RAIRO-Theor. Inf. Appl. 44 (2010) 507-523 Available online at:
DOI: 10.1051/ita/2011001 www.rairo-ita.org

TRANSLATION FROM CLASSICAL TWO-WAY
AUTOMATA TO PEBBLE TWO-WAY AUTOMATA *

VILIAM GEFFERT! AND [JUBOMIRA ISTONOVA'

Abstract. We study the relation between the standard two-way au-
tomata and more powerful devices, namely, two-way finite automata
equipped with some ¢ additional “pebbles” that are movable along the
input tape, but their use is restricted (nested) in a stack-like fash-
ion. Similarly as in the case of the classical two-way machines, it is
not known whether there exists a polynomial trade-off, in the num-
ber of states, between the nondeterministic and deterministic two-way
automata with ¢ nested pebbles. However, we show that these two ma-
chine models are not independent: if there exists a polynomial trade-off
for the classical two-way automata, then, for each ¢>0, there must also
exist a polynomial trade-off for the two-way automata with ¢ nested
pebbles. Thus, we have an upward collapse (or a downward separa-
tion) from the classical two-way automata to more powerful pebble
automata, still staying within the class of regular languages. The same
upward collapse holds for complementation of nondeterministic two-
way machines. These results are obtained by showing that each pebble
machine can be, by using suitable inputs, simulated by a classical two-
way automaton (and wice versa), with only a linear number of states,
despite the existing exponential blow-up between the classical and peb-
ble two-way machines.

Mathematics Subject Classification. 68Q45, 68Q70.

Keywords and phrases. Finite automata, regular languages, descriptional complexity.
* Supported by the Slovak Grant Agency for Science (VEGA) under contract 1/0035/09
“Combinatorial Structures and Complexity of Algorithms”.

1 Department of Computer Science, P. J. Safdrik University, Jesenna 5, 040 01 Kosice, Slovakia;
viliam.geffert@upjs.sk; lubomira.istonovaQupjs.sk

Article published by EDP Sciences © EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011001
http://www.rairo-ita.org
http://www.edpsciences.org

508 V. GEFFERT AND L. ISTONOVA
1. INTRODUCTION

The relation between determinism and nondeterminism is one of the key topics
in theoretical computer science. The most famous one is the P < NP question,
but the oldest problem of this kind is DSPACE(n) = NSPACE(n). Similarly, we do
not know whether DSPACE (logn) = NSPACE(logn). However, a positive answer for
the O(log n) space would imply the positive answer for the O(n) space, and hence
the answers to these two questions are not independent. Analogically, a collapse
of nondeterminism with determinism for the O(loglogn) space would imply the
same collapse for the O(logn) space. (For a survey and bibliography about such
translations, see e.g. [10,27].) Analogous upward translations can be derived for
time complexity classes as well: P = NP implies the collapse of nondeterminism
with determinism for 29" time.

At first glance, the problem has been resolved for finite state automata. Even a
two-way nondeterministic finite automaton (2NFA, for short) and hence any sim-
pler device as well (e.g., its deterministic version, 2DFA) can recognize a regular
language only. Thus, 2NFA’s can be converted into deterministic one-way au-
tomata. However, the problem reappears, if we take into account the size of these
automata, measured in the number of states.

On one hand, we know that eliminating nondeterminism in one-way n-state
automata does not cost more than 2™ states (by the classical subset construction),
and that there exist witness regular languages for which exactly 2" states are
indeed required. (For examples of such languages, see [18,20,23].)

On the other hand, we know very little about eliminating nondeterminism in
the two-way case: it was conjectured by Sakoda and Sipser [22] that there must ex-
ist an exponential blow-up for the conversion of 2NFA’s into 2DFA’s. Nevertheless,
the best known lower bound is €2(n2) [6], while the known conversion uses 20("")
states (converting actually into deterministic one-way machines) [21,24]. Thus, it
is not clear whether there exists a polynomial trade-off. The problem has been
attacked several times by proving exponential lower bounds for restricted versions
of 2DFA’s: Sipser [25] —for sweeping machines (changing the direction of the input
head movement at the endmarkers only); Hromkovi¢ and Schnitger [16] —for obliv-
ious machines (moving the input head along the same trajectory on all inputs of
the same length); Kapoutsis [17] —a computability separation for “moles” (seeing
only a part of the input symbol thus traveling “in a network of tunnels” along the
input). For machines accepting unary languages, a subexponential upper bound
20(log” n) hag heen obtained [11].

It was even observed [22] that there exists a family of languages {B,, : n > 1}
which is complete for the two-way automata, playing the same role as, e.g., the
satisfiability of boolean formulas for the P = NP question or the reachability in
graphs for DsSPACE(logn) = NSPACE(logn): the trade-off between the 2NFA’s and
2DFA’s is polynomial if and only if it is polynomial for B,,, i.e., if and only if
B,, can be accepted by a 2DFA with a polynomial number of states. (For 2NFA’s,
n states are enough to accept B,,.)

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 509

In the absence of a solution for the general case, it is quite natural to ask whether
some properties of the two-way automata cannot be translated into more powerful
machines or language classes, in perfect analogy with the corresponding results
for the upward translation established for the classical space and time complexity
classes. So far, the only result of this kind [1] is that if an exponential trade-off
between 2NFA’s and 2DFA’s could be obtained already by using a subset of the
original language that consists of polynomially long strings, then DSPACE(logn) #
NSPACE(log n).

In the same spirit, we shall study the relation between the standard two-way
automata and more powerful devices, namely, two-way nondeterministic and de-
terministic finite automata equipped with a fixed number of additional “nested
pebbles”, movable along the input tape (PEBBLE;-2NFA, PEBBLE;-2DFA, respec-
tively, with ¢>0). If the ¢ pebbles could be moved around without restrictions,
this would lead to nonregular languages. However, we consider another, more
restricted, model from the literature, related to first-order logic with transitive
closure. (See e.g. [8,13].) In the more restricted model, pebbles e;,... o, are
nested in a stack-like fashion: a level-i pebble e; can be moved one position to
the left or right only if, at the moment, no information is encoded by the use
of the lower-level pebbles e1,...,e; 1. (In our implementation, eq,...,e; 1 must
be placed on top of e; each time o, moves.) With this restriction, only regular
languages are recognized [2,4,27]. However, measured in the number of states,
the pebble machines are much more powerful. Even converting a PEBBLE-2DFA
to a classical 2NFA may require an exponential blow-up, i.e., the loss of the sin-
gle pebble cannot be compensated economically by gaining nondeterminism. (See
Thm. 2.1 below.)

Similarly as in the case of the classical two-way machines, we do not know
whether there exists a polynomial trade-off between the PEBBLE;-2NFA’s and
PEBBLE;-2DFA’s, the same problem reappears for PEBBLE;-2NFA’s and PEBBLEy-
2DFA’s, with £>2. However, we shall show that these machine models are related:
if there exists a polynomial transformation from the classical 2NFA’s to 2DFA’s,
then, for each ¢ > 1, there must also exist a polynomial transformation, with
the same degree of the polynomial, from the PEBBLE/-2NFA’S to PEBBLEg-2DFA’S.
Thus, we have an upward collapse (and a downward separation) between the clas-
sical two-way automata and the much more powerful model using ¢ pebbles nested
in the stack-like fashion, staying still within the class of regular languages.

A similar upward collapse holds for the trade-off between a two-way nondeter-
ministic automaton accepting a language L and a machine for the complement
of L: if the trade-off is polynomial for the classical 2NFA’s, it must also be polyno-
mial for the PEBBLE;-2NFA’s, for each £>1. (So far, the problem is open for both
these models.)

These results are obtained by showing that each PEBBLE;-2NFA (or PEBBLE/-
2DFA) can be, by using suitable inputs, simulated by a classical 2NFA (or 2DFA,
respectively) with only a linear number of states, despite the existing exponential

510 V. GEFFERT AND L. ISTONOVA

blow-up between the classical and pebble machines. The same holds for the cor-
responding conversions in the opposite direction, from the classical machines to
pebble machines.

2. PRELIMINARIES

Here we introduce some basic notation and properties for a single-pebble com-
putational model. For a more detailed exposition and bibliography related to
regular languages, the reader is referred to [15,17,19].

A two-way nondeterministic finite automaton (2NFA, for short) is defined as a
quintuple A = (@, %, 0, ¢, F), in which @ is the finite set of states, 3 is the finite
input alphabet, 0 : Q x (SU{l, 4}) — 2@*{=1.0+1} ig the transition function, F,
¢ 3 are two special symbols, called the left and the right endmarker, respectively,
¢ € Q is the initial state, and F C @ is the set of accepting (final) states.

The input is stored on the input tape surrounded by the two endmarkers. In
one move, A reads an input symbol, changes its state, and moves the input head
one cell to the right, left, or keeps it stationary, depending on whether § returns
+1, —1, or 0, respectively. The input head cannot move outside the zone delimited
by the endmarkers: transitions in the form d(¢,-) > (¢/,+1) or d(¢,F) > (¢, —1)
are not allowed. If |§(q, a)] > 1, the machine makes a nondeterministic choice. If
|06(¢g,a)| = 0, the machine halts.

The machine accepts the input, if there exists a computation path starting in
the initial state ¢, with the head on the left endmarker and reaching, anywhere
along the input tape, an accepting state q € F'.

The automaton A is said to be deterministic (2DFA), whenever |6(q, a)| < 1, for
all g € Q and a € X U {F,H}.

We shall now introduce a more powerful model, namely, a two-way finite au-
tomaton equipped with a single additional “pebble” placed on the input tape. The
action of the pebble machine depends on the current state, the currently scanned
input tape symbol, and the presence of the pebble on this symbol. The action
consists of changing the current state, moving the input head and, optionally, if
the pebble is placed on the current symbol, moving also the pebble in the same
direction.

Formally, a one-pebble two-way nondeterministic finite automaton (PEBBLEj-
2NFA, for short) is A = (Q,%,0,q, F), where Q,%, ¢, F' are defined as above,
but the transition function is of the form § : @ x (X U X® U {F,-,F*,—4°}) —
2@x{~1.0,+1,-1%41"} The presence of the pebble on the current input tape symbol
a € ¥ U {F,} is indicated by using the symbol a® € ¥°® U {F° -4}, while the
new input head movements —1°,+1° are introduced to move the pebble. More
precisely, a classical transition in the form 6(q,a) 3 (¢, d), with a € JU{F, -} and
d € {—1,0,+1}, is applicable only if the pebble is not placed on the current input
tape symbol (change the current state from ¢ to ¢’ and move the input head in the
direction d), while §(g,a®) 3 (¢, d) can be executed only if the pebble is placed on
a € YU {F, 4} at the moment (move the input head in the direction d, but leave

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 511

the pebble in its original position). Finally, a transition d(q,a®) > (¢, d®), with
d® € {—1°,+1°}, moves also the pebble in the same direction d, together with the
input head. Transitions in the form (g, a) > (¢, d®) are meaningless, and hence
not allowed.

The machine A starts its computation in the initial state ¢ with both the
input head and the pebble placed on the left endmarker, and accepts by reaching,
anywhere along the input tape, a final state ¢ € F'. Similarly, the final position of
the pebble is irrelevant for acceptance.

A one-pebble two-way deterministic finite automaton (PEBBLE{-2DFA) is de-
fined in the usual way.

It is known [4] (see also Thm. 15.3.5 in [27]) that even nondeterministic Turing
machines equipped with a single pebble and a worktape space of size o(loglogn)
can accept regular languages only. Since PEBBLE;-2NFA’s may be viewed as one-
pebble Turing machines with O(1) worktape space, all models introduced above
(2DFA, 2NFA, PEBBLE;-2DFA, PEBBLE1-2NFA) share the same expressive power —
they all recognize the same class of regular languages.

However, if we take into account their number of states, the power is different.
Converting a PEBBLE-2DFA to a classical 2NFA may require an exponential blow-
up. That is, the loss of the pebble cannot be paid by gaining nondeterminism.

Theorem 2.1. For each m > 1, there exists a finite unary language Ly, that can
be accepted by a PEBBLE1-2DFA with O(m?logm) states, but for which each 2NFA
requires at least 22(m18™) states.

Proof. Let M = py-p2-... pm, where p; denotes the i-th prime, and let L,, =
{1°: ¢ < M}.

The pebble machine A recognizing L., utilizes the fact that ¢ < M if and only if
no z € {1,...,¢} is a common multiple of p1,pa,...,pm. Therefore, A repeatedly
checks, for x = 1,...,¢, if z is divisible by the primes pi1,p2,...,pm. The value
of x is represented by the distance of the pebble from the left endmarker. In
order to check if p; divides z, A traverses between the pebble position and the left
endmarker and counts modulo p; (alternating right-to-left traversals with left-to-
right traversals for odd/even values of 7). If A finds a prime p; not dividing =z, it
does not check the next prime p;41 but, rather, enters the initial state ¢; in which it
searches for the pebble and then moves the pebble one position to the right. After
that, A can start checking the next value of = for divisibility by p1,p2,...,pm or,
if the pebble has reached the right endmarker, A can halt in an accepting state gg.
Carefully implemented, A uses only 2+4p; +p2+...+p,, states. By the Prime
Number Theorem (see, e.g., [3,7]), we have p; = (1+0(1)) - i-Iné, which gives
2+4p1+p2t...+pm < O(m?logm).

On the other hand, each classical 2NFA A’ recognizing L,, must use at least
M —1 states. This can be seen by the use of n — n+n! method [5,9,14]: on
the input 1™~L a machine A’ with fewer states than M —1 cannot traverse the
input tape from left to right without going into a loop, i.e., without repeating
the same state after traveling some h positions to the right, where h < M —1.
Thus, by iterating this loop (M —1)!/h = HM;;HI imore times, we get a valid

1=

512 V. GEFFERT AND L. ISTONOVA

computation path traversing (M —1) 4+ (M —1)! positions to the right. Therefore,
if A’ can get from a state g, to g2 by traversing the entire input 1~ it can also
get from ¢; to g by traversing the entire input 1(M—D+(M=D!" The same holds
for right-to-left traversals and also for U-turns, i.e., for computations starting and
ending at the same endmarker. Thus, by induction on the number of visits at the
endmarkers, we get that if A’ accepts the input 17~ it must also accept the input
1M=D+M=D! which is a contradiction. Therefore, each 2NFA A’ recognizing L,,
must use at least M —1 = py-pa-...-pm — 1 states. Since p1-pa-...-pm > mfm)
(see, e.g., Lem. 4.14 in [10]), we have M —1 > 2%(mlogm) O

3. TRANSLATION TO A SINGLE PEBBLE

In this section, we first show that each PEBBLE;-2NFA M (or PEBBLE;-2DFA)
can be, in a way, using a suitable encoding of the original input, simulated by
a 2NFA M’ (or 2DFA, respectively) without a pebble. Then we shall show the
corresponding conversions in the opposite direction, from the classical two-way
machines to two-way machines equipped with a pebble. The cost, in the number
of states, will be linear for all these conversions, despite the exponential blow-up
presented by Theorem 2.1. After that, we shall derive some consequences of these
translations.

In what follows, we shall need a function P that maps each input w of the
given pebble automaton M into a new word P(w) providing all possible positions
of the pebble in w. This image P(w) can be used as an input for a classical
automaton M’ (no pebble), such that M’ accepts P(w) if and only if M accepts w.
Let P:¥* — (B U {p,<} UX")* map a word w = a .. .ay, as follows:

Play...ar) = ai...apx<4dpafas...ap<4pajad ... ap <> .. (3.1)
co.dAbay . ..af jap Aavay .. ag_ial <pag .. ay,)
where >, < are new symbols and X7 = {a” : a € 3}. That is, X" simply denotes
the letters of the original alphabet marked by some box.

Thus, P(a;...ay) consists of k+2 segments, enumerated from 0. The p-th
segment, for p = 0,..., k+1, will be used by M’ to simulate M in situations when
M has the pebble placed on the p-th position of the input tape. For these reasons,
the p-th segment is of type >a; .. . ag ... a4, that is, the p-th symbol is marked by
the box. (Except for p = 0 and p = k+1, there is exactly one such “pseudo pebble”
in each segment.) The symbols > and < are the so called “stoppers”, imitating the
left and right endmarkers of the original input tape. The first and last segments
are of special kind, representing the situations when M has the pebble placed on
the left or right endmarker, respectively, with no letters marked by the box.

As an example, if w = ajazas, then P(ajasaz) = ajasas <>afasas <>aja5as <
>aq agag a>ajasas. Thus, taking also into account the endmarkers, the input tape
for the pebble automaton M is in the form Fajasaz - while the input tape for a
classical automaton M’ (no pebble) in the form F ajazas <>afazas <>ajalag <
bajasay <>ajasag . Similarly, for w = &, we have P(e) = £ ape = <b, that is,

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 513

the input tapes for M and M’ are - and <>, respectively. Therefore, the left

and right endmarkers can be handled by M’ as if marked by the “pseudo pebble”

box, that is, the symbols I, 4 can be viewed as if equal to 7, 47, respectively.
Now we have all we need to prove the following theorem:

Theorem 3.1. (a) For each PEBBLE1-2NFA M = (Q,%,0, ¢, F') with m states,
there exists a classical 2NFA M’ = (Q', %, 0", ¢}, F') with at most 3-m stales such
that, for each input w € %% M’ accepts w' = P(w) € X" if and only if M
accepts w. Here ¥/ = X U{>,a} UX" and P denotes the mapping function defined
by (3.1).

(b) Moreover, if M is deterministic, then so is M.

Proof. Note that M’ does not have to check whether its input w’ € ¥'* is indeed
a valid image obtained by the use of the mapping P, i.e., whether v’ = P(w), for
some w € ¥* Assuming that w’ = P(w), M’ simply checks whether M accepts w.
If this assumption is wrong, the answer of M’ can be quite arbitrary. (In general,
an input string w’ € ¥'* does not necessarily have the structure described by (3.1),
for any w € ¥*)

The basic idea is as follows. If, during the simulation, M has its pebble placed
on the p-th position, M’ works within the p-th segment of P(w). The simulation is
quite straightforward and M’ does not have to leave this segment until the moment
when M moves its pebble. Recall that M’ relies on the assumption that the p-th
segment contains one exact copy of w, correctly enclosed in between the symbols
> and <, and that the current pebble position of M is clearly marked inside this
segment, i.e., there is exactly one symbol marked with the box, namely, the symbol
on the p-th position. If this never-verified assumption were wrong, the simulation
could turn out to be wrong. Using this idea, we start our construction of §’, the
transition function for the automaton M’, as follows.

(i) If 6(g,a) > (¢, d), for some ¢q,¢' € Q, a € £, and d € {—1,0,+1}, then
&'(q,a) 3 (¢, d).
(ii) If 6(q,F) >
& (q,>) > (
(iii) If (g,) 2 (q
8 (q,<) 3 (¢’ d).
(iv) If 6(q,a®) > (¢
d'(q,a") 2
(v) If 6(q.-*)
§'(q,F) > (¢, d).
(vi) If 6(q,*) 2 (¢, d), for some ¢,¢' € Q and d € {—1,0}, then
§'(q,) > (¢, d).
As soon as M moves its pebble from the p-th position to the right, M’ has to
travel from the p-th segment to the next, i.e., the (p+1)-th segment, and find the
symbol marked by the box within this segment. Assuming that the input is in
the form w’ = P(w), for some w € ¥* this only requires to find the next symbol
marked by the box lying to the right of the current input position. Recall that the
(p+1)-th segment has, by assumption, the same structure; the only difference is

514 V. GEFFERT AND L. ISTONOVA

in the position of the symbol marked with the box, which corresponds exactly to
the changed position of the pebble for M. Thus, after finding the marked symbol
within the neighboring segment, M’ can resume the simulation.

(vii) If 6(q,a®) > (¢, +1°), for some ¢,¢' € Q and a € X, we add the following
instructions:
e §'(q,a") > (¢/.1,+1), where ¢/, is a passing-through state — a new
copy of ¢,
o (¢ 1,x) > (¢/ 1, +1), for each x € X U {p, a},
e 8 (dy1,2") 3 (¢,0), for each z7 € X U {H}.
(viii) If 6(q,F°) 2 (¢, +1°), for some ¢,¢" € Q, then
e 0'(q,F) > (¢}, +1).
e Transitions for ¢/, ; are defined in the same way as in the item (vii).
Similarly, if M moves the pebble to the left, M’ has to travel to the previous, i.e.,
the (p—1)-st segment. This is resolved symmetrically with the previous case.

(ix) If 6(q,a®) 3 (¢, —1°), for some ¢q,¢’" € Q and a € X, we add the following
instructions:
e §(q,a") 3 (¢"_,,—1), where ¢’ is another new passing-through copy
of ¢,
8(q"1,z) 2 (¢"4,—1), for each z € X U {>, <},
o (5’(q 1,2%) 2 (¢,0), for each 2" € X2 U {F}.
(x) If §(q,-*) 3 (¢, —1°), for some q,q’ € Q, then
.« 5'(0,) 5 (¢, -1).
e Transitions for ¢/ ; are defined in the same way as in the item (ix).
From the above construction, we get Q' = Q U Q+1 U Q_1, where Q is the set of
the original states in M and @1, @ _1 are the sets of passing-through states, i.e.,
the sets of two new copies of states in), used for traversing to the neighboring
segments, introduced as ¢/ ; and ¢/, in the items (vii) and (ix), respectively. The
initial state and the final states do not change:
(xi) ¢ =q, F' =F.
This completes the definition of M’ By a not very complicated inspection of

the items (i) —(xi), it is easy to see that the above transformation does preserve
determinism.

Claim. On the input w, M can get from its initial configuration, i.e., from the
state q; with both the input head and the pebble at the left endmarker, to a state
q € Q with the input head at a position h and the pebble at a position p if and
only if, on the input P(w), M’ can get from its initial configuration, i.e., from the
state q. with the input head at the left endmarker, to the same state ¢ € Q with
the input head at the h-th position of the p-th segment.

The argument for the “=" part is shown by induction on the number of computa-
tion steps executed by M. The “<” part, instead of induction on single computa-
tion steps, uses an induction on the number of times the machine M’ is in a state
q € @, i.e., not in a passing-through state ¢ € Q@11 UQ_1. (Thus, a computation
path in M’ is partitioned into sections ¢ = qo — q1 — *+* — ¢ — ¢it1 — - -,

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 515

where ¢; — ¢;4+1 is a section beginning and ending in states ¢;, ¢;+1 € @, such that
all states in between are passing-through states, from @11 U @Q_;. If there are no
states in between, ¢; — ¢;4+1 represents a single step.)

As a consequence of this claim, if M accepts w € ¥* by reaching an accepting
state ¢ € F, then M’ can reach the same state ¢ € F = F’ on the input w’ =
P(w) € ¥'*, and hence M’ accepts P(w). Conversely, if M’ accepts P(w), i.e., if
M’ can reach an accepting state ¢ € F/ = F on the input P(w), then, since ¢ is
not a passing-through state, M can reach the same state ¢ on the input w, and
hence M accepts w. O

Now we shall show a linear translation in the opposite direction.

Theorem 3.2. (a) For each classical 2NFA N = (Q, %', 0, q;, F) with n states,

there exists a PEBBLE1-2NFA N’ = (Q,%,8, ¢/, F') with at most 5-n states such

that, for each input w € X%, N’ accepts w if and only if N accepts w' = P(w) € ¥'".

Here ¥ =X U {p,<} UX" and P denotes the mapping function defined by (3.1).
(b) Moreover, if N is deterministic, then so is N'.

Proof. Note that N’ does not have to be capable of simulating N on all strings
w' € X", N’ simulates N only on inputs in the form w’ = P(w), where w € ¥* is
its own input. Thus, N’ can utilize the fact that the string P(w) has the structure
described by (3.1).

The basic idea is as follows. While N works within the same segment of P(w),
the simulation by N’ is quite straightforward: the endmarkers F, - surrounding w
are interpreted as stoppers >, < in P(w) and the presence of the pebble on a symbol
a € ¥ U {F, -} scanned by the input head of N’ indicates that N reads a” € X"
or the corresponding endmarker ,-. That is, the pebble placed at a position p
reflects the fact that N’ simulates, at the moment, N working within the p-th
segment of the input P(w).

(i) If §(q,a) > (¢, d), for some ¢,¢' € Q, a € ¥, and d € {—1,0,+1}, then
&'(q,a) 3 (¢, d).
(i) If 6(q.>) > (d}
() 3 (¢’d
(iii) If 6(q,<) > (¢,

), for some ¢,¢" € Q and d € {0,+1}, then

d
)-
d), for some ¢,q¢' € Q and d € {—1,0}, then
)-
/

(¢,) > (¢ d
(iv) If 5(q,) 3 (¢, d), for some ¢,¢' € Q, a € ¥, and d € {—1,0,+1}, then
8 (q,a®) 3 (¢, d).

(v) If 6(q.) (¢, d)
§'(q,F*) = (¢, d).
(vi) If 6(¢,) > (¢, d), for some ¢,¢' € Q and d € {—1,0}, then
'(q,4%) > (¢’ d).

Each time N leaves the current segment, e.g., if it moves its input head from the
symbol < to the right (that is, in the next step, N will read the symbol > belonging
to the next segment), N’ does not try to move its input head to the right from the
right endmarker but, rather, it temporarily interrupts the simulation and enters
a passing-through routine in which it traverses the entire input w from right to

, for some ¢,¢" € Q and d € {0,+1}, then

516 V. GEFFERT AND L. ISTONOVA

left and, during this traversal, it moves the pebble one position to the right. After
that, with the input head at the left endmarker of w, N’ is ready to resume the
simulation on the next segment of P(w). Note that the instructions defined in
the item (vii) cover also three special subcases, namely, migration of the pebble
from the left endmarker to the first input symbol, from the last input symbol to
the right endmarker, or, for w = ¢, from the left endmarker directly to the right
endmarker.

(vii) If 6(¢,<) > (¢, +1), for some q,¢" € @, we add the following instructions:

e §(q,) > (¢"1,—1), where ¢'_; is a new copy of ¢’ — a passing-through
state searching for the pebble to the left,

e 5 (¢ 1,2)>(¢"1,—1), for each z € &,

e 5 (¢ 1,2%) > (¢4, +1°%), for each x € ¥ U {F}, where ¢’ , is an-
other new copy of ¢/ —a passing-through state searching for the left
endmarker,

e 5 (¢ 5,2°) 3 (¢ 5, —1), for each x € ¥ U {-},

o §'(¢ 5,x) 3 (¢ 4, —1), for each z € X,

e ¥ (¢ 5,F) 2 (d,0).

Symmetrically, each time N leaves the current segment for the previous segment,
i.e., if it moves its head from the symbol > to the left (after which it will read <),
N’ interrupts the simulation and enters a routine traversing the entire input w
from left to right and, during this traversal, it moves the pebble one position to
the left.

(viii) If 6(q,>) 2 (¢, —1), for some ¢, q¢" € @, we add the following instructions:

e 0'(q,F) 3 (¢/s1,+1), where ¢/, is a new copy of ¢’ —a passing-through
state searching for the pebble to the right,

o 0'(¢'.1,2) 3 (¢, +1), for each z € 3,

® 0'(q 1,2%) 3 (¢9,—1%), for each z € ¥ U {H}, where ¢/, is an-
other new copy of ¢’ —a passing-through state searching for the right
endmarker,

o 0'(q 9,2%) 2 (¢ g, +1), for each x € X U {F},

o 0'(¢' 9,2) 3 (¢o, +1), for each z € 3,

o §(dss) > (¢,0).

This gives Q' = QUQ _1 UQ _2U Q11 UQ 2, where @Q is the original set of states
and Q_1,Q_2,Q+1, Q42 are four new copies of states in @), introduced in the items
(vii) and (viii). Finally,

(ix) ¢ =q, F' =F.
It is easy to see that the transformation described above preserves determinism.

The argument showing that N’ accepts w € X* if and only if N accepts w’ =
P(w) € ¥'" is very similar to that of Theorem 3.1: by induction on the number
of steps executed by N and by induction on the number of times N’ is in a state
q € Q (i.e., not in a passing-through state), we can prove a claim saying that, on
the input w, N’ can reach a state ¢ € Q with the input head at a position h and

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 517

the pebble at a position p if and only if, on the input P(w), N can reach the same
state ¢ with the input head at the h-th position of the p-th segment. O

Now we are ready to draw some consequences of the above translations.

Theorem 3.3. If, for some function f(n), each 2NFA with n states can be replaced
by an equivalent 2DFA with at most f(n) states (no pebbles), then each PEBBLE;-
2NFA with m states can be replaced by an equivalent PEBBLE1-2DFA having no
more than 5-f(3m) states.

In particular, if f(n) < O(n*), that is, if there ewists a polynomial transforma-
tion from nondeterministic to deterministic classical two-way automata, then there
must also exist a polynomial transformation, with the same degree of the polyno-
mial, from nondeterministic to deterministic two-way automata equipped with a
pebble, since 5-(3m)k = (5-3%)-mF < O(m*).

Proof. By Theorem 3.1(a), each PEBBLE1-2NFA M with m states accepting a lan-
guage L C Y¥* can be replaced by a classical 2NFA M’ with at most 3-m states,
accepting some other language L’ C ¥'*. However, for each input w € £* M ac-
cepts w if and only if M’ accepts P(w) € ¥'". Here P denotes the mapping function
defined by (3.1). By assumption, M’ can be replaced by a classical 2DFA N, with
at most f(3m) states, equivalent to M. Among others, M’ accepts P(w) if and
only if N accepts P(w). Now, by Theorem 3.2(b), we can replace N by a PEBBLE1 -
2DFA N’ with no more than 5-f(3m) states, such that N accepts P(w) € X'* if
and only if N’ accepts w € ¥* Thus, for each input w € ¥* M accepts w if and
only if N’ accepts w, and hence these two pebble machines are equivalent. O

The situation for complementing nondeterministic two-way machines is similar.

Theorem 3.4. If, for some function f(n), each 2NFA with n states can be replaced
by a 2NFA with at most f(n) states recognizing the complement of the original
language (no pebbles), then each PEBBLE;1-2NFA with m states can be replaced by
a PEBBLE1-2NFA with no more than 5-f(3m) states recognizing the complement.

In particular, if f(n) < O(n*), that is, if there exists a polynomial transforma-
tion for complementing nondeterministic classical two-way automata, then there
must also exist a polynomial transformation, with the same degree of the poly-
nomial, for complementing nondeterministic two-way automata equipped with a
pebble.

Proof. The argument is very similar to the proof of Theorem 3.3, using Theo-
rems 3.1(a) and 3.2(a) instead of Theorems 3.1(a) and 3.2(b).

First, by Theorem 3.1(a), convert the given PEBBLE1-2NFA M into a classical
2NFA M’ such that w € £* is accepted by M if and only if P(w) € ¥ is ac-
cepted by M’ By assumption, M’ can be replaced by a classical 2NFA N for the
complement, with at most f(3m) states. Among others, P(w) is accepted by M’
if and only if P(w) is not accepted by N. By Theorem 3.2(a), replace N by a
PEBBLE;-2NFA N’ such that P(w) is not accepted by N if and only if w is not
accepted by N'. Thus, an input w € ¥* is accepted by M if and only if it is not
accepted by N'. O

518 V. GEFFERT AND L. ISTONOVA

Corollary 3.5. For each PEBBLE{-2DFA with m states, there exists a PEBBLE]-
2DFA with at most 60-m states recognizing the complement of the original language.

Proof. The argument works in the same way as in the previous two theorems, this
time we use Theorems 3.1(b) and 3.2(b), together with the fact that an n-state
2DFA can be complemented with no more than 4n states [12]. U

It was known that a PEBBLE1-2DFA can be made halting on every input, and
hence a machine for the complement can be obtained by exchanging accepting with
rejecting states [4,5,26,27]. This would give a PEBBLE;-2DFA with O(m-s?) states,
where m is the original number of states and s the size of the input alphabet. This
way, a linear upper bound is obtained for languages over a fixed input alphabet,
but not in the general case, where the alphabet size s can grow exponentially
in m (see, e.g., [25]). The construction using Corollary 3.5 does not depend on
the size of the input alphabet. However, we conjecture that the upper bound in
Corollary 3.5 (as well as the one presented in Cor. 4.5 below) can be improved, by
a direct adaptation of a technique from [12].

4. TRANSLATION TO MORE, BUT NESTED, PEBBLES

Taking into account the results presented above, a natural question arises,
namely, if the same translation technique works for automata with 2 pebbles or
more. The computational model used in complexity theory, where the pebbles
can be moved around without restrictions, leads to nonregular languages. As an
example, already with 2 pebbles we can easily recognize L = {a™b"c" : n > 0}. It
is not clear how to extend our translation to this model.

However, there is another, more restricted, model in the literature. In this more
restricted model, there is a stack discipline: the pebbles are numbered e, ... o,.
For each i € {1,...,/}, the level-i pebble e; can be moved one position to the left
or right only if all lower-level pebbles o1, ...,e; 1 are placed on top of e;. During
this move, ®1,...,;_; are traveling together with e; along the input!. With this
restriction, only regular languages are recognized, and there is a connection to
first-order logic with transitive closure. (See e.g. [2,8,13].)

More formally, for ¢ > 0, a two-way nondeterministic finite automaton with
¢ nested pebbles (PEBBLEg-2NFA, for short) is A = (Q, %, 0, q;, F'), where Q, 3, ¢;, F
are defined as before, but now the transition function is of the form § : Q x ((X U

1 Alternatively, these machines could be equipped with a pebble pushdown store, capable of
containing e1, ..., ey, so that the pebbles can be put on and taken off the input tape. Implemented
this way, the pebble e; can be moved only if the pebbles o1, ..., e, 1 are not present on the input.
For technical reasons, we introduce nested pebbles in a different way.

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 519

As an example, for £ = 4, §(q,a*1*2*+) > (¢, +1°1*2) is interpreted as follows>.
If the machine is in the state ¢, scanning the symbol a on the input, with the
pebbles o1, 85, and 4 (but not e3) placed at the current input tape position, then
it changes its state to ¢’ and moves its input head to the right, dragging also the
pebbles e and e5.

Transitions in the form (g, a”*) 3 (¢, d”) are meaningless, if B Z A, and hence
not allowed: a pebble cannot move, if it is not scanned by the input head. As an
additional restriction, to make pebbles nested in the stack-like fashion, B is always
of the form {ey,...,e;}, for some i € {0,...,¢}.

A deterministic version, PEBBLE;-2DFA, is defined in the usual way.

Now we are ready to show that the translation presented in Section 3 works also
between the classical two-way automata (no pebbles) and the two-way machines
with £ nested pebbles, for each ¢ > 0. This requires to generalize encoding of the
original input, introduced by (3.1), so that it is suitable for mutual simulations
between machines with ¢ nested pebbles and machines without any pebbles. The
cost, in the number of states, will be linear.

More precisely, the generalized function P, maps each input w € ¥* of the
given automaton M, equipped with ¢ nested pebbles, into a word Py(w) € (X U
{>,a}) x 2800 Behy* providing all possible positions for all pebbles ey, ..., e, to
be used by a classical automaton M’, with no pebbles. That is, for w = a; ... as,
the input tape Fa;j ...ax - with the pebbles e1,..., e, placed at input positions
P1y---,0e €4{0,...,k+1} is represented by a segment az(,lf?...,pé, obtained from the
string >ay ... ap< by marking, for each ¢ = 1,..., ¢, the symbol at the position p;
by the box 0,. The same symbol can be marked by several boxes, for example,
a?lDQD“ indicates that the pebbles e1, 5, and e4 (but not e3) are placed on top of
the input symbol a;. Again, the symbols > and < are used as stoppers, to imitate
the left and right endmarkers of the original input tape. Finally, the string Pp(w)
is obtained by enumerating all segments U]g?,)wp“ for all (k+2)¢ possible combi-
nations of p1,...,ps € {0,...,k+1}, varying lower-level pebble positions in more
inner loops. (That is, p; runs in the innermost loop.)

__(w) (w) (w) (w) (w)
Py(w) = 90.,0,...,091,0,....0 - * 9k+1,0,...,000,1,....0 -+ * -+ Okt 1,k41,... t1 (4.1)

However, the endmarkers I, - are viewed as if equal to >F1P¢ and <P1Fe re-
spectively, and hence the first and last segments are one symbol shorter, with no
letters marked by a box.

Theorem 4.1. (a) For each £ >0 and each PEBBLE;-2NFA M = (Q,X%,0,q;, F)
with m states, there exists a classical 2NFA M' = (Q, X, 0", ¢}, F') with at most
(2041)-m states such that, for each input w € X%, M’ accepts w' = Py(w) € ¥'" if

2 For better readability, we write a®1°2%4 instead of [a, {81, 2, 4}]. In this notation, [a,]
is written as a, with obvious interpretation: there is no pebble placed on the current input tape
symbol a. The same holds for 4+1°1°2) combining the movement of the input head with the
pebbles.

520 V. GEFFERT AND L. ISTONOVA

and only if M accepts w. Here ¥’ = (X U {>,<}) x 2{5120ck and P, denotes the
mapping function introduced by (4.1).
(b) Moreover, if M is deterministic, then so is M.

Proof. Since the argument is a natural extension of the proof presented in Theo-
rem 3.1, we shall skip many details.

The basic idea is as follows. If, during the simulation, M has its pebbles placed
on the positions pi,...,p¢ € {0,...,k+1}, M" works within the segment o
in Pp(w). The simulation is straightforward, interpreting each box O, as the cor-
responding pebble e;.

If, for some i, M moves the pebble e; (but not e, 1) from a symbol a one position
to the right, which is possible only if eq,...,e; 1 are on top of e;, M’ must scan
the symbol a marked by 0,..0;. This also implies that p; = ... =p;—1 = p;. In
this situation, M’ has only to travel from the current input tape position to the
right and find the first symbol b that is also marked by O,..0,. (This does not
exclude the possibility that the symbols a or b are also marked by some other,
higher-level, boxes.) Assuming that the input is formatted correctly, in the form
w' = Py(w), for some w € ¥* such symbol b is found in the correct segment
05 ppistsper At the correct position p = p;+1 within this segment. This follows
from the fact that the segments in P;(w) are enumerated for all possible values
of p1,...,pe € {0,...,k+1}, varying lower-level pebble positions in more inner
loops. After finding such symbol b, M’ can resume the simulation. Such search
can be implemented by using a passing-through state qg_l,i, where ¢’ represents the
state in which the simulation has to be resumed and i € {1,..., ¢} the level of the
simulated pebble movement. (Cf. items (vii) and (viii) in the proof of Thm. 3.1.)

The case in which M moves the pebble o; to the left is resolved symmetrically,
by the use of a passing-through state ¢’ ;. (Cf. items (ix) and (x) in Thm. 3.1.)

From the above construction, we obtain Q' = QU (Q+1UQ_1) x {1,...,¢}, and
hence M’ uses (2¢+1)-m states. O

Theorem 4.2. (a) For each £ >0 and each classical 2NFA N = (Q,Y%), 0, q;, F)
with n states, there exists a PEBBLE;-2NFA N’ = (Q,%,0, ¢, F') with at most
(40+1)-n states such that, for each input w € ¥*, N’ accepts w if and only if
N accepts w' = Py(w) € X%, Here X' = (X U {p,a}) x 2{80:0c and Py denotes
the mapping function introduced by (4.1).

(b) Moreover, if N is deterministic, then so is N'.

Proof. This time the argument generalizes the basic idea used in the proof of
Theorem 3.2. Now N’ can utilize the fact that the string Pp(w) has the structure
described by (4.1).

While N works within the same segment o) in Py(w), N’ has its pebbles
placed on the positions pi,...,pe. The simulation by N’ is straightforward: the
endmarkers -, - are interpreted as the stoppers >, <, and the pebbles e1,..., e, as
the corresponding boxes O, ..., O,.

If N moves from the stopper < to the right, to the next segment, N’ temporar-
ily interrupts the simulation and enters the following passing-through routine.

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 521

Let o; be the lowest-level pebble not placed on the right endmarker 4. That
is, e1,...,e; 1 are placed on -, and hence N’ has to switch from the segment
Ul(fli:l,...,k-irlmq,,pi+1,...,pe to 06”"‘)‘"0%“%“’Mp[. (Recall that k denotes the length
of the input w). To this aim, N’ traverses the entire input w, starting from -,
dragging also the pebbles e,... e, 1 to the left, and searching for e;,. The peb-
ble o; is moved one position to the right in the middle of the input. After that,
e,...,e, 1 are pulled to the left endmarker -, where N’ can resume the simula-
tion. (c¢f. item (vii) in the proof of Thm. 3.2). This covers also the case of i = 1,
in which only the pebble e is shifted one position to the right in the middle of the
input. If i = ¢+1, i.e., all pebbles are placed on -, N’ imitates the right endmarker
of the input Py(w), without activation of any passing-through routine. Such rou-
tine can be implemented by using two passing-through states ¢’ 1,00 q- 2.4» Where
¢’ represents the state in which the simulation has to be resumed and i € {1,...,/¢}
the level of the pebble movement.

The case in which N moves from the stopper > to the left is resolved symmetri-
cally, by the use of passing-through states ¢’ ; ;, ¢, 5 ;- (cf. item (viii) in Thm. 3.2).

This gives Q' = QU (Q-1UQ_2UQ1+1 UQ42) x {1,...,¢}, and hence N’ uses
(4+1)-n states. O

We are now ready to present the main results. The arguments mirror the
respective proofs for Theorems 3.3, 3.4, and for Corollary 3.5.

Theorem 4.3. If, for some function f(n), each 2NFA with n states can be replaced
by an equivalent 2DFA with at most f(n) states (no pebbles), then, for each £>0,
each PEBBLEg-2NFA with m states can be replaced by an equivalent PEBBLEy-2DFA
having no more than (4¢0+1)-f((2¢+1)-m) states.

In particular, if f(n) < O(n*), that is, if there exists a polynomial transforma-
tion from nondeterministic to deterministic classical two-way automata, then there
must also exist a polynomial transformation, with the same degree of the polynomial
for each £>0, from nondeterministic to deterministic two-way automata equipped
with € nested pebbles, since (40+1) -((20+1)-m)* = (404+1)-(20+1)F-m* < O(m*).

Theorem 4.4. If, for some function f(n), each 2NFA with n states can be replaced
by a 2NFA with at most f(n) states recognizing the complement of the original
language (no pebbles), then, for each £>0, each PEBBLE;-2NFA with m states can
be replaced by a PEBBLE;-2NFA with no more than (40+1)-f((2(+1)-m) states
recognizing the complement.

In particular, if f(n) < O(n*), that is, if there ewists a polynomial transforma-
tion for complementing nondeterministic classical two-way automata, then there
must also exist a polynomial transformation, with the same degree of the poly-
nomial for each £ > 0, for complementing nondeterministic two-way automata
equipped with £ nested pebbles.

Corollary 4.5. For each £ >0 and for each PEBBLE;-2DFA with m states, there
exists a PEBBLEg-2DFA with at most (4€+1)-(2041)-4m states recognizing the
complement of the original language.

522 V. GEFFERT AND L. ISTONOVA

5. CONCLUSION

Already in 1978, it was conjectured by Sakoda and Sipser [22] that there must
exist an exponential blow-up, in the number of states, for the transformation of
the classical 2NFA’s into 2DFA’s. Nevertheless, this problem is still open. We have
shown, by Theorem 4.3 above, that such blow-up could possibly be derived by
proving, for some ¢ >0, an exponential gap between PEBBLE;-2NFA’s and PEBBLEy-
2DFA’s. Even showing a less impressive lower bound for the PEBBLE/-2NFA versus
PEBBLE,-2DFA trade-off, say, Q(n*) with some k > 3, would imply the same
lower bound Q(n*) for the classical 2NFA versus 2DFA conversion. (To the best of
authors’ knowledge, the highest lower bound obtained so far is Q(n?) [6].) Since
an automaton with several pebbles (nested in a stack-like fashion) is a different
computational model, the argument might use some different witness languages.

Similarly, by Theorem 4.4, proving an exponential gap for the complementation
of the PEBBLE;-2NFA’s, for any ¢ > 0, would imply the same exponential gap
for the complementation of the classical 2NFA’s. This, in turn, would imply the
exponential gap for the trade-off between 2NFA’s and 2DFA’s, and also between
PEBBLE¢-2NFA’s and PEBBLE;-2DFA’s (for this particular value of ¢), since the
complementation for the deterministic two-way machines is linear (namely, 4n
states for 2DFA’s, by [12], and at most (4(+1)-(2¢+1)-4n states for PEBBLE,-
2DFA’s, by Cor. 4.5).

Quite surprisingly, even though a polynomial trade-off between the classical
2NFA’s and 2DFA’s implies the same trade-off for the PEBBLE;-2NFA’s and PEBBLE-
2DFA’, for each ¢ > 1, we still do not know whether a polynomial trade-off for
automata with ¢ nested pebbles implies the polynomial trade-off for automata
equipped with /+1 nested pebbles. (The problematic part is an analogue of Theo-
rem 4.2, describing a simulation of £ nested pebbles, on an input resembling P(w),
by £+1 pebbles on w.)

The most natural related open problem is whether the translation results pre-
sented in Theorems 4.3 and 4.4 cannot be extended to two-way automata equipped
with pebbles not restricted in a stack-like fashion. (The argument might be quite
difficult, since such machines can accept nonregular languages.) Nevertheless, the
answers to these questions might bring a deeper insight into the world of O(logn)
space bounded computations, since the 2NFA’s and 2DFA’s with several unrestricted
pebbles correspond to the complexity classes NSPACE(logn) and DSPACE(logn), re-
spectively (see Sect. 3.2 in [27]).

Acknowledgements. We would like to thank anonymous referees for pointing us to the
computational model of automata with pebbles nested in a stack-like fashion, which
improved the quality of the results.

REFERENCES

[1] J. Berman and A. Lingas, On the complezity of regular languages in terms of finite au-
tomata. Tech. Rep., Vol. 304, Polish Academy of Sciences (1977).

[2] M. Blum and C. Hewitt, Automata on a 2-dimensional tape, in Proc. IEEE Symp. Switching
Automata Theory (1967), 155-160.

TRANSLATION FROM CLASSICAL TO PEBBLE TWO-WAY AUTOMATA 523

[3] C. Boyer, A History of Mathematics. John Wiley & Sons (1968).

[4] J.H. Chang, O.H. Ibarra, M.A. Palis and B. Ravikumar, On pebble automata. Theoret.
Comput. Sci. 44 (1986) 111-121.

[5] R. Chang, J. Hartmanis and D. Ranjan, Space bounded computations: Review and new
separation results. Theoret. Comput. Sci. 80 (1991) 289-302.

[6] M. Chrobak, Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986)
149-158. (Corrigendum: Theoret. Comput. Sci. 302 (2003) 497-498).

[7] W. Ellison and F. Ellison, Prime Numbers. John Wiley & Sons (1985).

[8] J. Engelfriet and H.J. Hoogeboom, Tree-walking pebble automata, in Jewels Are Forever,
Contributions to Theoretical Computer Science in Honor of Arto Salomaa, J. Karhumaki,
H. Maurer, G. Paun and G. Rozenberg, Eds. Springer-Verlag (1999), 72-83.

[9] V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibil-
ity. SIAM J. Comput. 20 (1991) 484-498.

[10] V. Geffert, Bridging across the log(n) space frontier. Inform. Comput. 142 (1998) 127-158.

[11] V. Geffert, C. Mereghetti and G. Pighizzini, Converting two-way nondeterministic unary
automata into simpler automata. Theoret. Comput. Sci. 295 (2003) 189-203.

[12] V. Geflert, C. Mereghetti and G. Pighizzini, Complementing two-way finite automata.
Inform. Comput. 205 (2007) 1173-1187.

[13] N. Globerman and D. Harel, Complexity results for two-way and multi-pebble automata
and their logics. Theoret. Comput. Sci. 169 (1996) 161-184.

[14] J. Hartmanis, P. M. Lewis IT and R. E. Stearns, Hierarchies of memory limited computations,
in IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965), 179-190.

[15] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (2001).

[16] J. Hromkovi¢ and G. Schnitger, Nondeterminism versus determinism for two-way nonde-
terministic automata: Generalizations of Sipser’s separation, in Proc. Internat. Collog. Au-
tomata, Languages and Programming. Lect. Notes Comput. Sci. 2719 (2003) 439-451.

[17] Ch.A. Kapoutsis, Deterministic moles cannot solve liveness. J. Automat. Lang. Combin. 12
(2007) 215-235.

(18] O.B. Lupanov, Uber den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik
Akademie-Verlag, Berlin, in German, Vol. 6, 329-335 (1966).

[19] C. Mereghetti and G. Pighizzini, Optimal simulations between unary automata. SIAM J.
Comput. 30 (2001) 1976-1992.

[20] F. Moore, On the bounds for state-set size in the proofs of equivalence between determin-
istic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20 (1971)
1211-1214.

[21] M. Rabin and D. Scott, Finite automata and their decision problems. IBM J. Res. Develop.
3 (1959) 114-125.

[22] W. Sakoda and M. Sipser, Nondeterminism and the size of two-way finite automata, in Proc.
ACM Symp. Theory Comput. (1978), 275-286.

[23] A. Salomaa, D. Wood and S. Yu, On the state complexity of reversals of regular languages.
Theoret. Comput. Sci. 320 (2004) 315-329.

[24] M. Shepherdson, The reduction of two-way automata to one-way automata. IBM J. Res.
Develop. 3 (1959) 198-200.

[25] M. Sipser, Lower bounds on the size of sweeping automata, in Proc. ACM Symp. Theory
Comput. (1979) 360-364.

[26] M. Sipser, Halting space bounded computations. Theoret. Comput. Sci. 10 (1980) 335-338.

[27] A. Szepietowski, Turing Machines with Sublogarithmic Space. Lect. Notes Comput. Sci. 843
(1994).

Communicated by V. Diekert.
Received September 8, 2009. Accepted December 21, 2010.

	Introduction
	Preliminaries
	Translation to a single pebble
	Translation to more, but nested, pebbles
	Conclusion
	References

