4,982 research outputs found

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    The theory of quantum levitators

    Full text link
    We develop a unified theory for clocks and gravimeters using the interferences of multiple atomic waves put in levitation by traveling light pulses. Inspired by optical methods, we exhibit a propagation invariant, which enables to derive analytically the wave function of the sample scattering on the light pulse sequence. A complete characterization of the device sensitivity with respect to frequency or to acceleration measurements is obtained. These results agree with previous numerical simulations and confirm the conjecture of sensitivity improvement through multiple atomic wave interferences. A realistic experimental implementation for such clock architecture is discussed.Comment: 11 pages, 6 Figures. Minor typos corrected. Final versio

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 ×\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation

    MIMAC: MIcro-tpc MAtrix of Chambers for dark matter directional detection

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The first bi-chamber prototype has been installed at Modane, underground laboratory in June 2012. The first undergournd background events, the gain stability and calibration are shown. The first spectrum of nuclear recoils showing 3D tracks coming from the radon progeny is presented.Comment: Proceedings of the 4th International Conference on Directional Dark Matter Detection CYGNUS2013, held in Toyoma (Japan), June 201

    Development of ultra-light pixelated ladders for an ILC vertex detector

    Full text link
    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested

    The optical calcium frequency standards of PTB and NIST

    Get PDF
    We describe the current status of the Ca optical frequency standards with laser-cooled neutral atoms realized in two different laboratories for the purpose of developing a possible future optical atomic clock. Frequency measurements performed at the Physikalisch-Technische Bundesanstalt (PTB) and the National Institute of Standards and Technology (NIST) make the frequency of the clock transition of 40Ca one of the best known optical frequencies (relative uncertainty 1.2e-14) and the measurements of this frequency in both laboratories agree to well within their respective uncertainties. Prospects for improvement by orders of magnitude in the relative uncertainty of the standard look feasible.Comment: 13 pages, 11 figures, to appear in Comptes Rendus Physiqu

    Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter

    Full text link
    We present a numerical method, based on a FEM simulation, for the determination of the gravitational field generated by massive objects, whatever geometry and space mass density they have. The method was applied for the determination of the self gravity effect of an absolute cold atom gravimeter which aims at a relative uncertainty of 10-9. The deduced bias, calculated with a perturbative treatment, is finally presented. The perturbation reaches (1.3 \pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure

    Violation of Bell inequalities by photons more than 10 km apart

    Full text link
    A Franson-type test of Bell inequalities by photons 10.9 km apart is presented. Energy-time entangled photon-pairs are measured using two-channel analyzers, leading to a violation of the inequalities by 16 standard deviations without subtracting accidental coincidences. Subtracting them, a 2-photon interference visibility of 95.5% is observed, demonstrating that distances up to 10 km have no significant effect on entanglement. This sets quantum cryptography with photon pairs as a practical competitor to the schemes based on weak pulses.Comment: 4 pages, REVTeX, 2 postscript figures include
    corecore