, 1–15 (2014).
- 225 9. Luyssaert, S. *et al.* CO 2 balance of boreal, temperate, and tropical forests derived from
 226 a global database. *Glob. Chang. Biol.* 13, 2509–2537 (2007).
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high
 resolution interpolated climate surfaces for global land areas. *Int. J. Climatol.* 25, 1965–1978 (2005).
- Reichstein, M. *et al.* On the separation of net ecosystem exchange into assimilation and
 ecosystem respiration: review and improved algorithm. *Glob. Chang. Biol.* 11, 1424–
 1439 (2005).
- Vickers, D., Thomas, C. K., Martin, J. G. & Law, B. Self-correlation between
 assimilation and respiration resulting from flux partitioning of eddy-covariance CO2
 fluxes. *Agric. For. Meteorol.* 149, 1552–1555 (2009).
- Lasslop, G., Reichstein, M., Detto, M., Richardson, A. D. & Baldocchi, D. D.
 Comment on Vickers et al.: Self-correlation between assimilation and respiration
 resulting from flux partitioning of eddy-covariance CO2 fluxes. *Agric. For. Meteorol.*150, 312–314 (2010).
- Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. *Glob. Chang. Biol.* 13, 2089–2109 (2007).

15. Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and 242 stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 243 79–91 (2012). 244 16. Shan, J., Morris, L. a. & Hendrick, R. L. The effects of management on soil and plant 245 carbon sequestration in slash pine plantations. J. Appl. Ecol. 38, 932–941 (2002). 246 Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest 247 17. succession. Glob. Chang. Biol. 17, 855-871 (2011). 248 18. Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 249 (1980). 250 19. Burton, A., Pregitzer, K., Ruess, R., Hendrick, R. & Allen, M. Root respiration in 251 252 North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131, 559–568 (2002). 253 20. Lee, S. C. et al. A protein phosphorylation/dephosphorylation network regulates a plant 254 potassium channel. Proc. Natl. Acad. Sci. U. S. A. 104, 15959-64 (2007). 255 21. Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass 256 carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl. 257 258 Acad. Sci. 106, 11635–11640 (2009). Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial 22. 259 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter 260 decomposition with soil organic matter stabilization: do labile plant inputs form stable 261 soil organic matter? Glob. Chang. Biol. 19, 988-95 (2013). 262 23. Peñuelas, J., Sardans, J., Rivas-ubach, A. & Janssens, I. a. The human-induced 263 imbalance between C, N and P in Earth's life system. Glob. Chang. Biol. 18, 3-6 264 (2012). 265 24. Peñuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and 266 managed ecosystems across the globe. *Nat. Commun.* **4**, 2934 (2013). 267 25. Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land 268 269 surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem. Cycles 24, n/a–n/a (2010). 270 26. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may 271 accelerate future climate change. Geophys. Res. Lett. 37, n/a-n/a (2010). 272 27. De Vries, W. & Posch, M. Modelling the impact of nitrogen deposition, climate change 273 and nutrient limitations on tree carbon sequestration in Europe for the period 1900-274 2050. Environ. Pollut. 159, 2289-2299 (2011). 275 Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate 28. 276 variability and to CO2 trends. Glob. Chang. Biol. 19, 2117-32 (2013). 277 R Core Team. R: A Language and Environment for Statistical Computing. R Found. 278 29. Stat. Comput. 1, 409 (2013). 279

280 281	30.	Grömping, U. Relative importance for linear regression in R: the package relaimpo. <i>J. Stat. Softw.</i> 17, 1–27 (2006).
282	31.	Chevan, A. & Sutherland, M. Hierarchical Partitioning. Am. Stat. 45, 90–96 (1991).
283 284	32.	Barton, K. MuMIn: Multi-model inference. R package version 1.7.2. http://CRAN.R-project.org/package=MuMIn. (2012). at <http: cran.r-project.org="" package="MuMIn"></http:>
285 286	33.	Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (Springer, 2004).

288	Acknowledgments: This research was supported by the Spanish Government projects
289	CGL2010-17172 and Consolider Ingenio Montes (CSD2008-00040), by the Catalan
290	Government Grants SGR 2009-458 and FI-2013 and by the European Research
291	Council Synergy grant 610028, P-IMBALANCE. S. Vicca and M. Campioli are
292	postdoctoral fellows of the Research Foundation – Flanders (FWO). S. Luyssaert was
293	funded by ERC Starting Grant 242564 and received additional funding from FWO
294	Vlaanderen. We appreciate the financial support of the GHG-Europe project.

Fig. 1. Only nutrient-rich forests substantially increase carbon sequestration with increasing carbon uptake. The bar chart inside the main graph shows that CUEe (NEP to GPP ratio) in nutrient-rich forests is more than five times higher than in nutrient-poor forests. We also present results for forests with GPP < 2500 gC m⁻² year⁻¹, because values of GPP > 2500 gC m⁻² year⁻¹ were only available for nutrient-poor forests. When considering only forests with GPP < 2500 gC m⁻² year⁻¹, the Nutrients*GPP (where Nutrients = nutrient availability) interaction was significant at the 0.006 level.

Fig. 2. The coupling between Re and GPP is weak in nutrient-rich forests and very strong in nutrient-poor forests. Nutrient-rich forests decouple Re from GPP, resulting in an increase in carbon accumulation with increasing GPP. When considering only forests with GPP < 2500 gC m⁻² year⁻¹, the Nutrients*GPP (where Nutrients = nutrient availability) interaction is significant at the 0.005 level. Error bars indicate the uncertainty of the estimate on both the x- and y-axes (SE).

310 Fig. 3. Relative contribution of predictor variables in the model explaining variability in

NEP. Letters indicate significant differences according to the bootstrapped confidence intervals computed for the differences among variables [relaimpo R package (23)]. Nutrients = nutrient availability. All variables and interactions shown were statistically significant (P < 0.05).

316 Table 1. Summary of the percentage of variance explained by the significant variables of the models relating NEP and Re with GPP, nutrient availability (NA), management 317 (MNG) and stand age and their second-order interactions. The β coefficients of the 318 models are shown in brackets. For NA, MNG or their interactions with covariates, the ß 319 coefficients of the factors and the interactions indicate differences from the reference level 320 (e.g. the slope of nutrient-rich forests of the general model is 1.8, and the slope, β , of the 321 nutrient-poor forests is 1.8 - 1.9 = -0.1). The model "Nutrient richness factor" shows the 322 model including the factors used in the nutrient classification (see Methods, information on 323 nutrient availability, and Fig. S2) as a nutrient richness covariate instead of the binary 324 variable nutrient availability. For this model, NA indicates the effect of the first factor 325 extracted. 326

327

Fig. 1.

331 Fig. 2.

Models	GPP	NA	GPP:NA	MAT	GPP:Age	Age	Age:NA	MNG	WD	GPP:MNG	Model R^2 (%)
General											
NEP (Fig. 1)	18 (1.8)	19 (1.3)	15 (-1.9)	9 (0.5)	9 (-1.0)	3	1 (-0.4)				74
Re (Fig. 2)	64 (0,1)	3	5	16	3 (0.5)	1	1 (0.2)				93
CUEe	14	12			17	0					43
(0.2) (-0.3) (-1.2) (1.1)											
Weighted (Sup	l. Fig. 2) 20	14	8	8	6	2	3				
NEP	(1.6)	(1.0)	(-1.4) 3	(0.4)	(-1.0) 2	(1.2)	(-0.5)				61
Re	(0.3)	(-0.5)	(0.8)	(-0.2)	(0.5)	(-0.6)	(0.3)				88
CUEe	1 (0.5)	10 (-0.1)			(-0.8)	3 (0.9)	5 (-0.4)				34
Eddy covarian	ce data o	only									
NEP	18	11	6	9				4		11	59
Re	(1.5) 67	(0.8)	(-1.5)	(0.5)				(0.6)		2	92
CUFe	(0.4) 12	(-0.4) 9	(0.7)	(-0.2)	15	2		(-0.2)		(0.4)	38
	(0.9)	(-0.3)			(-1.2)	(1.2)					50
Without nutrie	ent availa	ability									
NEP	31 (1.1)							8 (0.6)	5 (0.3)	15 (-1.8)	59
Re	70 (0.6)							2	11	4 (0.5)	87
CUEe	15 (0.9)							0 (0.8)		2	46
CDD	n -2	-1								. ,	
GPP < 2500 gC	2 m² yea 44	r ⁻¹ 17	6						5		70
$\mathbf{NEP}(\mathbf{Fig. 1})$	(1.2) 55	(0.6)	(-0.9) 6						(0.2) 10		72
Re (Fig. 2)	(0.3) 38	(-0.6)	(0.8)		7	1			(-0.2)		74
CUEe	(0.8)				(-0.8)	(0.9)					46
GPP < 2500 gC	c m ⁻² yea	r ⁻¹ wei	ghted (Supl	l. Fig. 2))						
NEP	34	11	5	12							62
Re	58	3	(-0.9)	(0.3)					11		72
CUEe	(0.9)	(0.2)		19					(-0.2)		34
		(-0.2)		(0.3)							
Managed Fore	sts (Supl	. Fig. 6) 4						0		
NEP	52 (1.1)	14 (0.3)	4 (-0.7)						(0.3)		79
Re	57 (0.4)	3 (-0.4)	5 (0.7)						17 (-0.3)		82
CUEe	37 (0.7)	9 (-0.3)			5 (-0.6)	3 (0.8)					54
Alternative ele	ssificatio	m									
NEP	25	12	11	11	1	4	2				75
Do	(1.6) 67	(1.2) 2	(-1.5) 4	(0.5) 13	(-1.1) 4	(1.2) 1	(-0.4) 1				02
	(0.3) 12	(-0.8) 7	(0.9)	(-0.3) 6	(0.6) 18	(-0.7) 0	(0.2)				72 42
CUEe	(0.6)	(-0.3)		(0.4)	(-1.2)	(1.2)					40
Nutrient richness factor											
NEP	25 (0.9)	23	5 (0.8)					5 (0.4)		9 (-0.7)	67
Re	79	4	. /					1		3	87
CUEe	14	10						0		17	41

Table 1.

336 Methods

337 Sources of data

We used data of mean annual carbon flux from a global forest database ⁹. This data set 338 contains complete measurements of carbon balance and uncertainties of gross primary 339 production (GPP), ecosystem respiration (Re) and net ecosystem production (NEP) of forests 340 around the world. The WorldClim database¹⁰ (resolution \sim 1km at the equator) and MODIS 341 evapotranspiration time series (MOD15A2 product) provided climatic data [mean annual 342 temperature (MAT) and mean annual precipitation (MAP) from WorldClim and potential and 343 actual evapotranspiration (PET, AET) from MODIS]. The reliability of the data from the 344 WorldClim database was tested with the available observed climatic values from the forests 345 (N=123). Results indicated a strong correlation between observed and WorldClim values for 346 annual temperature and precipitation ($R^2 = 0.96$, P < 0.001 and $R^2 = 0.84$, P < 0.001347 respectively). 348

All continents were represented in our analyses (Supplementary Fig. 1), although most of the forests were located in Europe and North America. Boreal (N = 31) and especially temperate (N = 68) sites outnumbered Mediterranean (N = 14) and tropical (N = 16) sites. 61 forests were coniferous, 57 were broadleaved and 11 were mixed.

353 Information on nutrient availability

For each forest, we compiled all available information from the published literature (carbon, nitrogen and phosphorus concentrations of soil and/or leaves, soil type, soil texture, soil C:N ratio, soil pH, measures of nutrients, etc.) related to nutrient availability. Then we followed the criteria shown in Supplementary Table 3 to code these variables as three-level factors indicating high, medium or low nutrient availability. Next, we transformed these factors into dummy variables and performed a factor analysis. The first factor extracted explained 14.8% of the variance in the dataset and was related to nutrient-rich dummy variables whereas the 361 second factor explained 8.7% of the variance and was related to nutrient-poor dummy variables (Supplementary Fig. 2A). Then, based on the aggregations across the two main 362 factors extracted (Supplementary Fig. 2B) we classified the forests as having clearly high or 363 clearly low nutrient availabilities. The remaining forests, for which empirical evidence was 364 insufficient to classify them as nutrient-rich or nutrient-poor or indicated moderate nutrient 365 availability were classified as medium nutrient availability. To maximize robustness, we 366 included only the forests with clearly high (N = 23) and clearly low (N = 69) nutrient 367 availabilities in the main analysis, discarding data from the 37 remaining forests with medium 368 nutrient availability. We also present the analysis with all the available data (including the 369 medium nutrient availability category) in Supplementary Fig. 8 and in the Supplementary 370 Models. 371

372 Statistical analyses

373 We ran generalized linear models (GLM) to test for differences in CUEe, NEP, Re and GPP between forests of high and low nutrient availability, accounting for the possible effects of 374 GPP, mean stand age, management (as a binary variable: managed or unmanaged) and climate 375 [MAT, MAP and water deficit (WD) = 1 - (AET/PET)*100]. That is, NEP ~ GPP + nutrient 376 availability + Age + Management + MAT + MAP + WD. We tested for interactions up to the 377 second order among GPP, nutrient availability, age and management. The significant 378 variables of the final model (minimum adequate model) were selected using stepwise 379 backward variable selection and the AIC of the respective regression models. To evaluate the 380 variance explained by each predictor variable, we used the *averaged over orderings* method 381 (the *lmg* metric, similar to hierarchical partitioning) to decompose R^2 from R^{29} with the 382 package relaimpo [Relative Importance for Linear Regression³⁰]. Finally, we tested whether 383 nutrient status, management, age and climatic variables could lead to changes in patterns of 384 biomass allocation with stepwise forward regressions. Model residuals met the assumptions 385 required in all analyses (i.e., normality and homoscedasticity). 386

387 The robustness of our analyses was tested by five different methods: i) running weighted models using the inverse of the uncertainty of the estimates as a weighting factor, ii) 388 using only data derived from eddy covariance towers, iii) restricting comparison of nutrient-389 rich and nutrient-poor forests to a common rank of GPP (GPP < 2500 gC m^{-2} year⁻¹ in Figs. 1 390 and 2, thus excluding most of the tropical forests and using forests presenting GPPs above 391 1000 and below 2500 gC m⁻² year⁻¹ in Supplementary Fig. 10), iv) using an alternative 392 classification of nutrient availability (the second most plausible classification) as an analysis 393 of sensitivity and v) using the factors extracted for the classification of nutrients as nutrient 394 richness covariates instead of using the binary factor nutrient availability. Detailed 395 information about the methods used in this paper is presented in Supplementary Information. 396

398 Supplementary Information:

399 Detailed and extended information on methods

400 Sources of data

We used data of mean annual carbon flux from a global forest database ⁹. This data set 401 contains complete measurements of carbon balance and uncertainties of gross primary 402 production (GPP), ecosystem respiration (Re) and net ecosystem production (NEP) of forests 403 around the world. Of these forests, we excluded those that had been disturbed less than one 404 year before measurement and those for which we found no information on nutrient 405 availability. The carbon balance of the remaining 129 forests was estimated by eddy 406 covariance (N = 124) or by modelling with site-specific parameterization (N = 5). During the 407 processing of eddy covariance data, any error in estimating Re from nighttime measurements 408 would be translated into biased GPP, and a spurious correlation between Re and GPP would 409 then be the consequence. However, problems related to the calculation of Re and GPP were 410 previously shown important at shorter timescales, but irrelevant at annual time scale ¹³. 411 Carbon fluxes not captured by net ecosystem exchange (NEE), such as fluxes of volatile 412 organic compounds, dissolved carbon or lateral fluxes (exportations), were assumed to be 413 similar (and negligible) across forest sites. 414

The WorldClim database¹⁰ (resolution ~ 1km at the equator) and MODIS evapotranspiration time series (MOD15A2 product) provided climatic data [mean annual temperature (MAT) and mean annual precipitation (MAP) from WorldClim and potential and actual evapotranspiration (PET, AET) from MODIS]. The reliability of the data from the WorldClim database was tested with the available observed climatic values from the forests. Results indicated a strong correlation between observed and WorldClim values for annual temperature and precipitation (R = 0.98, P < 0.001 and R = 0.91, P < 0.001 respectively). All continents were represented in our analyses (Supplementary Fig. 1), although most of the forests studied were in Europe and North America. Boreal (N = 31) and especially temperate (N = 68) sites outnumbered Mediterranean (N = 14) and tropical (N = 16) sites, and 61 forests were coniferous, 57 were broadleaved and 11 were mixed.

426 Information on nutrient availability

For each forest, we compiled all available information from the published literature (carbon, 427 nitrogen and phosphorus concentrations of soil and/or leaves, soil type, soil texture, soil C:N 428 ratio, soil pH, measures of nutrients, see Supplementary Table 1) related to nutrient 429 availability. Then we followed the criteria shown in Supplementary Table 3 to code these 430 variables as three-level factors indicating high, medium or low nutrient availability. Next, we 431 transformed these factors into dummy variables (e.g. 3 binary variables for pH indicating 432 high, medium or low nutrient availability) and performed a factor analysis in which we only 433 included those dummy variables indicating high and low nutrient availability. Those 434 indicating medium nutrient availability were excluded from the factor analysis (as well as 435 from all other analyses) to reduce the number of variables in the multivariate analysis and to 436 ensure a clear separation into two groups. The first factor extracted explained 14.8% of the 437 variance in the dataset and was related to nutrient-rich dummy variables whereas the second 438 factor explained 8.7% of the variance and was related to nutrient-poor dummy variables 439 (Supplementary Fig. 2A). Then, based on the aggregations across the two main factors 440 extracted (Supplementary Fig. 2B) we classified the forests as having clearly high or clearly 441 low nutrient availabilities. Those forests located near the threshold nutrient-rich/poor were 442 further analyzed, checking in detail all the information available for classification. The 443 remaining forests whose empirical evidence was not strong enough to be clearly classified 444 into the high or the low nutrient availability groups (due to lack of data, contradictory 445 information or simply presenting data indicating moderate nutrient availability) were 446 classified as medium nutrient availability. 447

To maximize robustness, we included only the forests with clearly high (N = 23) and 448 clearly low (N = 69) nutrient availabilities for the main analysis, discarding data from the 37 449 remaining forests of medium nutrient availability from the main analyses. In a second 450 analysis, those forests whose nutrient status was not completely certain were assigned an 451 alternative nutrient classification (the second most plausible nutrient availability level, e.g. if 452 a nutrient-rich forest did not present very strong evidence of belonging to the high category, 453 we assigned it to the medium category: the nutrient status changed in the direction that would 454 go against our main finding; thus potentially offsetting the observed increase of CUEe with 455 increasing nutrient availability), to perform a sensitivity analysis to test the robustness of our 456 results to possible misclassifications (Supplementary Table 2). This sensitivity analysis 457 supported the robustness of our results. 458

We further tested the objectiveness of our nutrient classification using logit models, in which the response variable was the nutrient status of the forests (high or low availability), and the predictor variables were those contained in Supplementary Table 1). Given the lack of data for all variables for all forests, we categorized the predictor variables into four-level factors (following the criteria shown in Supplementary Table 3), where na indicated that data was not available, and high, medium and low indicated values or indications that suggested high, medium or low nutrient availability.

From the saturated model (i.e. nutrient status [high or low] ~ all variables in 466 Supplementary Table S1), we constructed the minimum adequate model selecting the 467 predictor variables using stepwise backward selection and the Akaike information criterion 468 (AIC). We then cross-validated the saturated and the minimum adequate models using the 469 repeated random sub-sampling validation technique: 78 forests were randomly selected as the 470 training set for our nutrient classification models and were tested by predicting the 14 471 remaining forests for which the models were not previously fitted. This procedure was 472 repeated 1000 times. Both the saturated and stepwise-selected models performed well in the 473

classification of the nutrient status with the available data (100% and 99% of the cases were 474 correctly classified in the saturated and the stepwise model, respectively; see Supplementary 475 Table 4). To further test our classification, we tested the reports on nutrient availability 476 ("Report" column in Supplementary Table 1) available in the literature, considering them the 477 most objective classification, with the other predictor variables, except for the assessments by 478 the principal investigators because these assessments would mostly agree with those in the 479 publications. We applied the same model selection and cross-validation procedures to these 480 models predicting the reports from literature as to the models predicting our nutrient 481 classification. With all the available data, the saturated and stepwise models correctly 482 classified 95% and 93% of the forests, respectively (Supplementary Table 4). 483

484 Statistical analyses

We ran generalized linear models (GLM) to test for differences in CUEe, NEP, Re and GPP 485 between forests of high and low nutrient availability, accounting for the possible effects of 486 GPP. mean age of the stand (as a covariate), management (as a binary variable: managed or 487 unmanaged) and climate [MAT, MAP and water deficit (WD) = 1 - (AET/PET)*100]. In 488 addition, we tested for interactions up to the second order among GPP, nutrient availability, 489 age and management. Thus, the saturated model (e.g. for NEP) was: NEP ~ (GPP + nutrient 490 availability + Age + Management) + MAT + MAP + WD, where variables between brackets 491 where those for which we tested for interactions up to the second order. The significant 492 variables of the final model (minimum adequate model, al terms significant at the 0.05 level) 493 were selected using stepwise backward variable selection and the AIC of the respective 494 regression models. To evaluate the variance explained by each predictor variable, we used the 495 averaged over orderings method (the lmg metric, similar to hierarchical partitioning ³¹) to 496 decompose R^2 from the R^{29} package relaimpo [Relative Importance for Linear Regression ³⁰]. 497 We further tested our results with model averaging [MuMIn R Package³²]. Model averaging 498 is a procedure based on multimodel inference techniques that computes an average model 499

from the estimates of the best models predicting the data and weighting their relative importance according to the difference of the second-order AIC between each model and the best model ³³. Finally, we tested whether nutrient status, management, age and climatic variables could lead to changes in patterns of biomass allocation with stepwise forward regressions. Model residuals met the assumptions required in all analyses.

The robustness of our analyses was tested by five different methods: i) running 505 weighted models using the inverse of the uncertainty of the estimates as a weighting factor, ii) 506 using only data derived from eddy covariance towers, iii) restricting comparison of nutrient-507 rich and nutrient-poor forests to a common rank of GPP (GPP < 2500 gC m⁻² year⁻¹, thus 508 excluding most of the tropical forests), iv) using an alternative classification of nutrient 509 availability (the second most plausible classification) as an analysis of sensitivity and v) using 510 the factors extracted for the classification of nutrients as nutrient richness covariates instead of 511 using the binary factor nutrient availability. We also present the analysis with all the data 512 available (including the medium nutrient availability category) in Supplementary Fig. 8 and in 513 the Supplementary Models. All analyses revealed very similar results. 514

516 **Captions**

Fig. S1. Global map of the forests used in this study. Forests have been coded according to their nutrient status: red indicates nutrient-rich forests whereas blue indicates nutrient-poor forests.

520

Fig. S2. Summary of the factor analysis performed to evaluate nutrient availability. 521 Graph A shows the factor loadings of the variables used in the analysis following the criteria 522 presented in Supplementary Table S3. A clear separation can be seen between those 523 indicating high (correlated with Factor 1, F1) and low (correlated with Factor 2, F2) nutrient 524 availability. Graph B shows the factor scores of the studied forests aggregated according to 525 the nutrient status. Note that in graph A FP is missing because no forest presented high values 526 of FP. Note also that in graph B some forests might present equal factor scores, resulting in 527 fewer points than expected. Abbreviations: ASI (additional soil information), CEC (cation 528 exchange capacity), CN (soil C:N ratio), FN (foliar nitrogen concentration), FP (foliar 529 phosphorus concentration), H (history of the stand), NDM (nitrogen deposition or 530 mineralization), ST (soil type), ON (other soil nutrients), PI (assessment by the principal 531 investigator of the forest), R (report about nutrient availability), SN (soil nitrogen 532 concentration). 533

534

Fig. S3. Influence of stand age and nutrient availability on NEP. Nutrient availability clearly influences NEP (P < 0.0001), but stand age has no significant effect (P = 0.14) when GPP is not considered. Neither interaction between nutrient availability and stand age is significant (P = 0.50).

539

Fig. S4. Relationships of NEP (A) and Re (B) with GPP in nutrient-rich and nutrientpoor forests indicating the age category of each stand. The age of the stand did not affect

the relationships of NEP (graphs **A**, **C**, **E**) and Re (graphs **B**, **D**, **F**) with GPP. The bar charts inside the NEP graphs show the average CUEe of nutrient-rich and nutrient-poor forests. Graphs **C** and **D** show forests older than 50 years old and graphs **E** and **F** show forests younger than 50 years old. Red-like points indicate nutrient-rich forests and blue-like points represent the nutrient-poor ones.

547

Fig. S5. Relationships of NEP (A) and Re (B) with GPP in nutrient-rich and nutrient-548 poor forests weighted using the inverse of the uncertainty as a weighting factor. The 549 uncertainty of the estimates did not change the results. Thus, as in Fig. 1, nutrient-poor forests 550 do not increase NEP when rates of carbon uptake increase. The bar chart inside graph A 551 shows the average CUEe of nutrient-rich and nutrient-poor forests. Error bars indicate the 552 uncertainty of the estimate on both the x- and y-axes (SE). In forests with GPP < 2500, 553 Nutrients*GPP (where Nutrients = nutrient availability) interactions are not significant at the 554 0.05 level. 555

556

Fig. S6. Relationships of NEP (A) and Re (B) with GPP in nutrient-rich and nutrientpoor managed forests. The general pattern for NEP and Re versus GPP shown for nutrientrich forests was also evident here. Nutrients = nutrient availability.

560

Fig. S7. NEP to GPP ratio (CUEe) is influenced by nutrient availability but not by
management. Different letters indicate significant differences between groups (Tukey's
HSD). The numbers beside the letters indicate the number of forest sites in the data base.

564

Fig. S8. Relationships of NEP (A) and Re (B) with GPP showing also the medium nutrient availability category. The general pattern for NEP and Re versus GPP in medium nutrient availability forests fits between the patterns shown by the nutrient-rich and the
nutrient-poor forests. Nutrients = nutrient availability.

569

Fig. S9. Nutrient-rich forests have a lower fine-root to total biomass ratio and a higher ratio of leaf area index (LAI) per unit of fine-root biomass. Error bars indicate standard errors. The numbers above the bars indicate the number of forest sites in the data base. Significance was tested with ANOVA.

574

Fig. S10. Relationships of NEP (A) and Re (B) with GPP showing only forests presenting 1000 < GPP < 2500. The results for this range of GPP indicate that the interaction between GPP*nutrient availability is not significant neither for NEP nor for Re. However, nutrient availability significantly increases the mean in NEP and reduces Re (P = 0.0026 and P =0.0036 respectively). On the other hand, differences in CUEe between nutrient-rich and nutrient-poor forests remained significant at the < 0.001 level (CUEe nutrient-rich = 0.33, nutrient-poor = 0.17). Nutrients = nutrient availability.

582

Table S1: Information on the nutrient availability of the forests studied. The term id 583 indicates the number of the site, referenced at the bottom of the table. NA indicates our 584 classification of nutrient status according to the provided information [high (H), medium (M) 585 or low (L) nutrient availability]. PI indicates the nutrient status suggested by the principal 586 investigators of the forests. The other columns provide information on nutrient availability as 587 follows: soil type, additional soil information, soil pH, soil carbon content (kg m⁻²) or 588 concentration (per dry mass %), soil nitrogen content or concentration, carbon-to-nitrogen 589 ratio (C:N), information on other soil nutrients, cation exchange capacity (CEC), nitrogen 590 deposition (D) or mineralisation (M), foliar nutrient concentration (N: nitrogen, P: 591 phosphorus), history of the forest and reports in the published literature on soil or forest 592

⁵⁹³ nutrient availability. Units: Carbon (C) and nitrogen (N) in percentage of dry mass (when ⁵⁹⁴ indicated by %) or in kg m⁻²; CEC in meq 100 g⁻¹; nitrogen deposition and mineralization in ⁵⁹⁵ kg ha⁻¹ year⁻¹; foliar nutrient concentration in percentage of dry mass. Additional ⁵⁹⁶ abbreviations: L (lower soil horizons), Lt (litterfall), U (upper soil horizons).

597

598

Table S2. Analysis of sensitivity to a possible misclassification of nutrient availability. 599 The table contains those forests for which information assessing nutrient status could lead to a 600 wrong classification. Each shows its values for CUEe, the uncertainty of this estimate (SE), 601 the original and most plausible classification of nutrient status and an alternative nutrient 602 classification. The *P*-values of the significant variables and the β weights of the covariates. 603 using the original and the alternative nutrient classification with stepwise backward 604 regressions, are shown at the bottom of the table. Possible predictors were GPP, nutrient 605 availability, stand age and management, including their interactions up to the second order, 606 MAT, MAP and WD. Significance levels: * P < 0.05, ** P < 0.01, *** P < 0.001. H high, M 607 medium and L low nutrient availability. 608

609

Table S3: Followed criteria for evaluating nutrient availability. The table shows the code assigned to the forests according to the values of the variables used for the nutrient availability assessment.

613

Table S4. Validation of the nutrient classification. Summary of the percentage of successfully classified forests of the different logit models used to validate the nutrient classification. In general terms, our nutrient classification was successfully predicted with the available data for nutrient status that, in turn, achieved a good percentage of successful predictions of the reports found in the literature on the nutrient status of the forests.

Fig. S3.

Table S1.

Site id	NA	PI	Soil type	Additional soil info	pН	С	Ν	C:N	Other Nutrients	CEC	N D/M	Fol N	History	Report
1	н										D:10		Fertilized with 350 kg urea ha ⁻¹ , 46% N	
2	L	L	Spodosol (ultic alaquods)	Poorly drained, argilic horizon										Nutrient limited
3	М			Stony sandy loam										Adequate nutrient supply
4	М							24			M:65			
5	L		Dystric, podzolic brown soils or Gleysols	Sandy to loamy sandy texture, organic layer mod/moder	3 to 5					Low (Ca, Mg)	D: high			
6	L		Hydromorphic podzol	Sandy, surface water table in winter										
7	М	М	Haplic and Entic podzols				U: 1.53% L: 0.13%	U: 30 L: 21						
8	L		Mixed, mesic, ultic haploxeralf (Cohasset series)	Fine-loamy, clay-loam	5.5	U: 6.9%	U: 0.17%	U: 41						
9	L		Fibric Histosol	Very wet, waterlogged										Nutrient-poor
10	М		Dystri-cambic Arenosol, near id 10	Not waterlogged							D: high			
11	L		Haplic podzol	wet sandy soil with humus and/or iron B horizon (Al buffer region).	4					Low	D: 35			Poor in Mg and P foliar concentrations. Good N foliar concentration.
12	L		Ultisol											
13	М	М	Brown podzolic	well drained, stone free, fine sandy loam materials										Good potato production when fertilized.
14	L			Sandy, hummus rich in calcium carbonate	5.8	U: 1.9% L: 0.7%		U: 66 L: 100						
15	L								Low P	Low				Extremely nutrient limited
16	Н		Brown forest earth	Deep and nutrient-rich soil layer										
17	L		Ferro-humic or humic podzols	Good drainage			0.01%	135				N:0.79%		
18	L													Similar to id 17

19	М		Histosol (Belhaven series)	Loamy mixed dysis thermic terric Haplosaprists (peat soils)	<4.5								Previously farmed; F at planting: 28–50 kg ha ⁻¹ (N and P); F mid-rotation: 140–195 kg ha ⁻¹ N and 28 kg ha ⁻¹ P	
20	Н		Humic alfisol	Silty loam-silty clay	5.2		Very high			Very high	D: high			
21	L		Oxisol	80% clay, high porosity (50-80%), low water capacity, highly weathered	4.3		5			Ū				Low nutrient content
22	L		Rustic podsol, Chromic cambisol	Reddish soils	4			U: 29			D: 13			
23	L		Lateritic red or yellow soil	63% clay, 19% silt	3.8									
24	Н												Former agricultural land regularly fertilized	Nutrient rich
25	L		Ultic alfisol	Mixed clay mineralogy, poorly drained from fall to spring	5.8									
26	L		Arenosol	Dune system										
27	L		Dystric cambisols		4.8	0.35%	0.03%		P: 9 ppm			N: 1.17% P: 0.07%		
28	L		Gelisol	Loamy sand to loam, thick organic horizon (30cm)		U: 40% L: 3%	U: 0.7% L: 0.17%	U: 50 L: 20				N: 0.84%		
29	L			()										Strongly nutrient
30	L						Low				D: 5.7			Immature and nutrient- rich lava soil (64% N deficit)
31	L			Peat soil	<4.7									Nutrient limited
32	М		Orthic Gleysol									N: 0.7 - 2.1%		
33	М		Andosol	Silty loam	5.8	U: 2.1%	Low			19				Nitrogen limited
34	L	L	Acrisol and ultisols	Sandy										Nutrient-poor
35	М		Brown alfisol	Sandy loam or loam										
36	Н		Cambisol	4% sand, 56% lime, 44% clay										Nutrient-rich
37	Н	Н	Gleysol				U: 1.3%	U: 19 L: 30						
38	М		Gleysol	Peaty, seasonally waterlogged, black organic horizon									Fertilized 40 ago.	N increased after clear cutting

39	М		Gleysol	Peaty, seasonally waterlogged, black organic horizon									Fertilized 40 ago.	N increased after clear cutting
40	L			well drained, acidic sandy loam with some poorly drained peat soils							M: 34			Nutrient-poor
41	Н		Luvisol or Stagnic luvisol											Typically very nutrient-rich soils
42	L	L		Well drained lateritic red and yellow earth soils with highly weathered sands	5.5		0.10%							Nutrient-poor
43	L	L			3.5			35				N: 1.06%		
44	L	M L	Haplic podzol				Low				M: low D: low			>99.9% soil N is unavailable for plants. Nitrogen limitation.
45	L			Sandy loam with limited water capacity	acid		Low		Low P					Bogs and peatland poor in N and very P limited
46	L	L	Lithic haploxerepts	Very rocky silt loam		1.1%	0.11%	10						
47	L			Heavily leached					Low P	Low				Nutrient-poor
48	Н													Very nutrient-rich soil
49	Н													Very nutrient-rich soil
50	Н													Very nutrient-rich soil
51	М		Spodosol (or cryosol)	Coarse texture, highly leached, gray		2.2%	0.50%	4.4						
52	L		Entisol											
53	L		Dystric cambisol	90 cm depth, low water capacity, rocky and sandy (80%)	5.6	2.6%		14						
54	Н	М	Typic Fragiudalf (Alfisol)	fine-silty	U: 3.7 L: 6.7	U: 6.2%	U: 0.5%	U: 12.6						
55	М		Haplic cambisol and rendzic leptosols (rendzina)	Very shallow	4 to 7.5	6.5	0.47	U: 15			D: 26			
56	Н		Alfisol	Dark-brown										
57	Н	Н	Humic Umbrisol		6.1			15.8						
58	L		Hydromorphic podzol	Sandy, waterlogged in winter				26						
59	М			Sand dunes.							D: high			Nutrient-poor under natural conditions

60	М		Kandiustalfs		6.5									Relatively nutrient rich
61	L	L M	Kalahari sands	Presents a calcrete duricrust								N: 1 to 3%		Nutrient-poor
62	М			Sandy soils			Low							N-fixing shrubs increase N availability
63	М			Sandy soils			Low							N-fixing shrubs increase N availability
64	L	L		83% sand, 9% silt and 8% clay	5.6	1.6%	0.12%	133						
65	М		Typic Dystrochrept								M: 122			
66	М	М	Mollic Eutroboralf and Typic Argiboroll	Loam	5.3	2.5%	0.14	17.9	High P					Although N might be limiting, P is highly available
67	L	M L										N: 0.95%		
68	Н		Eutric Vertisol	60% clay		5.6%	3.80%	8.5	P: 98ppm	27		N: 3%	Former fertilized agricultural land	
69	L		Podzolic glacial till	Sandy										Nutrient-poor
70	L	L	Ombrotrophic peat dome		<3	39%	1.30%	30	Low			P: very low N: low		Low availability of essential nutrients
71	L	L		58% sand, 32% silt, 10% clay	U: 6.4 L: 6.3	U: 1.2 L: 1.6	U: 0.08 L: 0.08	U: 15 L: 20				N: 0.71%		
72	L		Durian Series	Band of laterite, highly leached	3.5 to 4.8				Low P	Low				
73	Н		Xeric Alfisol	Loam texture			High		High				Former agricultural land	Characterized by its high nutrient availability
74	Н		Xeric Alfisol	Loam texture			High		High				Former agricultural land	Characterized by its high nutrient availability
75	Н		Xeric Alfisol	Loam texture			High		High				Former agricultural land	Characterized by its high nutrient availability
76	L			Waterlogged										Nutrient availability restricted by slow decomposition rates
77	L			Waterlogged										Nutrient availability restricted by slow decomposition rates

78	L			Waterlogged									Nutrient availability restricted by slow decomposition rates
79	М	Н		75% rocks, stone-free fraction is silty-clay loam (39% clay, 35% silt, 26% sand)		7.40%	0.48%	U: 15 L: 11			N: 1.26%		
80	L		Red earth				Low		Low				Very poor nutrient status
81	М				U: 3.9 L: 4.1	U: 27% L: 9%	U: 1.3% L: 0.4%	U: 20 L: 24	U: 0.08% L: 0.03%		N Lt: 1% P lt: 0.07%		
82	Н		Luvisol	100 cm depth, 52% sand, 12% silt, 35% clay	5.7			12.6					
83	L		Utisol	Stony	5.1		Low		Low	Low			Nutrient-poor, especially P
84	L	L		93% sand, 3% silt, 4% clay	6.5 to >7.9	U: 0.9 L: 0.4	U: 0.03 L: 0.03	U: 30 L: 14	Low		N: 0.70%		Poor sandy soil
85	Н			Loam, from volcanic ashes.							N: 2.30%		
86	М	М				U: 4.2%	U: 0.4%	10.5					
87	L			Sandy to sandy loam		3.1	0.14	22.0			N: 0.95%		
88	L			Sandy to sandy loam		2.3	0.19	12.1			N:1.07%		
89	L			Sandy to sandy loam		3.3	0.17	19.4			N:1.35%		
90	L			Sandy to sandy loam		1.7	0.08	21.3			N:1.36%		
91	L			Sandy		1.8	0.1	18.0			N:1.20%		HJP75 could be more nutrient limited due to higher tree competition
92	L			Sandy to sandy loam		1.4	0.1	14.0			N:1.55%		
93	М	М											
94	М	М											
95	Н												Fertilized
96	L	L	Ultic alaquods	Sandy, siliceous, thermic		Low	Low		Low			Trees responded drastically to fertilization experiment	Low in available nutrients
97	L	L	Ultic alaquods	Sandy, siliceous, thermic		Low	Low		Low			Trees responded drastically to fertilization experiment	Low in available nutrients
98	L		Haplic podzol				Low		Low				Nutrient-poor soil

99	М				Low					Low			Nutrients are sufficiently available in this forest
100	Н		Luvisol				High						Very nutrient rich
101	L	М		57% sand, 36% silt and 6% clay			0.18%				M: 4.4		
102	Н		Brown soil										Very nutrient rich
103	М		Dystric Cambisol	Clay loam, from volcanic ash deposit									
104	L		Belterra clay Ferralsols				Low		Low				Nutrient-poor
105	L		Belterra clay Ferralsols				Low		Low				Nutrient-poor
106	L		Gleyic Cambisol								D: 5		Stream water chemistry revealed very low N concentrations
107	М		Dystric Cambisol										Less nutrient rich than a eutric Cambisol
108	L			Drained, peat-rich			Low		Low				Severely nutrient limited
109	L		Volcanogenous regosol	Well drained			Low		Low				Nutrient-poor
110	М	М	Brunicolic grey brown luvisol	Sandy to loamy sand soil, low-to-moderate water-holding capacity	6.3	0.56%	U: 0.06%	L: 11.4			D: 7.5	Planted on former agricultural land	Have higher amounts of soil macronutrients (i.e. P, K, Ca, Mg) than id 111 and 112
111	М	М	Gleyed brunisolic luvisol	Sandy to loamy sand soil, low-to-moderate water-holding capacity	4.1	0.61%	U: 0.05%	L: 15.4			D: 7.5	Planted on cleared oak- savannah land	
112	М	М	Brunicolic grey brown luvisol	Sandy to loamy sand soil, low-to-moderate water-holding capacity	3.7	0.60%	U: 0.06%	L: 19.4			D: 7.5	Planted on cleared oak- savannah land	
113	М	М	Gleyed brunisolic luvisol	Sandy to loamy sand soil, low-to-moderate water-holding capacity	4.3	0.51%	U: 0.07%	L: 14.2			D: 7.5	Planted on former agricultural land	Same as id 110
114	L		Entic Haplothod	Sandy, well drained			Low						Nitrogen limited
115	Н		Brown Andosol			U: 8.1% L: 3.0%	U: 0.4% L: 0.2%.	U: 20 L: 15				Grazed heathland pasture prior to afforestation	
116	L	L M		Gravelly loamy sand, 19 cm depth		U: 39% L: 4.6%	U: 0.9% L: 0.3%	U: 43 L: 15					Presents low nitrogen availability

1	17	L	L M		Gravelly loamy sand to sand, 19 cm depth	U: 45% L: 6.9%	U: 1% L: 0.2%	U: 45 L: 35					
1	18	L	L M		Gravelly loamy sand, 19 cm depth	U: 46% L: 18%	U: 1% L: 0.8%	U: 46 L: 23					
1	19	М	М										Fertilization stimulated tree growth
12	20	L		Typic Paleudult	Highly weathered, acidic		Low		low P	Low			
12	21	М		Podzols and Cambisols									Moderately nutrient- rich soils
12	22	М		Enthic Haplorthod							$\begin{array}{c} M: > id \\ 114 \end{array}$		Nutrient-poor soil similar to id 114
12	23	М		Stagni-vertic Cambisol	Some areas of arenihaplic Luvisols and calcaric Cambisols								Vegetation is typical for relatively nutrient- rich soils
12	24	М		Rendzina	Above chalk and limestone			11					Poor soil conditions
12	25	М		Brown	Loam		Low		Low				Nutrient limitations
1:	26	L		Cambisols	Sandy silt		Low		Low		see re	port	Nutrient limited: extremely low nutrient concentrations were reported in <i>Pinus</i> and <i>Larix</i> trees
12	27	L		Cambisols	Sandy silt		Low		Low		Idem id	d 126	Nutrient limited
12	28	L		Cambisols	Sandy silt		Low		Low		Idem id	d 126	Nutrient limited
12	29	L		Cambisols	Sandy silt		Low		Low		Idem id	d 126	Nutrient limited

Site id: 1. Aberfeldy/Griffins; 2. Austin; 3. Balmoral; 4. Barlett; 5. Bayreuth/Weiden Brunnen; 6. Bilos; 7. Bily Kriz Forest; 8. Blodgett Forest; 9. Bornhoved Alder; 10.
Bornhoved Beech; 11. Brasschaat; 12. Bukit Soeharto; 13. Camp Borden; 14. Castelporziano; 15. Caxiuana; 16. Changbai Mountains; 17. Chibougamau EOBS; 18.
Chibougamau HBS00; 19. Coastal plain North Carolina; 20. Collelongo; 21. Cuieiras/C14; 22. Davos; 23. Dinghushan DHS; 24. Dooary; 25. Duke Forest; 26. El Saler; 27.
Espirra; 28. Fairbanks; 29. Flakaliden C; 30. Fujiyoshida; 31. Fyedorovskoye; 32. Groundhog; 33. Gunnarsholt; 34. Guyaflux; 35. Gwangneung; 36. Hainich; 37. Hampshire;
38. Hardwood; 39. Hardwood_21; 40. Harvard; 41. Hesse; 42. Howards spring; 43. Howland; 44. Hyytiala; 45. Ilomantsi Mekrijärvi; 46. Ione; 47. Jacaranda/K34; 48.
Kannenbruch Alder/Ash; 49. Kannenbruch Beech; 50. Kannenbruch Oak; 51. Khentei Taiga; 52. Kiryu; 53. La Majadas del Tietar; 54. La Mandria; 55. Lägeren; 56. Laoshan;

653	57. Lavarone; 58. Le Bray; 59. Loobos; 60. Mae Klong; 61. Maun Mopane; 62. Metolius; 63. Metolius young; 64. Mitra; 65. Morgan Monroe; 66. NAU Centennial; 67.
654	Niwot Ridge; 68. Nonantola; 69. Norunda; 70. Palangkaraya; 71. Parco Ticino; 72. Pasoh; 73. Popface alba; 74. Popface euamericana; 75. Popface nigra; 76. Prince Albert
655	SSA (SOAS); 77. Prince Albert SSA (SOBS); 78. Prince Albert SSA (SOJP); 79. Puechabon; 80. Qianyanzhou Ecological Station; 81. Renon; 82. Roccarespampami 2; 83.
656	Sakaerat; 84. San Rossore; 85. Sapporo; 86. Sardinilla; 87. Saskatchewan F77; 88. Saskatchewan F89; 89. Saskatchewan F98; 90. Saskatchewan HJP02; 91. Saskatchewan
657	HJP75; 92. Saskatchewan HJP94; 93. Sky Oaks old; 94. Sky Oaks young; 95. Skyttorp2; 96. Slash pine Florida Mid; 97. Slash pine Florida old; 98. Sodankylä; 99. Solling;
658	100. Soroe; 101. Sylvania; 102. Takayama; 103. Takayama 2; 104. Tapajos 67; 105. Tapajos 83; 106. Teshio CC-LaG; 107. Tharandt; 108. Thompson NSA (NOBS); 109.
659	Tomakomai; 110. Turkey Point TP02; 111. Turkey Point TP39; 112. Turkey Point TP74; 113. Turkey Point TP89; 114. University of Michigan; 115. Vallanes; 116.
660	Vancouver Island DF49; 117. Vancouver Island HDF00; 118. Vancouver Island HDF88; 119. Vielsalm; 120. Walker Branch; 121. Wet-T-57; 122. Willow Creek; 123.

661 Wytham Woods; **124.** Yatir; **125.** Yellow River Xiaolangdi; **126.** Yenisey Abies; **127.** Yenisey Betula; **128.** Yenisey Mixed; **129.** Yenisey/Zotino.

662 **Table S2.**

Forest name	CUEe	SE	Original Classification	Alternative Classification
Bayreuth/Weiden Brunnen	-0.02	0.04	L	Μ
Bilos	0.25	0.07	L	Μ
Blodgett Forest	0.11	0.03	L	Μ
Bornhoved Alder	0.15	0.07	L	Μ
Brasschaat	0.00	0.02	L	Μ
Camp Borden	0.12	0.05	М	L
Castelporziano	0.32	0.02	L	Μ
Guyaflux	0.04	0.04	L	Μ
Hampshire	0.28	0.06	Н	Μ
Hardwood	0.32	0.05	М	Н
Hardwood_21	0.31	0.06	М	Н
Lägeren	0.23	0.03	М	Н
Lavarone	0.68	0.05	Н	Μ
Loobos	0.23	0.02	М	L
Maun Mopane	-0.03	0.25	L	Μ
Prince Albert SSA (SOAS)	0.15	0.02	L	Μ
Prince Albert SSA (SOBS)	0.06	0.06	L	М
Prince Albert SSA (SOJP)	0.05	0.08	L	Μ
Sylvania	0.10	0.07	L	Μ
Teshio CC-LaG	0.05	0.08	L	Μ
Vielsalm	0.31	0.02	Μ	L
Wet-T-57	-0.03	0.04	М	Н
Willow Creek	0.25	0.06	М	Н
Yatir	0.28	0.11	М	L
Yellow River Xiaolangdi	0.30	0.05	М	L
			Effect (β) R^2	Effect (β) R^2
Nutrient availability			H>L; -0.32** 0.12	H>L; -0.29** 0.07
GPP			0.91*** 0.14	0.59** 0.12
Age			1.13*** <0.01	1.22*** 0.01
GPP*Age			-1.17*** 0.17	-1.18*** 0.18
MAT			- -	0.39* 0.06
Adjusted R ²			0.40	0.39

NOTE: Depending on the classification, the number of replicates varies (because the number of forests of medium nutrient availability changes).

Table S3.

Variable	Code	Variable	Code
Soil Additional Info		Soil type	
Poorly drained, argilic horizon	Low	Acrisol and ultisols	Low
100 cm depth, 52% sand, 12% silt, 35% clay	Medium	Alfisol	High
4% sand, 56% lime, 44% clay	Medium	Andosol	Medium
57% sand, 36% silt and 6% clay	Low	Arenosol	Low
58% sand, 32% silt, 10% clay	Medium	Belterra clay Ferralsols	Low
60% clay	Medium	Brown Andosol	High
63% clay, 19% silt	Low	Brown podzolic	Low
75% rocks, stone free fraction is silty-clay loam (39% clay, 35% silt, 26% sand) 80% clay, high porosity (50-80%), low water capacity, highly	Medium	Brown soil	High
weathered	Low	Brunicolic grey brown luvisol	High
83% sand, 9% silt and 8% clay	Low	Cambisol	Medium
90 cm depth, low water capacity, roky and sandy (80%)	Low	Dystric cambisol	Medium
93% sand, 3% silt, 4% clay	Low	Enthic Haplorthod	Low
Above chalk and limestone	Low	Entisol	Low
Band of laterite, highly leached	Low	Eutric Vertisol	Low
Clay loam, from volcanic ash deposit	Medium	Fibric Histosol	Low
Coarse texture, highly leached, gray	Low	Gleyed brunisolic luvisol	High
Dark-brown	High	Gleyic Cambisol	Medium
Deep and fertile soil layer	High	Gleysol	Medium
Drained, peat-rich	Low	Haplic cambisol and rendzic leptosols	Medium
Dune system	Low	Histosol	Low
Fine-loamy, clay-loam	Medium	Humic umbrisol	Medium
Fine-silty	Medium	Kalahari sands	Low
Good drainage	High	Kandiustalfs	Medium
Gravelly loamy sand to sand, 19 cm depth	Medium	Lateritic red or yellow soil	Low
Gravelly loamy sand, 19 cm depth	Medium	Lithic haploxerepts	Low
Heavily leached	Low	Luvisols	High
Highly weathered, acidic	Low	Mixed mesic ultic haploxeralf	Low
Loam	High	Mollic Eutroboralf and Typic Argiboroll	Medium
Loam, from volcanic ashes.	High	Ombrotrophic peat dome	Low
Loamy mixed dysis thermic terric Haplosaprists (peat soils)	Low	Orthic Gleysol	Medium
Loamy sand to loam, thick organiz horizon (30cm)	Medium	Oxisol	Low
Mixed clay mineralogy, poorly drained from fall to spring	Low	Podzol	Low
Not waterlogged	Medium	Red earths	Low
Peat soil	Low	Spodosol	Low
Peaty, seasonally waterlogged, black organic horizon	Low	Stagni-vertic Cambisol	Medium
Peaty, seasonally waterlogged, black organic horizon	Low	Typic Dystrochrept	Medium
Presents a calcrete duricrust	Low	Typic Paleudult	Low
Sand dunes	Low	Ultic alaquods	Low
Sandy	Low	Ultic alfisol	Low
Sandy loam or loam	Medium	Ultisol	Low
Sandy loam with limited water capacity	Low	Volcanogenous regosol	Medium
Sandy silt	Medium		

Sandy to loamy sand soil, low-to-moderate water holding capacity	Medium	Other Nutrients (soil P)	
Sandy to loamy sandy texture, organic layer mod/moder	Medium	9 ppm	Low
Sandy to sandy loam	Medium	98 ppm	High
Sandy, hummus rich in calcium carbonate	Low	0.08-0.03%	Medium
Sandy, siliceous, thermic	Low		
Sandy, surface water table in winter	Low	C:N ratio	
Sandy, waterlogged in winter	Low	> 30	Low
Sandy, well drained	Low	30 - 20	Medium
Silty loam	Medium	<20	High
Silty loam-silty clay	Medium		
Some areas of arenihaplic Luvisols and calcaric Cambisols	Medium	CEC (meq L ⁻¹)	
Stony	Low	>20	High
Stony sandy loam	Medium	>10	Medium
Very rocky silt loam	Low	<10	Low
Very shallow	Low		
Very wet, waterlogged	Low	N deposition (kg ha ⁻¹ year ⁻¹)	
Waterlogged	Low	>20	High
Well drained	Medium	20 - 10	Medium
Well drained lateritic red and yellow earth soils with highly weathered sands	Low	<10	Low
Well drained, acidic sandy loam with some poorly drained peat	Low		
Well drained stonefree fine sandy loam materials	Medium	N mineralization (kg ha ⁻¹ year ⁻¹)	
Wet sandy soil with humus and/or iron B horizon (Al buffer	Weddulli	(innerunzation (kg na 'yeur')	_
region).	Medium	4.4	Low
		34	Low
Soil pH		65	Medium
0 - 5	Low	122	High
5.1 - 6	Medium		
6.1 - 8	High	Foliar N%	
		>2%	High
Soil N%		2 - 1%	Medium
>0.8%	High	<1%	Low
>0.1%	Medium		

Low

Foliar P%

0.07%	Low

<0.1%

Table S4.

Dependent variable	Model selection	AIC	Correct cases	Failed cases	Success (%)
Nutrient status	Saturated	110	92	0	100%
Nutrient status	Stepwise	37	91	1	99%
Report	Saturated	130	55	3	95%
Report	Stepwise	37	54	4	93%

671 List of Models

Here, we present the minimum adequate models exposed in Table 1 followed by its homologous final model achieved by the model averaging procedure. Predictor variables were: GPP, Nutrient availability (NA), Age, Management (MNG), and its interactions up to second order, MAT, MAP and WD. Forests whose category of management was not managed or unmanaged were excluded. In model averaging summaries, R imp indicates the relative importance of the variables in the final model.

677 General Model

678 **NEP (Fig. 1)**

	Estimate	Std.Err	t value	Pr(> t)	
Intercept	-1056	219.8	-4.803	0.0000124	***
gpp	0.8679	0.1235	7.029	3.38E-09	***
age	4.76	1.319	3.609	0.000664	***
nutrient.classLOW	934.9	229.4	4.076	0.000149	***
mat	20.67	6.186	3.342	0.001502	**
gpp:age	-0.00293	0.0007656	-3.828	0.000333	***
gpp:nutrient.classLOW	-0.6802	0.1318	-5.162	0.00000346	***
age:nutrient.classLOW	-1.862	0.7679	-2.425	0.018614	*

 $\mathbf{R}^2 = 0.7356$ adj $\mathbf{R}^2 = 0.702$

ANOVA table (type III)							•
	SumSq	DF		F value	Pr(>F)		\mathbf{R}^2
(Intercept)	809163		1	23.0691	0.00001244	***	
gpp	1732864		1	49.4036	3.384E-09	***	0.18
age	456867		1	13.0252	0.0006645	***	0.03
nutrient.class	582787		1	16.6151	0.0001486	***	0.19
mat	391717		1	11.1678	0.0015015	**	0.09
gpp:age	513890		1	14.6509	0.0003332	***	0.09
gpp:nutrient.class	934745		1	26.6494	3.465E-06	***	0.15
age:nutrient.class	206289		1	5.8813	0.0186138	*	0.01
Residuals	1929161		55				

679 NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	-935.8	239.8	244.1	3.833	0.00013	***	(Intercept)	1.00
age	3.947	2.058	2.075	1.902	0.05715		gpp	1.00
gpp	0.7856	0.1379	0.1404	5.597	< 0.00001	***	gpp:NA	1.00
mat	18.69	6.871	7.011	2.667	0.00766	**	NA	1.00
NA.LOW	731.9	287.5	291.9	2.507	0.01217	*	mat	0.97
age:gpp	-0.00284	0.00081	0.000824	3.445	0.00057	***	MNG	0.62
age:NA.LOW	-1.865	0.7762	0.7939	2.349	0.01881	*	gpp:MNG	0.55
gpp:NA.LOW	-0.5897	0.164	0.1668	3.536	0.00041	***	age	0.53
MNG.UM	280.4	156.1	158.2	1.773	0.07628		wd	0.50
wd	2.738	1.733	1.768	1.549	0.12146		age:gpp	0.45
gpp:MNG.UM	-0.2451	0.0736	0.07525	3.257	0.00112	**	age:NA	0.42
MNG.UM:NA.LOW	-72.39	136	139.1	0.52	0.60276		map	0.15
map	-0.0281	0.09175	0.0938	0.3	0.76454		MNG:NA	0.08
-							age:MNG	0.00

16 models Δ < 4

Re (Fig. 2)

	Estimate	Std.Err	t value	Pr(> t)	
(Intercept)	1097	228.8	4.794	0.0000129	***
gpp	0.09329	0.1285	0.726	0.471097	
age	-4.788	1.373	-3.487	0.000968	***
nutrient.classLOW	-955.6	238.8	-4.002	0.00019	***
mat	-17.02	6.44	-2.643	0.010676	*
gpp:age	0.00294	0.000797	3.688	0.000519	***
<pre>gpp:nutrient.classLOW</pre>	0.6805	0.1372	4.961	0.00000712	***
age:nutrient.classLOW	1.967	0.7995	2.46	0.017077	*

$\mathbf{R}^2 =$	0.9108	adj R ² =	0.8995			
ANOVA table (type III)	~ ~					_ 2
	SumSq	DF	F value	Pr(>F)		R"
(Intercept)	873556	1	22.9785	0.00001286	***	
gpp	20021	1	0.5266	0.4710968		0.64
age	462225	1	12.1587	0.0009684	***	0.01
nutrient.class	608864	1	16.0159	0.0001896	***	0.03
mat	265614	1	6.9869	0.0106758	*	0.16
gpp:age	517154	1	13.6035	0.0005186	***	0.03
gpp:nutrient.class	935495	1	24.6078	7.125E-06	***	0.05
age:nutrient.class	230005	1	6.0502	0.0170767	*	0.01
Residuals	2090888	55				

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	1028	252.1	256.7	4.004	6.2E-05	***	(Intercept)	1.00
age	-4.61	1.463	1.492	3.089	0.00201	**	gpp	1.00
gpp	0.1505	0.1434	0.146	1.031	0.30247		NA	1.00
mat	-15.27	7.095	7.242	2.108	0.03502	*	gpp:NA	1.00
NA.LOW	-765.2	303.2	307.8	2.486	0.01293	*	mat	0.85
age:gpp	0.00283	0.00083	0.00085	3.332	0.00086	***	age	0.71
age:NA.LOW	1.971	0.8094	0.8277	2.382	0.01723	*	age:gpp	0.71
gpp:NA.LOW	0.5838	0.1719	0.1747	3.342	0.00083	***	age:NA	0.68
wd	-3.12	1.809	1.845	1.691	0.09077		wd	0.59
MNG.UM	-214.4	164.1	165.9	1.292	0.1963		MNG	0.39
gpp:MNG.UM	0.2253	0.07724	0.07896	2.853	0.00434	**	gpp:MNG	0.29
map	0.05755	0.09505	0.09721	0.592	0.55382		map	0.15
MNG.UM:NA.LOW	76.51	142	145.3	0.527	0.59841		MNG:NA	0.03
							age:MNG	0.00

13 models Δ < 4

684 Models weighted by the uncertainty of the estimates (Supplementary Fig. 5)

NEP

	Estimate	Std.Err	t value	Pr(> t)	
(Intercept)	-848.4	226.4	-3.747	0.000431	***
gpp	0.7368	0.1328	5.548	8.53E-07	***
age	5.099	1.522	3.349	0.001468	**
nutrient.classLOW	719.1	240.9	2.985	0.004221	**
mat	17.79	6.842	2.6	0.011953	*
gpp:age	-0.00308	0.0009198	-3.346	0.001484	**
gpp:nutrient.classLOW	-0.515	0.1536	-3.352	0.001457	**
age:nutrient.classLOW	-2.288	0.8235	-2.778	0.007462	**

\mathbf{R}^2 =	0.614	adj R ² =	0.5648			
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	15401	1	14.0377	0.0004313	***	
gpp	33773	1	30.783	8.532E-07	***	0.20
age	12308	1	11.2187	0.0014678	**	0.02
nutrient.class	9778	1	8.9126	0.0042208	**	0.14
mat	7416	1	6.7591	0.011953	*	0.08
gpp:age	12281	1	11.1935	0.0014844	**	0.06
gpp:nutrient.class	12327	1	11.2351	0.001457	**	0.08
age:nutrient.class	8469	1	7.7187	0.0074616	**	0.03
Residuals	60343	55				

687 NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	1028	252.1	256.7	4.004	6.2E-05	***	(Intercept)	1.00
age	-4.61	1.463	1.492	3.089	0.00201	**	gpp	1.00
gpp	0.1505	0.1434	0.146	1.031	0.30247		NA	1.00
mat	-15.27	7.095	7.242	2.108	0.03502	*	gpp:NA	1.00
NA.LOW	-765.2	303.2	307.8	2.486	0.01293	*	mat	0.85
age:gpp	0.002829	0.00083	0.000849	3.332	0.00086	***	age	0.71
age:NA.LOW	1.971	0.8094	0.8277	2.382	0.01723	*	age:gpp	0.71
gpp:NA.LOW	0.5838	0.1719	0.1747	3.342	0.00083	***	age:NA	0.68
wd	-3.12	1.809	1.845	1.691	0.09077		wd	0.59
MNG.UM	-214.4	164.1	165.9	1.292	0.1963		MNG	0.39
gpp:MNG.UM	0.2253	0.07724	0.07896	2.853	0.00434	**	gpp:MNG	0.29
map	0.05755	0.09505	0.09721	0.592	0.55382		map	0.15
MNG.UM:NA.LOW	76.51	142	145.3	0.527	0.59841		MNG:NA	0.03
							age:MNG	0.00

13 models $\Delta < 4$

	Estimate	Std.Err	t value	Pr(> t)	
(Intercept)	843.6	226	3.733	0.000451	***
gpp	0.257	0.1309	1.963	0.054717	
age	-4.752	1.544	-3.078	0.003249	**
nutrient.classLOW	-710.6	240.3	-2.957	0.004569	**
mat	-14.44	6.942	-2.08	0.042228	*
gpp:age	0.002832	0.0009312	3.041	0.003608	**
gpp:nutrient.classLOW	0.5055	0.1522	3.321	0.001596	**
age:nutrient.classLOW	2.252	0.8341	2.7	0.009199	**

 $R^2 = 0.8781$ adj $R^2 = 0.8626$ ANOVA table (type III)

ANOVA table (type III)						
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	10232	1	13.9334	0.0004507	***	
gpp	2830	1	3.8532	0.0547171		0.65
age	6956	1	9.4726	0.0032495	**	0.00
nutrient.class	6421	1	8.7445	0.0045687	**	0.02
mat	3176	1	4.3251	0.0422277	*	0.15
gpp:age	6791	1	9.2477	0.0036078	**	0.02
gpp:nutrient.class	8101	1	11.032	0.0015956	**	0.03
age:nutrient.class	5353	1	7.2893	0.009199	**	0.01
Residuals	40389	55	5			

691

Re model averaging 692

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	787.1	271	275.3	2.858	0.00426	**	(Intercept)	1.00
age	-4.66	1.566	1.602	2.91	0.00362	**	gpp	1.00
gpp	0.2976	0.1511	0.1536	1.937	0.05273		NA	1.00
mat	-13.85	7.181	7.34	1.887	0.05921		gpp:NA	0.97
NA.LOW	-557	302.8	307	1.814	0.06964		mat	0.73
age:gpp	0.00279	0.00094	0.00097	2.889	0.00387	**	age	0.70
age:NA.LOW	2.252	0.8484	0.8675	2.596	0.00942	**	age:gpp	0.70
gpp:NA.LOW	0.4508	0.1705	0.1735	2.598	0.00938	**	age:NA	0.70
wd	-2.856	1.872	1.913	1.493	0.1354		wd	0.51
MNG.UM	-185.5	162	163.9	1.132	0.25761		MNG	0.30
gpp:MNG.UM	0.2135	0.09021	0.09213	2.317	0.02049	*	gpp:MNG	0.22
map	-0.03157	0.08994	0.09188	0.344	0.73117		map	0.11
-							age:MNG	0.00
							MNG:NA	0.00

15 models Δ < 4

693

695 Models forests Eddy Covariance data

NEP

	Estimate	Std.Err	t value	Pr (> t)		
(Intercept)	-575.607	257.70547	-2.234	0.029924	*	
gpp	0.58016	0.1567	3.702	0.000525	***	
nutrient.classLOW	468.7595	281.1306	1.667	0.101563		
managementUM	321.0978	119.82562	2.68	0.009896	**	
mat	18.41545	7.09241	2.597	0.012274	*	
gpp:nutrient.classLOW	-0.43306	0.18555	-2.334	0.02358	*	
gpp:managementUM	-0.25613	0.07463	-3.432	0.001197	**	
- 2						
$\mathbf{R}^2 =$	0.58	adj R²=	0.5306			
ANOVA table (type III)						2
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	181821	1	4.9889	0.029924	*	
gpp	400570					~
811	499578	1	13.7077	0.000525	***	0.18
nutrient.class	499578 101326	1 1	13.7077 2.7803	0.000525 0.101563	***	0.18 0.11
nutrient.class management	499578 101326 261706	1 1 1	13.7077 2.7803 7.1808	$\begin{array}{c} 0.000525\\ 0.101563\\ 0.009896\end{array}$	*** **	0.18 0.11 0.04
nutrient.class management mat	499578 101326 261706 245706	1 1 1 1	13.7077 2.7803 7.1808 6.7418	0.000525 0.101563 0.009896 0.012274	*** ** *	0.18 0.11 0.04 0.09
nutrient.class management mat gpp:nutrient.class	499578 101326 261706 245706 198516	1 1 1 1 1	13.7077 2.7803 7.1808 6.7418 5.447	0.000525 0.101563 0.009896 0.012274 0.02358	*** ** *	$\begin{array}{c} 0.18 \\ 0.11 \\ 0.04 \\ 0.09 \\ 0.06 \end{array}$
nutrient.class management mat gpp:nutrient.class gpp:management	499578 101326 261706 245706 198516 429267	1 1 1 1 1	13.7077 2.7803 7.1808 6.7418 5.447 11.7785	0.000525 0.101563 0.009896 0.012274 0.02358 0.001197	*** ** * *	$\begin{array}{c} 0.18 \\ 0.11 \\ 0.04 \\ 0.09 \\ 0.06 \\ 0.11 \end{array}$

698 NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	-541.6	328.6	333.1	1.626	0.10396		(Intercept)	1.00
gpp	0.5573	0.1879	0.1907	2.922	0.00348	**	gpp	1.00
MNG.UM	328.7	130.2	133.2	2.467	0.01361	*	NA	1.00
mat	17.67	7.436	7.606	2.323	0.02018	*	MNG	0.91
NA.LOW	391.7	370.2	374.8	1.045	0.29596		gpp:MNG	0.91
gpp:MNG.UM	-0.2623	0.07625	0.07807	3.36	0.00078	***	mat	0.90
gpp:NA.LOW	-0.4468	0.1904	0.1948	2.293	0.02183	*	gpp:NA	0.83
wd	1.995	1.977	2.023	0.986	0.32403		age	0.18
MNG.UM:NA.LOW	-91.61	138.1	141.5	0.648	0.51729		wd	0.18
age	2.343	2.424	2.434	0.963	0.33564		MNG:NA	0.11
age:gpp	-0.00275	0.0008	0.000822	3.341	0.00083	***	age:gpp	0.09
age:NA.LOW	-1.928	0.799	0.8188	2.354	0.01855	*	age:NA	0.09
map	0.02251	0.09908	0.1015	0.222	0.82458		map	0.08
-							age:MNG	0.00

9 models Δ < 4

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	627.57583	260.16476	2.412	0.01949	*	
gpp	0.38836	0.1582	2.455	0.01754	*	
nutrient.classLOW	-522.60114	283.81343	-1.841	0.07139		
managementUM	-314.55694	120.96911	-2.6	0.01215	*	
mat	-17.83373	7.16009	-2.491	0.01605	*	
gpp:nutrient.classLOW	0.46899	0.18732	2.504	0.01554	*	
gpp:managementUM	0.2495	0.07534	3.311	0.00171	**	
\mathbf{R}^2 =	0.9163	adj R ² =	0.9065			
ANOVA table (type III)						
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
ANOVA table (type III) (Intercept)	SumSq 216134	DF 1	F value 5.8188	Pr(>F) 0.01949	*	\mathbf{R}^2
ANOVA table (type III) (Intercept) gpp	SumSq 216134 223853	DF 1	F value 5.8188 6.0266	Pr(>F) 0.01949 0.01754	*	R ² 0.67
ANOVA table (type III) (Intercept) gpp nutrient.class	SumSq 216134 223853 125940	DF 1 1	F value 5.8188 6.0266 3.3906	Pr(>F) 0.01949 0.01754 0.07139	* *	R ² 0.67 0.01
ANOVA table (type III) (Intercept) gpp nutrient.class management	SumSq 216134 223853 125940 251153	DF 1 1 1 1	F value 5.8188 6.0266 3.3906 6.7616	Pr(>F) 0.01949 0.01754 0.07139 0.01215	* *	R ² 0.67 0.01 0.01
ANOVA table (type III) (Intercept) gpp nutrient.class management mat	SumSq 216134 223853 125940 251153 230428	DF 1 1 1 1 1	F value 5.8188 6.0266 3.3906 6.7616 6.2036	Pr(>F) 0.01949 0.01754 0.07139 0.01215 0.01605	* * *	R ² 0.67 0.01 0.01 0.19
ANOVA table (type III) (Intercept) gpp nutrient.class management mat gpp:nutrient.class	SumSq 216134 223853 125940 251153 230428 232822	DF 1 1 1 1 1 1 1	F value 5.8188 6.0266 3.3906 6.7616 6.2036 6.2681	Pr(>F) 0.01949 0.01754 0.07139 0.01215 0.01605 0.01554	* * .* * *	R ² 0.67 0.01 0.01 0.19 0.01
ANOVA table (type III) (Intercept) gpp nutrient.class management mat gpp:nutrient.class gpp:management	SumSq 216134 223853 125940 251153 230428 232822 407320	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F value 5.8188 6.0266 3.3906 6.7616 6.2036 6.2681 10.966	Pr(>F) 0.01949 0.01754 0.07139 0.01215 0.01605 0.01554 0.00171	* * .* * *	R ² 0.67 0.01 0.01 0.19 0.01 0.02

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	643	310.3	315.7	2.037	0.04166	*	(Intercept)	1.00
gpp	0.3806	0.1769	0.1803	2.111	0.03475	*	gpp	1.00
MNG.UM	-321.6	134.1	137.2	2.344	0.01908	*	NA	1.00
mat	-17.6	7.308	7.486	2.351	0.01871	*	gpp:NA	0.95
NA.LOW	-509.2	338.6	344.3	1.479	0.1391		mat	0.90
gpp:MNG.UM	0.2514	0.07647	0.07833	3.21	0.00133	**	MNG	0.89
gpp:NA.LOW	0.4727	0.1973	0.2017	2.344	0.01908	*	gpp:MNG	0.89
wd	-1.792	1.933	1.981	0.905	0.36569		age	0.20
MNG.UM:NA.LOW	109.1	139.1	142.6	0.765	0.44426		wd	0.14
age	-2.459	2.41	2.421	1.016	0.3098		MNG:NA	0.12
age:gpp	0.00268	0.00081	0.00083	3.236	0.00121	**	age:gpp	0.11
age:NA.LOW	1.953	0.8048	0.8247	2.367	0.01791	*	age:NA	0.11
map	-0.01641	0.1001	0.1025	0.16	0.87287		map	0.09
_							age:MNG	0.00

8 models Δ < 4

706 Models without nutrient status

NEP

	Estimate	Std.Err	t	Pr(> t)		
(Intercept)	-594.399	133.86874	-4.44	4.1E-05 ***		
gpp	0.511744	0.0616439	8.302	1.9E-11 ***		
managementUM	355.4655	131.84313	2.696	0.00917 **		
wd	5.280222	1.6748899	3.153	0.00256 **		
gpp:managementUM	-0.36777	0.0796442	-4.62	2.2E-05 ***		
$\mathbf{R}^2 =$	0.5974	adj R ² =	0.5697			
ANOVA table (type III)						
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
ANOVA table (type III) (Intercept)	SumSq 998461	DF 1	F value 19.7151	Pr(>F) 4.09E-05	***	\mathbf{R}^2
ANOVA table (type III) (Intercept) gpp	SumSq 998461 3490265	DF 1	F value 19.7151 68.9169	Pr(>F) 4.09E-05 1.92E-11	***	R ² 0.31
ANOVA table (type III) (Intercept) gpp management	SumSq 998461 3490265 368140	DF 1 1 1	F value 19.7151 68.9169 7.2691	Pr(>F) 4.09E-05 1.92E-11 0.009166	*** *** **	R ² 0.31 0.08
ANOVA table (type III) (Intercept) gpp management wd	SumSq 998461 3490265 368140 503344	DF 1 1 1 1	F value 19.7151 68.9169 7.2691 9.9388	Pr(>F) 4.09E-05 1.92E-11 0.009166 0.002562	*** *** **	R² 0.31 0.08 0.05
ANOVA table (type III) (Intercept) gpp management wd gpp:management	SumSq 998461 3490265 368140 503344 1079913	DF 1 1 1 1 1	F value 19.7151 68.9169 7.2691 9.9388 21.3234	Pr(>F) 4.09E-05 9 1.92E-11 0.009166 8 0.002562 4 2.20E-05	*** *** ** **	R ² 0.31 0.08 0.05 0.15
ANOVA table (type III) (Intercept) gpp management wd gpp:management Residuals	SumSq 998461 3490265 368140 503344 1079913 2937383	DF 1 1 1 1 1 58	F value 19.7151 68.9169 7.2691 9.9388 21.3234	Pr(>F) 4.09E-05 1.92E-11 0.009166 0.002562 2.20E-05	*** *** ** **	R ² 0.31 0.08 0.05 0.15

709 NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R
(Intercept)	-571.522	154.13	157.1015	3.638	0.00028	***	(Intercept)	1.00
gpp	0.51726	0.06999	0.07143	7.241	2.0E-16	***	gpp	1.00
MNG.UM	331.4987	138.953	141.85	2.337	0.01944	*	MNG	1.00
wd	5.23634	1.73593	1.7725	2.954	0.00314	**	gpp:MNG	1.00
gpp:MNG.UM	-0.3526	0.08492	0.08666	4.069	4.7E-05	***	wd	1.00
map	-0.11618	0.09751	0.09959	1.167	0.24337		map	0.38
age	0.3439	0.45327	0.46312	0.743	0.45774		age	0.22
mat	3.80219	7.9414	8.10027	0.469	0.63879		mat	0.19
							age:gpp	0.00
6 models Δ < 4							age:MNG	0.00

	Estimate	Std.Err	t	Pr(> t)			
(Intercept)	608.429056	137.84864	4.414	0.0000448	***		
gpp	0.4893964	0.0634765	7.71	1.88E-10	***		
managementUM	-348.463312	135.7628	-2.567	0.01287	*		
wd	-5.4720214	1.7246841	-3.173	0.00242	**		
gpp:managementUM	0.3532584	0.082012	4.307	0.0000646	***		
$\mathbf{R}^2 =$	0.8672	adj R ² =	0.858				
ANOVA table (type III)							
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)			\mathbf{R}^2
ANOVA table (type III) (Intercept)	SumSq 1046150	DF 1	F value 1	Pr(>F) 9.481 4.48	E-05	***	R ²
ANOVA table (type III) (Intercept) gpp	SumSq 1046150 3192086	DF 1	F value 1 5	Pr(>F) 9.481 4.481 9.442 1.881	E-05 E-10	*** ***	R ² 0.70
ANOVA table (type III) (Intercept) gpp management	SumSq 1046150 3192086 353779	DF 1 1 1	F value 1 5	Pr(>F) 9.481 4.481 9.442 1.881 6.588 0.01	E-05 E-10 1287	*** *** *	R² 0.70 0.02
ANOVA table (type III) (Intercept) gpp management wd	SumSq 1046150 3192086 353779 540575	DF 1 1 1 1	F value 1 5	Pr(>F) 9.481 4.481 9.442 1.881 6.588 0.01 0.066 0.002	E-05 E-10 1287 2415	*** *** *	R ² 0.70 0.02 0.11
ANOVA table (type III) (Intercept) gpp management wd gpp:management	SumSq 1046150 3192086 353779 540575 996345	DF 1 1 1 1 1	F value 1 5 1 1	Pr(>F) 9.481 4.481 9.442 1.881 6.588 0.01 0.066 0.002 8.554 6.461	E-05 E-10 1287 2415 E-05	*** *** ** **	R ² 0.70 0.02 0.11 0.04

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R
(Intercept)	553.652	163.49	166.527	3.325	0.00089	***	(Intercept)	1.00
gpp	0.46987	0.07201	0.07349	6.393	2.0E-16	***	gpp	1.00
MNG.UM	-301.36	144.967	147.921	2.037	0.04162	*	MNG	1.00
map	0.16497	0.09806	0.10018	1.647	0.09961		gpp:MNG	1.00
wd	-5.33181	1.77344	1.811	2.944	0.00324	**	wd	1.00
gpp:MNG.UM	0.31923	0.0905	0.09226	3.46	0.00054	***	map	0.57
mat	-1.60924	8.40043	8.56236	0.188	0.85092		mat	0.18
age	-0.27027	0.46671	0.47681	0.567	0.57084		age	0.20
							age:gpp	0.00
6 models Δ < 4							age:MNG	0.00

719 Models excluding forests with GPP>2500

NEP (Fig. 1)

	Estimate	Std.Err	t value	Pr(> t)		
Intercept)	-862.685	196.8156	-4.383	0.0000557	***	
gpp	0.7604	0.1203	6.32	5.59E-08	***	
nutrient.classLOW	441.8157	226.904	1.947	0.05682		
wd	4.2971	1.5516	2.77	0.00772	**	
gpp:nutrient.classLOW	-0.4184	0.1396	-2.998	0.00413	**	
$\mathbf{R}^2 =$	0.7179	adj $R^2 =$	0.6966			
ANOVA table (type III)		-				
, ,						-2
	SumSq	DF	F value	Pr(>F)		R-
(Intercept)	SumSq 706098	DF 1	F value 19.2125	Pr(>F) 0.00005568	***	R-
(Intercept) gpp	SumSq 706098 1467744	DF 1	F value 19.2125 39.9365	Pr(>F) 0.00005568 5.592E-08	*** ***	R ² 0.44
(Intercept) gpp nutrient.class	SumSq 706098 1467744 139341	DF 1 1 1 1	F value 19.2125 39.9365 3.7914	Pr(>F) 0.00005568 5.592E-08 0.056824	*** ***	R² 0.44 0.17
(Intercept) gpp nutrient.class wd	SumSq 706098 1467744 139341 281899	DF 1 1 1 1	F value 19.2125 39.9365 3.7914 7.6703	Pr(>F) 0.00005568 5.592E-08 0.056824 0.007721	*** *** **	R ² 0.44 0.17 0.05
(Intercept) gpp nutrient.class wd gpp:nutrient.class	SumSq 706098 1467744 139341 281899 330378	DF 1 1 1 1 1	F value 19.2125 39.9365 3.7914 7.6703 8.9894	Pr(>F) 0.00005568 5.592E-08 0.056824 0.007721 0.004128	*** *** • **	R ² 0.44 0.17 0.05 0.06

NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	-869.3	197.7	202.4	4.295	1.7E-05	***	(Intercept)	1.00
gpp	0.7416	0.1187	0.1215	6.105	< 0.00001	***	gpp	1.00
mat	17.13	6.702	6.847	2.502	0.01233	*	NĂ	1.00
NA.LOW	700.2	250.3	255.2	2.744	0.00607	**	gpp:NA	1.00
wd	2.96	1.667	1.705	1.737	0.08247		mat	0.95
gpp:NA.LOW	-0.5919	0.1571	0.1602	3.696	0.00022	***	wd	0.63
age	0.4008	0.6631	0.6738	0.595	0.55191		age	0.20
MNG.UM	28.78	57.71	59.08	0.487	0.6262		MNG	0.15
map	0.003563	0.09553	0.09778	0.036	0.97093		map	0.13
age:gpp	-0.00076	0.00076	0.000778	0.982	0.32601		age:gpp	0.04
							age:MNG	0.00
							age:NA	0.00
							gpp:MNG	0.00
10 models $\Delta < 4$							MNG:NA	0.00

Re (Fig. 2)

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	904.8063	195.6001	4.626	0.0000244	***	
gpp	0.2193	0.1196	1.834	0.07224		
nutrient.classLOW	-460.8056	225.5027	-2.043	0.04599	*	
wd	-4.3754	1.542	-2.838	0.00643	**	
gpp:nutrient.classLOW	0.4221	0.1387	3.043	0.00364	**	
$\mathbf{R}^2 =$	0.7411	adj \mathbf{R}^2 =	0.7215			
ANOVA table (type III)						
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	776734	1	21.398	0.00002441	***	
gpp	122124	1	3.3644	0.072238		0.55
nutrient.class	151576	1	4.1757	0.045992	*	0.03
wd	292264	1	8.0515	0.006429	**	0.10
gpp:nutrient.class	336102	1	9.2592	0.003641	**	0.06
Residuals	1923867	53				

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	911.146	200.906	205.649	4.431	9.4E-06	***	(Intercept)	1.00
gpp	0.22852	0.12099	0.12381	1.846	0.06494		gpp	1.00
mat	-12.4522	6.86698	7.01552	1.775	0.07591		NA	1.00
NA.LOW	-586.236	259.596	264.532	2.216	0.02668	*	gpp:NA	1.00
wd	-3.77785	1.69819	1.73473	2.178	0.02942	*	wd	0.86
gpp:NA.LOW	0.50671	0.16353	0.16657	3.042	0.00235	**	mat	0.63
age	-0.14644	0.34228	0.35019	0.418	0.67582		MNG	0.17
MNG.UM	-24.049	60.7591	62.0809	0.387	0.69847		age	0.14
map	-0.01268	0.09794	0.10008	0.127	0.89922		map	0.13
							age:gpp	0.00
							age:MNG	0.00
							age:NA	0.00
							gpp:MNG	0.00
10 models Δ < 4							MNG:NA	0.00

730 Weighted models excluding forests with GPP>2500

NEP

	Estimate	Std.Err	t value	Pr(> t)		
Intercept)	-567.832	201.3927	-2.82	0.00675	**	
gpp	0.5898	0.1245	4.737	0.0000167	***	
nutrient.classLOW	484.8521	235.3754	2.06	0.04433	*	
mat	16.0388	6.577	2.439	0.01813	*	
gpp:nutrient.classLOW	-0.4356	0.1585	-2.748	0.00818	**	
$R^2 = ANOVA$ table (type III)	0.6143	adj R ² =	0.5852			
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	8623	1	7.9497	0.00675	**	
gpp	24335	1	22.435	0.00001666	***	0.34
nutrient.class	4603	1	4.2432	0.044333	*	0.11
mat	6450	1	5.9468	0.018128	*	0.12
gpp:nutrient.class	8191	1	7.5515	0.008178	**	0.05

733 NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(z)		Variables	R Imp
(Intercept)	-630.542	240.08	244.2723	2.581	0.00984	**	(Intercept)	1.00
gpp	0.58475	0.13469	0.13717	4.263	2E-05	***	gpp	1.00
mat	13.9113	7.15618	7.30633	1.904	0.05691		NA	1.00
NA.LOW	313.3486	302.626	306.4643	1.022	0.30656		gpp:NA	0.87
wd	3.69658	1.81166	1.85251	1.995	0.04599	*	wd	0.76
gpp:NA.LOW	-0.37807	0.17028	0.17373	2.176	0.02954	*	mat	0.75
map	0.07223	0.08776	0.08967	0.806	0.4205		map	0.19
MNG.UM	29.63878	54.6654	55.95706	0.53	0.59634		MNG	0.12
age	0.11882	0.35025	0.35868	0.331	0.74045		age	0.10
							age:gpp	0.00
							age:MNG	0.00
							age:NA	0.00
							gpp:MNG	0.00
12 models Δ < 4							MNG:NA	0.00

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	330.71463	132.59705	2.494	0.01572	*	
gpp	0.58081	0.05895	9.852	1.16E-13	***	
nutrient.classLOW	170.1716	56.38605	3.018	0.00388	**	
wd	-3.91987	1.78531	-2.196	0.03243	*	
		_				
$\mathbf{R}^2 =$	0.7128	adj R ² =	0.6968			
ANOVA table (type]	III)					
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	4639	1	6.2207	0.01572	*	
gpp	72381	1	97.0636	1.156E-13	***	0.58
nutrient.class	6792	1	9.1082	0.003878	**	0.03
wd	3595	1	4.8208	0.032435	*	0.11
Residuals	100 (0	E 4				

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	614.725	234.124	238.326	2.579	0.0099	**	(Intercept)	1.00
gpp	0.40001	0.13299	0.13544	2.953	0.00314	**	gpp	1.00
mat	-11.4335	7.2117	7.36514	1.552	0.12057		NA	1.00
NA.LOW	-303.751	284.67	288.541	1.053	0.29247		gpp:NA	0.90
wd	-3.46331	1.80117	1.8424	1.88	0.06014		wd	0.72
gpp:NA.LOW	0.35391	0.16485	0.16807	2.106	0.03523	*	mat	0.56
map	-0.04307	0.08784	0.08976	0.48	0.63136		MNG	0.14
MNG.UM	-19.3384	58.1629	59.4065	0.326	0.74478		map	0.14
age	-0.05802	0.34906	0.35716	0.162	0.87094		age	0.12
							age:gpp	0.00
							age:MNG	0.00
							age:NA	0.00
							gpp:MNG	0.00
15 models Δ < 4							MNG:NA	0.00

739 Models using only managed forests

NEP

	Estimate	Std.Err	t value	Pr(> t)	
(Intercept)	-857.573	205.9132	-4.165	0.000201	***
gpp	0.7092	0.1253	5.661	0.00000237	***
nutrient.classLOW	257.9824	249.5965	1.034	0.308621	
wd	6.39	1.8149	3.521	0.001247	**
gpp:nutrient.classLOW	-0.2955	0.1474	-2.005	0.053009	

 $\mathbf{R}^2 = 0.7857$ adj $\mathbf{R}^2 = 0.7605$

ANOVA table (type III)	017007	uuj II		01/000			
ANOVA table (type III)	SumSq	DF		F value	Pr(>F)		\mathbf{R}^2
(Intercept)	619836		1	17.345	0.0002014	***	
gpp	1145367		1	32.0511	2.372E-06	***	0.52
nutrient.class	38177		1	1.0683	0.3086206		0.14
wd	443006		1	12.3967	0.0012471	**	0.09
gpp:nutrient.class	143617		1	4.0189	0.0530094		0.04
Residuals	1215014		34				

NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	-872.4	254.7	261.1	3.341	0.00083	***	(Intercept)	1.00
gpp	0.6644	0.1388	0.1426	4.66	3.2E-06	***	gpp	1.00
mat	16.51	9.362	9.723	1.698	0.08957		NA.	1.00
NA.LOW	282.1	334.3	341	0.827	0.408		wd	1.00
wd	6.396	2.165	2.229	2.869	0.00412	**	gpp:NA	0.85
gpp:NA.LOW	-0.3741	0.172	0.1776	2.107	0.03516	*	mat	0.49
age	0.9862	0.8297	0.8554	1.153	0.24892		age	0.46
age:NA.LOW	-1.362	1.124	1.168	1.166	0.24349		map	0.13
map	-0.02869	0.118	0.1222	0.235	0.81435		age:NA	0.11
age:gpp	0.00027	0.00105	0.001097	0.246	0.80581		age:gpp	0.03

13 models $\Delta < 4$

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	909.3045	208.0546	4.371	0.000111	***	
gpp	0.2617	0.1266	2.067	0.04639	*	
nutrient.classLOW	-323.2086	252.1922	-1.282	0.208656		
wd	-6.2747	1.8337	-3.422	0.001636	**	
gpp:nutrient.classLOW	0.3361	0.1489	2.257	0.03055	*	
$\mathbf{R}^2 =$	0.8121	adj R^2 =	0.79			
ANOVA table (type III)		-				
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	SumSq 696872	DF 1	F value 19.1014	Pr(>F) 0.0001107	***	\mathbf{R}^2
(Intercept) gpp	SumSq 696872 155911	DF 1	F value 19.1014 4.2735	Pr(>F) 0.0001107 0.0463903	*** *	R ² 0.57
(Intercept) gpp nutrient.class	SumSq 696872 155911 59923	DF 1 1 1	F value 19.1014 4.2735 1.6425	Pr(>F) 0.0001107 0.0463903 0.2086559	*** *	R ² 0.57 0.03
(Intercept) gpp nutrient.class wd	SumSq 696872 155911 59923 427173	DF 1 1 1 1 1 1	F value 19.1014 4.2735 1.6425 11.7089	Pr(>F) 0.0001107 0.0463903 0.2086559 0.0016363	*** * **	R ² 0.57 0.03 0.17
(Intercept) gpp nutrient.class wd gpp:nutrient.class	SumSq 696872 155911 59923 427173 185837	DF 1 1 1 1 1	F value 19.1014 4.2735 1.6425 11.7089 5.0938	Pr(>F) 0.0001107 0.0463903 0.2086559 0.0016363 0.0305504	*** * **	R ² 0.57 0.03 0.17 0.05

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	928.819	249.516	256.331	3.624	0.00029	***	(Intercept)	1.00
gpp	0.29454	0.14175	0.14572	2.021	0.04325	*	gpp	1.00
NA.LOW	-353.056	325.228	332.658	1.061	0.28855		NA	1.00
wd	-6.27146	2.166	2.23117	2.811	0.00494	**	wd	1.00
gpp:NA.LOW	0.3958	0.17112	0.17674	2.239	0.02513	*	gpp:NA	0.90
mat	-15.2377	9.50801	9.87347	1.543	0.12276		mat	0.44
age	-1.00995	0.8149	0.83836	1.205	0.22833		age	0.41
age:NA.LOW	1.42601	1.14127	1.18605	1.202	0.22924		age:NA	0.12
map	0.03553	0.11456	0.11897	0.299	0.76523		map	0.10
							age:gpp	0.00

10 models Δ < 4

Models using an alternative nutrient availability classification

NEP

	Estimate	Std.Err	t value	Pr(> t)	
Intercept)	-926.2	195.4	-4.74	0.0000165	***
gpp	0.7644	0.1093	6.994	4.6E-09	***
age	5.143	1.253	4.104	0.000141	***
alternutrLOW	769.5	203	3.79	0.000387	***
mat	20.21	5.225	3.869	0.000302	***
gpp:age	-0.00337	0.0007395	-4.557	0.0000309	***
gpp:alternutrLOW	-0.5263	0.1166	-4.515	0.0000357	***
age:alternutrLOW	-1.918	0.7773	-2.468	0.016854	*

	$\mathbf{R}^2 = 0.7553$	adj $R^2 =$	0.723			
ANOVA table (type I	II) 5	DE	Evolue	$\mathbf{D}_{\mathbf{r}}(\mathbf{x} \mathbf{F})$		\mathbf{p}^2
	SumSq	Dr	r value	Pr(>r)		K
Intercept)	623153	1	22.4697	0.00001645	***	
gpp	1356752	1	48.9219	4.604E-09	***	0.25
age	467161	1	16.8449	0.0001407	***	0.04
alternutr	398366	1	14.3643	0.000387	***	0.12
mat	415043	1	14.9657	0.0003016	***	0.11
gpp:age	575924	1	20.7667	0.00003088	***	0.1
gpp:alternutr	565233	1	20.3812	0.0000357	***	0.11
age:alternutr	168904	1	6.0903	0.0168544	*	0.02
Residuals	1469850	53				

NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R
Intercept	-924.6	208.3	212.8	4.344	1.4E-05	***	(Intercept)	1.00
age	5	1.387	1.413	3.539	0.0004	***	age	1.00
alternutrLOW	761.1	213.8	218.6	3.482	0.0005	***	alternutr	1.00
gpp	0.7599	0.1127	0.1152	6.598	2E-16	***	gpp	1.00
mat	20.18	5.445	5.572	3.622	0.00029	***	mat	1.00
age:alternutrLOW	-1.943	0.7858	0.8042	2.416	0.01571	*	age:gpp	1.00
age:gpp	-0.00331	0.0008	0.000812	4.077	4.6E-05	***	alternutr:gpp	1.00
alternutrLOW:gpp	-0.5283	0.1217	0.1245	4.244	2.2E-05	***	age:alternutr	0.93
map	0.05238	0.08533	0.08736	0.6	0.54879		map	0.15
MNG.UM	25.84	60.62	62.06	0.416	0.67716		MNG	0.14
wd	0.508	1.615	1.653	0.307	0.7586		wd	0.13
							age:MNG	0.00
							alternutr:MNG	0.00
5 models Δ < 4							gpp:MNG	0.00

	Estimate	Std.Err	t value	Pr(> t)	
(Intercept)	977.7	198	4.939	0.00000824	***
gpp	0.2071	0.1107	1.87	0.067002	
age	-5.106	1.27	-4.022	0.000184	***
alternutrLOW	-828.8	205.7	-4.029	0.00018	***
mat	-19.72	5.294	-3.725	0.000475	***
gpp:age	0.003305	0.0007492	4.41	0.0000508	***
gpp:alternutrLOW	0.5626	0.1181	4.763	0.0000152	***
age:alternutrLOW	1.975	0.7876	2.508	0.015246	*

$\mathbf{R}^2 = 0.9122$ adj $\mathbf{R}^2 = 0.9006$							
ANOVA table (type III) SumSq	DF	F value	Pr(>F)		\mathbf{R}^2	
(Intercept)	694393	1	24.3888	8.243E-06	***		
gpp	99570	1	3.4971	0.0670024		0.67	
age	460518	1	16.1745	0.0001841	***	0.01	
alternutr	462143	1	16.2316	0.0001799	***	0.02	
mat	395084	1	13.8763	0.0004749	***	0.13	
gpp:age	553836	1	19.4521	0.0000508	***	0.04	
gpp:alternutr	645866	1	22.6844	0.00001521	***	0.04	
age:alternutr	179061	1	6.2891	0.0152462	*	0.01	
Residuals	1509004	53					

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	988.9	205.1	209.8	4.713	2.4E-06	***	(Intercept)	1.00
age	-5.131	1.284	1.314	3.905	9.4E-05	***	age	1.00
alternutrLOW	-830.8	212.8	217.7	3.815	0.00014	***	alternutr	1.00
gpp	0.2053	0.1117	0.1143	1.796	0.07251		gpp	1.00
mat	-19.53	5.501	5.63	3.469	0.00052	***	mat	1.00
age:alternutrLOW	1.996	0.7959	0.8146	2.451	0.01425	*	age:alternutr	1.00
age:gpp	0.00332	0.00076	0.00078	4.272	1.9E-05	***	age:gpp	1.00
alternutrLOW:gpp	0.5642	0.1231	0.126	4.479	7.5E-06	***	alternutr:gpp	1.00
map	-0.04651	0.08653	0.08859	0.525	0.59959		map	0.16
MNG.UM	-24.53	61.43	62.9	0.39	0.69654		MNG	0.15
wd	-0.5608	1.636	1.675	0.335	0.7377		wd	0.14
							age:MNG	0.00
							alternutr:MNG	0.00
4 models Δ < 4							gpp:MNG	0.00

761 Models with the factors extracted from the nutrient classification

NEP

	Estimate	Std.Err	β	β Std.Err	t value	Pr(> t)	
(Intercept)	-269.131	88.209304	0	0	-3.051	0.00346	**
f1	-27.8263	25.151078	-0.358	0.3235612	-1.106	0.27322	
gpp	0.414041	0.0556693	0.87959	0.1182636	7.438	<.0001	***
managementUM	269.0477	124.50198	0.38392	0.1776568	2.161	0.03491	*
f1:gpp	0.030442	0.0129536	0.7639	0.3250582	2.35	0.02226	*
gpp:managementUM	-0.2593	0.0770538	-0.6833	0.2030509	-3.365	0.00137	**
R2=	0.6811	adj R2=	0.6532				
ANOVA table (type III)							
ANOVA table (type III)	SumSq	DF	F value	Pr(>F)		R2	
ANOVA table (type III) (Intercept)	SumSq 379989	DF 1	F value 9.3089	Pr(>F) 0.003459	**	R2	
ANOVA table (type III) (Intercept) f1	SumSq 379989 49966	DF 1	F value 9.3089 1.224	Pr(>F) 0.003459 0.273216	**	R2 0.23008	
ANOVA table (type III) (Intercept) f1 gpp	SumSq 379989 49966 2258026	DF 1 1 1	F value 9.3089 1.224 55.3167	Pr(>F) 0.003459 0.273216 5.93E-10	**	R2 0.23008 0.25579	
ANOVA table (type III) (Intercept) f1 gpp management	SumSq 379989 49966 2258026 190625	DF 1 1 1 1	F value 9.3089 1.224 55.3167 4.6699	Pr(>F) 0.003459 0.273216 5.93E-10 0.034912	** *** *	R2 0.23008 0.25579 0.05029	
ANOVA table (type III) (Intercept) f1 gpp management f1:gpp	SumSq 379989 49966 2258026 190625 225437	DF 1 1 1 1 1 1 1 1 1	F value 9.3089 1.224 55.3167 4.6699 5.5227	Pr(>F) 0.003459 0.273216 5.93E-10 0.034912 0.022257	** *** *	R2 0.23008 0.25579 0.05029 0.05242	
ANOVA table (type III) (Intercept) f1 gpp management f1:gpp gpp:management	SumSq 379989 49966 2258026 190625 225437 462245	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F value 9.3089 1.224 55.3167 4.6699 5.5227 11.324	Pr(>F) 0.003459 0.273216 5.93E-10 0.034912 0.022257 0.001374	** *** * *	R2 0.23008 0.25579 0.05029 0.05242 0.09254	

NEP model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	-283.9	117.3	119.3	2.38	0.01733	*	(Intercept)	1.00
f1	-23.95	29.63	30.08	0.796	0.42587		F1	1.00
gpp	0.3949	0.0736	0.07487	5.274	1.00E-07	***	gpp	1.00
managementUM	287.8	129	131.8	2.184	0.02897	*	MNG	1.00
f1:gpp	0.03079	0.01348	0.01376	2.236	0.02532	*	F1:GPP	0.91
gpp:managementUM	-0.2697	0.07942	0.08109	3.326	0.00088	***	gpp:MNG	1.00
mat	8.61	6.457	6.599	1.305	0.19198		mat	0.40
wd	1.836	1.88	1.917	0.958	0.33831		wd	0.23
f1:managementUM	10.99	24.14	24.68	0.445	0.65613		age	0.14
age	0.1778	0.4022	0.411	0.433	0.66526		f1:MNG	0.11
map	-0.00703	0.09706	0.09907	0.071	0.94347		map	0.11

13 models Δ < 4
Re

	Estimate	Std.Err	β	β Std.Err	t value	Pr(> t)	
(Intercept)	262.962863	95.062739	0	0	2.766	0.007595	**
f1	-29.580566	6.7969963	-0.2122776	0.04877697	-4.352	5.54E-05	***
gpp	0.592046	0.0600396	0.7015992	0.0711494	9.861	5.20E-14	***
managementUM	-354.527459	127.54614	-0.2821977	0.10152452	-2.78	0.007325	**
gpp:managementUM	0.3044804	0.0785227	0.4475773	0.11542614	3.878	0.000272	***
R2=	0.8825	adj R2=	0.8744				
ANOVA table (type III)							
millio in tuble (type m							
	SumSq	DF	F value	Pr(>F)		R2	
(Intercept)	SumSq 363520	DF 1	F value 7.6519	Pr(>F) 0.0075953	**	R2	
(Intercept)	SumSq 363520 899786	DF 1	F value 7.6519 18.94	Pr(>F) 0.0075953 5.54E-05	** ***	R2 0.04064662	
(Intercept) f1 gpp	SumSq 363520 899786 4619512	DF 1 1 1	F value 7.6519 18.94 97.2379	Pr(>F) 0.0075953 5.54E-05 5.20E-14	** *** ***	R2 0.04064662 0.79499854	
(Intercept) f1 gpp management	SumSq 363520 899786 4619512 367050	DF 1 1 1 1	F value 7.6519 18.94 97.2379 7.7262	Pr(>F) 0.0075953 5.54E-05 5.20E-14 0.0073248	** *** ***	R2 0.04064662 0.79499854 0.01205423	
(Intercept) f1 gpp management gpp:management	SumSq 363520 899786 4619512 367050 714312	DF 1 1 1 1 1 1 1 1 1 1	F value 7.6519 18.94 97.2379 7.7262 15.0358	Pr(>F) 0.0075953 5.54E-05 5.20E-14 0.0073248 0.0002716	** *** *** **	R2 0.04064662 0.79499854 0.01205423 0.03479453	
(Intercept) f1 gpp management gpp:management Residuals	SumSq 363520 899786 4619512 367050 714312 2755424	DF 1 1 1 1 1 1 58	F value 7.6519 18.94 97.2379 7.7262 15.0358	Pr(>F) 0.0075953 5.54E-05 5.20E-14 0.0073248 0.0002716	** *** ** **	R2 0.04064662 0.79499854 0.01205423 0.03479453	

Re model averaging

	Estimate	SE	Adj SE	z val	Pr(> z)		Variables	R Imp
(Intercept)	304.659	129.075	131.275	2.321	0.0203	*	(Intercept)	1.00
f1	23.8269	30.8621	31.3221	0.761	0.4468		F1	1.00
gpp	0.5864	0.06759	0.06894	8.506	<2e-16	***	gpp	1.00
managementUM	-269.56	134.21	137.027	1.967	0.0492	*	MNG	1.00
f1:gpp	-0.03089	0.01409	0.01439	2.146	0.0319	*	F1:GPP	0.89
gpp:managementUM	0.24987	0.08332	0.08504	2.938	0.0033	**	gpp:MNG	1.00
wd	-2.08056	1.89952	1.93923	1.073	0.2833		wd	0.30
mat	-5.51703	6.9059	7.05402	0.782	0.4341		mat	0.18
map	0.05393	0.09743	0.09953	0.542	0.5879		map	0.15
f1:managementUM	-10.2502	25.1642	25.7219	0.398	0.6903		f1:MNG	0.11
age	-0.10723	0.41819	0.42727	0.251	0.8018		age	0.11

13 models Δ < 4

772 Models using the "medium" nutrient availability category

NEP

	Estimate	Std.Err	β	β Std.Err	t value	Pr(> t)	
(Intercept)	-650.147	207.74185	0	0	-3.13	0.00221	**
gpp	0.689827	0.1239448	1.68764	0.30322786	5.566	1.66E-07	***
nutrient.classLOW	258.9967	227.36606	0.41185	0.36154805	1.139	0.25696	
nutrient.classMEDIUM	391.1855	238.17323	0.56405	0.34342186	1.642	0.10316	
managementOTHR	110.4697	116.18876	0.13705	0.14414666	0.951	0.34366	
managementUM	270.503	103.77753	0.38345	0.14710976	2.607	0.01032	*
wd	3.125687	1.1435189	0.20683	0.07566875	2.733	0.00723	**
gpp:nutrient.classLOW	-0.32062	0.1365047	-1.0328	0.43971008	-2.349	0.0205	*
gpp:nutrient.classMEDIUM	-0.37808	0.1422941	-0.8666	0.32615306	-2.657	0.00898	**
gpp:managementOTHR	-0.20223	0.0766118	-0.3909	0.14808735	-2.64	0.00942	**
gpp:managementUM	-0.3007	0.0626977	-0.8944	0.18649016	-4.796	4.77E-06	***
R2=	0.5834	adj R2=	0.548				
ANOVA table (type III)							
	SumSq	DF	F value	Pr(>F)		R2	
(Intercept)	438923	1	9.7943	2.21E-03	**		
gpp	1388151	1	30.9759	1.66E-07	***	0.12	
nutrient.class	149973	2	1.6733	0.192051		0.17	
management	312383	2	3.4853	0.033835	*	0.10	
wd	334825	1	7.4714	7.23E-03	**	0.03	
gpp:nutrient.class	316390	2	3.53	0.032437	*	0.05	
gpp:management	1030957	2	11.5026	2.73E-05	***	0.10	
Residuals	5288049	118					

Re

	Estimate	Std.Err	β	β Std.Err	t	Pr(> t)	
(Intercept)	946.1472	225.7538	0	0	4.191	6.42E-05	***
gpp	0.1500605	0.1312338	0.17799832	0.15566652	1.143	0.255847	
nutrient.classLOW	-598.9845	238.7771	-	0.19726044	-2.509	0.013893	*
nutrient.classMEDIUM	-769.0284	254.6037	-	0.19182404	-3.02	0.003276	**
age	-2.345405	0.7963151	-	0.08718799	-2.945	0.004096	**
managementOTHR	112.3993	62.51324	0.06759027	0.03759176	1.798	0.075492	
managementUM	171.6502	60.24119	0.12208751	0.04284699	2.849	0.005417	**
wd	-2.910387	1.324959	-	0.04379972	-2.197	0.030591	*
gpp:nutrient.classLOW	0.5007344	0.1411159	0.75653774	0.21320593	3.548	0.000615	***
gpp:nutrient.classMEDIUM	0.5897503	0.1492076	0.7248549	0.18338927	3.953	0.000153	***
gpp:age	0.00160319	0.0005973	0.24371494	0.09080813	2.684	0.008647	**
R2=	0.8971	adj R2=	0.8858				
R2= ANOVA table (type III)	0.8971	adj R2=	0.8858				
R2= ANOVA table (type III)	0.8971 SumSq	adj R2= DF	0.8858 F value	Pr(>F)		R2	
R2= ANOVA table (type III) (Intercept)	0.8971 SumSq 741158	adj R2= DF 1	0.8858 F value 17.565	Pr(>F) 6.42E-05	***	R2	
R2= ANOVA table (type III) (Intercept) gpp	0.8971 SumSq 741158 55170	adj R2= DF 1 1	0.8858 F value 17.565 1.3075	Pr(>F) 6.42E-05 2.56E-01	***	R2 0.71958764	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class	0.8971 SumSq 741158 55170 393809	adj R2= DF 1 2	0.8858 F value 17.565 1.3075 4.6665	Pr(>F) 6.42E-05 2.56E-01 0.0117675	***	R2 0.71958764 0.01904361	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class age	0.8971 SumSq 741158 55170 393809 366040	adj R2= DF 1 2 1	0.8858 F value 17.565 1.3075 4.6665 8.6749	Pr(>F) 6.42E-05 2.56E-01 0.0117675 4.10E-03	*** * **	R2 0.71958764 0.01904361 0.00879914	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class age management	0.8971 SumSq 741158 55170 393809 366040 397873	adj R2= DF 1 2 1 2	0.8858 F value 17.565 1.3075 4.6665 8.6749 4.7147	Pr(>F) 6.42E-05 2.56E-01 0.0117675 4.10E-03 1.13E-02	*** * **	R2 0.71958764 0.01904361 0.00879914 0.01802822	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class age management wd	0.8971 SumSq 741158 55170 393809 366040 397873 203592	adj R2= DF 1 2 1 2 1 2	0.8858 F value 17.565 1.3075 4.6665 8.6749 4.7147 4.825	Pr(>F) 6.42E-05 2.56E-01 0.0117675 4.10E-03 1.13E-02 0.0305909	*** * * * *	R2 0.71958764 0.01904361 0.00879914 0.01802822 0.09880494	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class age management wd gpp:nutrient.class	0.8971 SumSq 741158 55170 393809 366040 397873 203592 659885	adj R2= DF 1 2 1 2 1 2	0.8858 F value 17.565 1.3075 4.6665 8.6749 4.7147 4.825 7.8194	Pr(>F) 6.42E-05 2.56E-01 0.0117675 4.10E-03 1.13E-02 0.0305909 0.0007349	*** * * * * * * * * * * * * *	R2 0.71958764 0.01904361 0.00879914 0.01802822 0.09880494 0.02221301	
R2= ANOVA table (type III) (Intercept) gpp nutrient.class age management wd gpp:nutrient.class gpp:age	0.8971 SumSq 741158 55170 393809 366040 397873 203592 659885 303933	adj R2= DF 1 2 1 2 1 2 1 2 1	0.8858 F value 17.565 1.3075 4.6665 8.6749 4.7147 4.825 7.8194 7.203	Pr(>F) 6.42E-05 2.56E-01 0.0117675 4.10E-03 1.13E-02 0.0305909 0.0007349 8.65E-03	*** * * * * * * * * * * * * * * * * *	R2 0.71958764 0.01904361 0.00879914 0.01802822 0.09880494 0.02221301 0.01059682	

CUEe

	Estimate	Std.Err	β	β Std.Err	t value	Pr(> t)	
(Intercept)	-0.05665285	0.0929213	0	0	-0.61	0.5435	
gpp	0.00030991	5.251E-05	0.79007388	0.1338564	5.902	5.51E-08	***
nutrient.classLOW	-0.173781	0.064971	-0.3085533	0.1153579	-2.675	0.0088	**
nutrient.classMEDIUM	-0.02722514	0.0697433	-0.04408481	0.1129332	-0.39	0.6971	
age	0.00290722	0.0008546	0.68411616	0.2010993	3.402	0.001	***
map	-0.00016161	6.121E-05	-0.29530044	0.1118445	-2.64	0.0097	**
gpp:age	-1.9465E-06	6.354E-07	-0.63595917	0.2076081	-3.063	0.0028	**
R2=	0.3763	adj R2=	0.3369				
ANOVA table (type III)							
	SumSq	DF	F value	Pr(>F)		R2	
(Intercept)	0.0197	1	0.3717	0.5435249			
gpp	1.8473	1	34.8383	5.51E-08	***	0.1446	
nutrient.class	0.5977	2	5.6359	0.0048644	**	0.1056	
age	0.6137	1	11.5728	9.81E-04	***	0.0117	
map	0.3696	1	6.9711	0.0096844	**	0.0468	
gpp:age	0.4976	1	9.3836	0.0028486	**	0.0677	
Residuals	5.0375	95					

783 GPP Models

784 General

	Estimate	Std.Err	t value	Pr (> t)		\mathbf{R}^2
(Intercept)	1306.23	137.051	9.531	1.28E-13	***	
mat	74.397	6.163	12.072	2E-16	***	0.65
wd	-8.874	2.581	-3.438	0.00107	**	0.1
	$\mathbf{R}^2 = 0.7514$	adj R ² =	0.7432			

785 Weighted

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	1379.807	140.646	9.811	4.39E-14	***	
mat	63.475	6.473	9.805	4.47E-14	***	0.56
wd	-10.171	2.751	-3.697	0.000474	***	0.15
	$\mathbf{R}^2 = 0.7056$	adj $R^2 =$	0.6958			

786 **GPP < 2500**

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	1406.357	135.555	10.375	1.83E-14	***	
NA.LOW	-263.7	97.152	-2.714	0.0089	**	0.11
mat	56.63	7.272	7.787	2.18E-10	***	0.47
wd	-5.408	2.517	-2.149	0.0362	*	0.04
	$\mathbf{R}^2 = 0.6223$	adj $R^2 =$	0.6013			

788 **GPP < 2500 Weighted**

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	1386.784	133.901	10.357	1.57E-14	***	
mat	51.652	7.161	7.213	1.69E-09	***	0.44
wd	-9.159	2.644	-3.464	0.00104	**	0.14
	$\mathbf{R}^2 = 0.5799$	adj R^2 =	0.5646			

789 Only Managed forests

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	1048.172	119.347	8.783	1.77E-10	***	
NA.LOW	-309.188	117.171	-2.639	0.0122	*	0.07
mat	74.979	9.498	7.894	2.29E-09	***	0.59
	$\mathbf{R}^2 = 0.6598$	adj R ² =	0.6409			

790 Only Eddy covariance data

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
Intercept)	1223.0939	167.9484	7.283	1.43E-09	***	
mat	51.4191	8.761	5.869	2.76E-07	***	0.38
map	0.363	0.1423	2.551	0.0136	*	0.27
wd	-12.0537	2.6356	-4.573	0.0000284	***	0.16
	$\mathbf{R}^2 = 0.811$	adj $R^2 =$	0.8005			

791 Alternative Classification

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	1569.856	123.786	12.682	2E-16	***	
alternutrLOW	-216.12	90.99	-2.375	0.0209	*	0.04
mat	67.954	5.944	11.433	2E-16	***	0.58
wd	-11.626	2.252	-5.163	0.00000321	***	0.13
\mathbf{R}^2 =	0.7514	adj R ² =	0.7384			

CUE Models

793 General

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	-0.2251	0.113	-1.993	0.050969		
gpp	0.0003517	0.0000645	5.452	0.00000107	***	
age	0.004071	0.0009644	4.221	0.0000866	***	
NA.LOW	-0.1956	0.05992	-3.264	0.001843	**	
gpp:age	-2.944E-06	7.065E-07	-4.168	0.000104	***	
$\mathbf{R}^2 =$	0.4349	adj $R^2 =$	0.3959			
	(A TTT)	-				
ANOVA table	e (type III)					
ANOVA table	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
ANOVA table (Intercept)	SumSq 0.1901	DF 1	F value 3.9722	Pr(>F) 0.050969		R ²
ANOVA table (Intercept) gpp	SumSq 0.1901 1.42266	DF 1	F value 3.9722 29.7273	Pr(>F) 0.050969 1.068E-06	***	R ² 0.14
ANOVA table (Intercept) gpp age	SumSq 0.1901 1.42266 0.85283	DF 1 1 1	F value 3.9722 29.7273 17.8204	Pr(>F) 0.050969 1.068E-06 0.00008656	*** ***	R² 0.14 0.004
ANOVA table (Intercept) gpp age NA.	SumSq 0.1901 1.42266 0.85283 0.50995	DF 1 1 1 1	F value 3.9722 29.7273 17.8204 10.6556	Pr(>F) 0.050969 1.068E-06 0.00008656 0.0018432	*** *** **	R ² 0.14 0.004 0.12
ANOVA table (Intercept) gpp age NA. gpp:age	SumSq 0.1901 1.42266 0.85283 0.50995 0.83122	DF 1 1 1 1 1	F value 3.9722 29.7273 17.8204 10.6556 17.3688	Pr(>F) 0.050969 1.068E-06 0.00008656 0.0018432 0.0001038	*** ** ** **	R ² 0.14 0.004 0.12 0.17

794 Weighted

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	-0.03192	0.1037	-0.308	0.75943		
gpp	0.0001887	0.0000578	3.265	0.00185	**	
age	0.003124	0.001041	3.001	0.00398	**	
NA.LOW	-0.03051	0.05347	-0.571	0.57044		
gpp:age	-1.967E-06	6.16E-07	-3.193	0.0023	**	
age:NA.LOW	-0.001373	0.0005272	-2.604	0.01173	*	
$\mathbf{R}^2 =$	0.3448	adj \mathbf{R}^2 =	0.2873			
ANOVA table	(turno III)					
ANOVA table	(type III)					_
ANOVA table	SumSq	DF	F value	Pr(>F)	1	\mathbf{R}^2
(Intercept)	SumSq 0.043	DF 1	F value 0.0947	Pr(>F) 0.759431	1	R ²
(Intercept) gpp	SumSq 0.043 4.8367	DF 1	F value 0.0947 10.6612	Pr(>F) 0.759431 0.001854	**	R ² 0.01
(Intercept) gpp age	SumSq 0.043 4.8367 4.087	DF 1 1 1 1	F value 0.0947 10.6612 9.0088	Pr(>F) 0.759431 0.001854 0.003982] ** **	R ² 0.01 0.03
(Intercept) gpp age NA.	SumSq 0.043 4.8367 4.087 0.1478	DF 1 1 1 1	F value 0.0947 10.6612 9.0088 0.3257	Pr(>F) 0.759431 0.001854 0.003982 0.570442	】 ** **	R² 0.01 0.03 0.16
(Intercept) gpp age NA. gpp:age	(type III) SumSq 0.043 4.8367 4.087 0.1478 4.6239	DF 1 1 1 1 1 1	F value 0.0947 10.6612 9.0088 0.3257 10.1922	Pr(>F) 0.759431 0.001854 0.003982 0.570442 0.002296	】 ** ** **	R² 0.01 0.03 0.16 0.09
(Intercept) gpp age NA. gpp:age age:NA.	(type III) SumSq 0.043 4.8367 4.087 0.1478 4.6239 3.0765	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F value 0.0947 10.6612 9.0088 0.3257 10.1922 6.7813	Pr(>F) 0.759431 0.001854 0.003982 0.570442 0.002296 0.011726] ** ** **	R² 0.01 0.03 0.16 0.09 0.05

GPP<2500

	Estimate	Std.Err	t value	Pr(> t)		
(Intercept)	-0.504	0.1096	-4.598	0.0000261	***	
gpp	0.0004657	7.229E-05	6.442	3.31E-08	***	
age	0.003238	0.001097	2.952	0.00466	**	
gpp:age	-2.172E-06	8.525E-07	-2.548	0.01371	*	
$\mathbf{R}^2 =$	0.4552	adj R ² =	0.4249			
ANOVA table	e (type III)					
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	1.03712	1	21.1416	0.00002612	***	
gpp	2.03587	1	41.5013	3.308E-08	***	0.38
age	0.42758	1	8.7162	0.00466	**	0.01
gpp:age	0.31848	1	6.4922	0.01371	*	0.07
	0.010.00					

797 GPP<2500 weighted

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	0.187674	0.036618	5.125	0.00000396	***	
NA.LOW	-0.126927	0.035287	-3.597	0.00069	***	0.15
mat	0.012343	0.003086	4	0.000191	***	0.19
$\mathbf{R}^2 =$	0.3397	adj R^2 =	0.3157			

798 Only Managed

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	-0.3887	0.1444	-2.693	0.0109	*	
gpp	0.0004172	7.783E-05	5.36	0.00000585	***	0.37
age	0.00461	0.001737	2.655	0.012	*	0.03
NA.LOW	-0.171	0.08213	-2.082	0.0449	*	0.09
gpp:age	-2.712E-06	1.304E-06	-2.079	0.0452	*	0.05
$\mathbf{R}^2 =$	0.5477	$adj R^2 =$	0.4945			

799 Eddy covariance

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
(Intercept)	-0.2325	0.1195	-1.945	0.057055		
gpp	0.0003537	7.426E-05	4.763	0.0000152	***	0.12
age	0.004067	0.001055	3.857	0.000313	***	0.02
NA.LOW	-0.1892	0.06651	-2.845	0.006295	**	0.09
gpp:age	-2.933E-06	8.006E-07	-3.663	0.000576	***	0.15
$\mathbf{R}^2 =$	0.3728	adj R ² =	0.3255			

800 Alternative Classification

	Estimate	Std.Err	t value	Pr(> t)		\mathbf{R}^2
Intercept)	-0.2209	0.115	-1.921	0.05998		
gpp	0.0002462	7.852E-05	3.136	0.00275	**	0.12
age	0.004683	0.001057	4.43	0.0000453	***	0.01
alternutrLOW	-0.1627	0.06088	-2.672	0.0099	**	0.07
mat	0.01454	0.006533	2.225	0.03017	*	0.06
gpp:age	-3.202E-06	7.429E-07	-4.31	0.000068	***	0.18
$\mathbf{R}^2 =$	0.4426	adj R^2 =	0.392			

801

803 Using Factor 1 and 2 from the nutrient classification analysis

	Estimate	Std.Err	t value P	r(> t)		
(Intercept)	-0.09955499	0.0714464	-1.393	0.17		
f1	0.01556442	0.0053638	2.902	0.01 **		
f2	0.04844199	0.0200583	2.415	0.02 *		
gpp	0.00020052	4.541E-05	4.416 <	0.0001 ***		
managementUM	0.1584173	0.0931077	1.701	0.09 .		
f2:gpp	-2.6022E-05	1.143E-05	-2.277	0.03 *		
gpp:managementUM	-0.0001458	5.589E-05	-2.609	0.01 *		
R2=	0.4812	adj R2=	0.4246			
ANOVA table (type III)						
	SumSq	DF	F value	Pr(>F)		\mathbf{R}^2
(Intercept)	SumSq 0.03965	DF 1	F value 1.941	Pr(>F) 16 0.169098	}	R ²
(Intercept) f1	SumSq 0.03965 0.17194	DF 1	F value 1.941 8.420	Pr(>F) 16 0.169098 01 0.005328	} } **	R ² 0.18
(Intercept) f1 f2	SumSq 0.03965 0.17194 0.1191	DF 1 1 1	F value 1.941 8.420 5.832	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02	} } ** ! *	R ² 0.18 0.02
(Intercept) f1 f2 gpp	SumSq 0.03965 0.17194 0.1191 0.39819	DF 1 1 1 1	F value 1.941 8.420 5.832 19.499	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02 96 4.76E-05	} } ** } * ; ***	R ² 0.18 0.02 0.09
(Intercept) f1 f2 gpp management	SumSq 0.03965 0.17194 0.1191 0.39819 0.05912	DF 1 1 1 1 1 1	F value 1.941 8.420 5.832 19.499 2.894	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02 96 4.76E-05 49 0.094507	} } ** ? * ; *** ' .	R ² 0.18 0.02 0.09 0.04
(Intercept) f1 f2 gpp management f2:gpp	SumSq 0.03965 0.17194 0.1191 0.39819 0.05912 0.1059	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F value 1.941 8.420 5.832 19.499 2.894 5.18	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02 96 4.76E-05 49 0.094507 86 0.02668	} } ** 2 * 5 *** 7 . } *	R ² 0.18 0.02 0.09 0.04 0.07
(Intercept) f1 f2 gpp management f2:gpp gpp:management	SumSq 0.03965 0.17194 0.1191 0.39819 0.05912 0.1059 0.13899	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F value 1.941 8.420 5.832 19.499 2.894 5.18 6.800	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02 06 4.76E-05 49 0.094507 36 0.02668 54 0.011675	} } ** ; *** ; * ; *	R ² 0.18 0.02 0.09 0.04 0.07 0.09
(Intercept) f1 f2 gpp management f2:gpp gpp:management Residuals	SumSq 0.03965 0.17194 0.1191 0.39819 0.05912 0.1059 0.13899 1.12313	DF 1 1 1 1 1 1 1 1 1 1 1 55	F value 1.941 8.420 5.832 19.499 2.894 5.18 6.806	Pr(>F) 16 0.169098 01 0.005328 25 1.91E-02 06 4.76E-05 49 0.094507 36 0.02668 54 0.011675	} } ** ; *** 7 . } * ; *	R ² 0.18 0.02 0.09 0.04 0.07 0.09