22 research outputs found

    The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars

    Get PDF
    We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi/GBM and Integral/SPI-ACS (GRB170817A). The evolution of the transient light is consistent with predictions for the behaviour of a "kilonova/macronova", powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide dominated ejecta, and the much slower evolution in the near-infrared Ks-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the 3rd r-process peak (atomic masses A~195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major - if not the dominant - site of rapid neutron capture nucleosynthesis in the universe

    Low frequency view of GRB 190114C reveals time varying shock micro-physics

    Get PDF
    We present radio and optical afterglow observations of the TeV-bright long gamma-ray burst 190114C at a redshift of z = 0.425, which was detected by the Major Atmospheric Gamma Imaging Cherenkov telescope. Our observations with Atacama Large Millimeter/submillitmeter Array, Australia Telescope Compact Array, and upgraded Giant Metre-wave Radio Telescope were obtained by our low frequency observing campaign and range from ∼1 to ∼140 d after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 d after the burst. Long-term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission

    Liverpool telescope 2: a new robotic facility for rapid transient follow-up

    Get PDF
    The Liverpool Telescope is one of the world's premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy', wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design

    The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium

    Get PDF
    Whether stars could have driven the reionization of the intergalactic medium depends critically on the proportion of ionizing radiation that escapes the galaxies in which it is produced. Spectroscopy of gamma-ray burst (GRB) afterglows can be used to estimate the opacity to extreme ultraviolet (EUV) radiation along the lines-of-sight to the bursts. Assuming that long-duration GRBs trace the locations of the massive stars dominating EUV production, the average escape fraction of ionizing radiation can be calculated independently of galaxy size or luminosity. Here we present a compilation of H i column density (N HI ) measures for 140 GRBs in the range 1.6 < z < 6.7. Although the sample is heterogeneous, in terms of spectral resolution and signal-to-noise ratio, fits to the Ly α absorption line provide robust constraints on N HI , even for spectra of insufficient quality for other purposes. Thus we establish an escape fraction at the Lyman limit of (f esc ) ≈ 0.005, with a 98 per cent confidence upper limit of (f esc ) ≈ 0.015. This analysis suggests that stars provide a small contribution to the ionizing radiation budget at z < 5. At higher redshifts firm conclusions are limited by the small size of the GRB sample (7/140), but any decline in average H i column density seems to be modest. We also find no significant correlation of N HI with galaxy UV luminosity or host stellar mass. We discuss in some detail potential biases and argue that, while not negligible, systematic errors in f esc are unlikely to be more than a factor ~2 in either direction, and so would not affect the primary conclusions. Given that many GRB hosts are low-metallicity dwarf galaxies with high specific star-formation rates, these results present a particular problem for the hypothesis that such galaxies dominated the reionization of the Universe. © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

    Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z = 2−4 using JWST

    Get PDF
    Much of what is known of the chemical composition of the universe is based on emission line spectra from star-forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star-forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star-forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z = 2.1–4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed R̂ metallicity diagnostic (±0.2 dex). This agreement implies a relatively chemically homogeneous multiphase interstellar medium and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB 090323 at z = 4.7, consistent with what has been seen in other z > 4 galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample

    The X-shooter GRB afterglow legacy sample (XS-GRB)

    Get PDF
    In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31/03/2017. In total, we have obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimise biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneously selected sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We have constrained the fraction of dark bursts to be <28 per cent and confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we have provided a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by ∼33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening Universe

    The First JWST Spectrum of a GRB Afterglow: No Bright Supernova in Observations of the Brightest GRB of all Time, GRB 221009A

    Get PDF
    We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6-5.5 micron) and Mid-Infrared Instrument (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν −β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment

    A puzzling γ-ray burst

    No full text
    corecore