826 research outputs found

    Spinon localization in the heat transport of the spin-1/2 ladder compound (C5_5H12_{12}N)2_2CuBr4_4

    Get PDF
    We present experiments on the magnetic field-dependent thermal transport in the spin-1/2 ladder system (C5_5H12_{12}N)2_2CuBr4_4. The thermal conductivity Îș(B)\kappa(B) is only weakly affected by the field-induced transitions between the gapless Luttinger-liquid state realized for Bc1<B<Bc2B_{c1}< B < B_{c2} and the gapped states, suggesting the absence of a direct contribution of the spin excitations to the heat transport. We observe, however, that the thermal conductivity is strongly suppressed by the magnetic field deeply within the Luttinger-liquid state. These surprising observations are discussed in terms of localization of spinons within finite ladder segments and spinon-phonon umklapp scattering of the predominantly phononic heat transport.Comment: 4 pages, 3 figure

    The theory of quantum levitators

    Full text link
    We develop a unified theory for clocks and gravimeters using the interferences of multiple atomic waves put in levitation by traveling light pulses. Inspired by optical methods, we exhibit a propagation invariant, which enables to derive analytically the wave function of the sample scattering on the light pulse sequence. A complete characterization of the device sensitivity with respect to frequency or to acceleration measurements is obtained. These results agree with previous numerical simulations and confirm the conjecture of sensitivity improvement through multiple atomic wave interferences. A realistic experimental implementation for such clock architecture is discussed.Comment: 11 pages, 6 Figures. Minor typos corrected. Final versio

    Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer

    Get PDF
    We have measured scintillation properties of pure CsI crystals used in the shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals painted with a special wavelength-shifting solution were examined in a custom-build detection apparatus (RASTA=radioactive source tomography apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light emitting diode as complementary probes of the scintillator light response. We have extracted the total light output, axial light collection nonuniformities and timing responses of the individual CsI crystals. These results predict improved performance of the 3 pi sr PIBETA calorimeter due to the painted lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment did not affect appreciably the total light output and timing resolution of our crystal sample. The predicted energy resolution for positrons and photons in the energy range of 10-100 MeV was nevertheless improved due to the more favorable axial light collection probability variation. We have compared simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and 4 Tables, also available at http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p

    A note on anti-coordination and social interactions

    Full text link
    This note confirms a conjecture of [Bramoull\'{e}, Anti-coordination and social interactions, Games and Economic Behavior, 58, 2007: 30-49]. The problem, which we name the maximum independent cut problem, is a restricted version of the MAX-CUT problem, requiring one side of the cut to be an independent set. We show that the maximum independent cut problem does not admit any polynomial time algorithm with approximation ratio better than n1−ϔn^{1-\epsilon}, where nn is the number of nodes, and Ï”\epsilon arbitrarily small, unless P=NP. For the rather special case where each node has a degree of at most four, the problem is still MAXSNP-hard.Comment: 7 page

    Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    Full text link
    We report on a study of the long-term stability and absolute accuracy of an atom interferometer gyroscope. This study included the implementation of an electro-optical technique to reverse the vector area of the interferometer for reduced systematics and a careful study of systematic phase shifts. Our data strongly suggests that drifts less than 96 Ό\mudeg/hr are possible after empirically removing shifts due to measured changes in temperature, laser intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR

    Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method

    Full text link
    We investigate the detailed dynamics of multidimensional Hamiltonian systems by studying the evolution of volume elements formed by unit deviation vectors about their orbits. The behavior of these volumes is strongly influenced by the regular or chaotic nature of the motion, the number of deviation vectors, their linear (in)dependence and the spectrum of Lyapunov exponents. The different time evolution of these volumes can be used to identify rapidly and efficiently the nature of the dynamics, leading to the introduction of quantities that clearly distinguish between chaotic behavior and quasiperiodic motion on NN-dimensional tori. More specifically we introduce the Generalized Alignment Index of order kk (GALIk_k) as the volume of a generalized parallelepiped, whose edges are kk initially linearly independent unit deviation vectors from the studied orbit whose magnitude is normalized to unity at every time step. The GALIk_k is a generalization of the Smaller Alignment Index (SALI) (GALI2_2 ∝\propto SALI). However, GALIk_k provides significantly more detailed information on the local dynamics, allows for a faster and clearer distinction between order and chaos than SALI and works even in cases where the SALI method is inconclusive.Comment: 45 pages, 10 figures, accepted for publication in Physica

    Is it possible to detect gravitational waves with atom interferometers?

    Get PDF
    We investigate the possibility to use atom interferometers to detect gravitational waves. We discuss the interaction of gravitational waves with an atom interferometer and analyze possible schemes

    Molecular gas in the Andromeda galaxy

    Full text link
    We present a new 12CO(J=1-0)-line survey of the Andromeda galaxy, M31, covering the bright disk with the highest resolution to date (85 pc along the major axis), observed On-the-Fly (in italics) with the IRAM 30-m telescope. We discuss the distribution of the CO emission and compare it with the distributions of HI and emission from cold dust traced at 175mum. Our main results are: 1. Most of the CO emission comes from the radial range R=3-16 kpc, but peaks near R=10 kpc. The emission is con- centrated in narrow, arm-like filaments defining two spiral arms with pitch angles of 7d-8d. The average arm-interarm brightness ratio along the western arms reaches 20 compared to 4 for HI. 2. For a constant conversion factor Xco, the molecular fraction of the neutral gas is enhanced in the arms and decreases radially. The apparent gas-to-dust ratios N(HI)/I175 and (N(HI)+2N(H2))/I175 increase by a factor of 20 between the centre and R=14 kpc, whereas the ratio 2N(H2)/I175 only increases by a factor of 4. Implications of these gradients are discussed. In the range R=8-14 kpc total gas and cold dust are well correlated; molecular gas is better correlated with cold dust than atomic gas.Comment: 21 pages, 16 figures. Accepted for publication in A&

    Translation from Classical Two-Way Automata to Pebble Two-Way Automata

    Get PDF
    We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional "pebble" movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic two-way machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines

    Three-Nucleon Photodisintegration of 3He

    Get PDF
    The three-nucleon photodisintegration of 3He has been calculated in the whole phase space using consistent Faddeev equations for the three-nucleon bound and scattering states. Modern nucleon-nucleon and 3N forces have been applied as well as different approaches to nuclear currents. Phase space regions are localized where 3N force effects are especially large. In addition semi-exclusive cross sections for 3He(gamma,N) have been predicted which carry interesting peak structures. Finally some data for the exclusive 3N breakup process of 3He and its total breakup cross section have been compared to theory.Comment: 28 pages, 6 png figures, 11 ps figures, modified version with changed figures, conclusions unchanged, to appear in Phys.Rev.
    • 

    corecore