454 research outputs found

    The boundary of hyperbolicity for Henon-like families

    Full text link
    We consider C^{2} Henon-like families of diffeomorphisms of R^{2} and study the boundary of the region of parameter values for which the nonwandering set is uniformly hyperbolic. Assuming sufficient dissipativity, we show that the loss of hyperbolicity is caused by a first homoclinic or heteroclinic tangency and that uniform hyperbolicity estimates hold uniformly in the parameter up to this bifurcation parameter and even, to some extent, at the bifurcation parameter.Comment: 32 pages, 11 figures. Several minor revisions, additional figures, clarifications of some argument

    Conditional exponents, entropies and a measure of dynamical self-organization

    Full text link
    In dynamical systems composed of interacting parts, conditional exponents, conditional exponent entropies and cylindrical entropies are shown to be well defined ergodic invariants which characterize the dynamical selforganization and statitical independence of the constituent parts. An example of interacting Bernoulli units is used to illustrate the nature of these invariants.Comment: 6 pages Latex, 1 black and white and 2 color figures, replacement of damaged gif file

    Ergodic Properties of Invariant Measures for C^{1+\alpha} nonuniformly hyperbolic systems

    Full text link
    For an ergodic hyperbolic measure ω\omega of a C1+αC^{1+{\alpha}} diffeomorphism, there is an ω\omega full-measured set Λ~\tilde\Lambda such that every nonempty, compact and connected subset VV of Minv(Λ~)\mathbb{M}_{inv}(\tilde\Lambda) coincides with the accumulating set of time averages of Dirac measures supported at {\it one orbit}, where Minv(Λ~)\mathbb{M}_{inv}(\tilde\Lambda) denotes the space of invariant measures supported on Λ~\tilde\Lambda. Such state points corresponding to a fixed VV are dense in the support supp(ω)supp(\omega). Moreover, Minv(Λ~)\mathbb{M}_{inv}(\tilde\Lambda) can be accumulated by time averages of Dirac measures supported at {\it one orbit}, and such state points form a residual subset of supp(ω)supp(\omega). These extend results of Sigmund [9] from uniformly hyperbolic case to non-uniformly hyperbolic case. As a corollary, irregular points form a residual set of supp(ω)supp(\omega).Comment: 19 page

    Resolution of two apparent paradoxes concerning quantum oscillations in underdoped high-TcT_{c} superconductors

    Full text link
    Recent quantum oscillation experiments in underdoped high temperature superconductors seem to imply two paradoxes. The first paradox concerns the apparent non-existence of the signature of the electron pockets in angle resolved photoemission spectroscopy (ARPES). The second paradox is a clear signature of a small electron pocket in quantum oscillation experiments, but no evidence as yet of the corresponding hole pockets of approximately double the frequency of the electron pocket. This hole pockets should be present if the Fermi surface reconstruction is due to a commensurate density wave, assuming that Luttinger sum rule relating the area of the pockets and the total number of charge carriers holds. Here we provide possible resolutions of these apparent paradoxes from the commensurate dd-density wave theory. To address the first paradox we have computed the ARPES spectral function subject to correlated disorder, natural to a class of experiments relevant to the materials studied in quantum oscillations. The intensity of the spectral function is significantly reduced for the electron pockets for an intermediate range of disorder correlation length, and typically less than half the hole pocket is visible, mimicking Fermi arcs. Next we show from an exact transfer matrix calculation of the Shubnikov-de Haas oscillation that the usual disorder affects the electron pocket more significantly than the hole pocket. However, when, in addition, the scattering from vortices in the mixed state is included, it wipes out the frequency corresponding to the hole pocket. Thus, if we are correct, it will be necessary to do measurements at higher magnetic fields and even higher quality samples to recover the hole pocket frequency.Comment: Accepted version, Phys. Rev. B, brief clarifying comments and updated reference

    Dissipation and criticality in the lowest Landau level of graphene

    Full text link
    The lowest Landau level of graphene is studied numerically by considering a tight-binding Hamiltonian with disorder. The Hall conductance σxy\sigma_\mathrm{xy} and the longitudinal conductance σxx\sigma_\mathrm{xx} are computed. We demonstrate that bond disorder can produce a plateau-like feature centered at ν=0\nu=0, while the longitudinal conductance is nonzero in the same region, reflecting a band of extended states between ±Ec\pm E_{c}, whose magnitude depends on the disorder strength. The critical exponent corresponding to the localization length at the edges of this band is found to be 2.47±0.042.47\pm 0.04. When both bond disorder and a finite mass term exist the localization length exponent varies continuously between 1.0\sim 1.0 and 7/3\sim 7/3.Comment: 4 pages, 5 figure

    Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization

    Full text link
    We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter beta>0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda_k where lambda_k is the k'th Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.Comment: 14 pages, 10 PS figures, ioplppt.sty, iopl12.sty, epsfig.sty 44 k

    Quantifying chaos: a tale of two maps

    Get PDF
    In many applications, there is a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two maps through which it highlights the importance of providing evidence of convergence of Lyapunov exponent estimates. The results suggest cautious conclusions when confronted with real data. Moreover, the maps are interesting in their own right

    Refining Finite-Time Lyapunov Exponent Ridges and the Challenges of Classifying Them

    Get PDF
    While more rigorous and sophisticated methods for identifying Lagrangian based coherent structures exist, the finite-time Lyapunov exponent (FTLE) field remains a straightforward and popular method for gaining some insight into transport by complex, time-dependent two-dimensional flows. In light of its enduring appeal, and in support of good practice, we begin by investigating the effects of discretization and noise on two numerical approaches for calculating the FTLE field. A practical method to extract and refine FTLE ridges in two-dimensional flows, which builds on previous methods, is then presented. Seeking to better ascertain the role of a FTLE ridge in flow transport, we adapt an existing classification scheme and provide a thorough treatment of the challenges of classifying the types of deformation represented by a FTLE ridge. As a practical demonstration, the methods are applied to an ocean surface velocity field data set generated by a numerical model. (C) 2015 AIP Publishing LLC.ONR N000141210665Center for Nonlinear Dynamic

    Phase transition in a class of non-linear random networks

    Full text link
    We discuss the complex dynamics of a non-linear random networks model, as a function of the connectivity k between the elements of the network. We show that this class of networks exhibit an order-chaos phase transition for a critical connectivity k = 2. Also, we show that both, pairwise correlation and complexity measures are maximized in dynamically critical networks. These results are in good agreement with the previously reported studies on random Boolean networks and random threshold networks, and show once again that critical networks provide an optimal coordination of diverse behavior.Comment: 9 pages, 3 figures, revised versio

    Amplitude death in coupled chaotic oscillators

    Full text link
    Amplitude death can occur in chaotic dynamical systems with time-delay coupling, similar to the case of coupled limit cycles. The coupling leads to stabilization of fixed points of the subsystems. This phenomenon is quite general, and occurs for identical as well as nonidentical coupled chaotic systems. Using the Lorenz and R\"ossler chaotic oscillators to construct representative systems, various possible transitions from chaotic dynamics to fixed points are discussed.Comment: To be published in PR
    corecore