28 research outputs found

    Ex vivo lung evaluation and reconditioning

    Get PDF
    OBJETIVO: Apenas 15% dos pulmões doados são aproveitados para transplante. Um novo método de Perfusão Pulmonar Ex Vivo (PPEV) foi desenvolvido e pode ser usado para avaliação e recondicionamento de pulmões "marginais" e rejeitados para o transplante. Esse trabalho relata nossa experiência com a avaliação funcional da PPEV. MÉTODOS: Foram estudados pulmões de 12 doadores considerados inapropriados para transplante pulmonar. Após a captação, os pulmões são perfundidos ex vivo com Steen Solution, uma solução de composição eletrolítica extracelular com alta pressão coloidosmótica. Um oxigenador de membrana ligado ao circuito recebe uma mistura gasosa (nitrogênio e dióxido de carbono) e "desoxigena" o perfusato, mantendo uma concentração de gases semelhante a do sangue venoso. Os pulmões são gradualmente aquecidos, perfundidos e ventilados. A avaliação dos órgãos é feita por gasometrias e medidas como a resistência vascular pulmonar (RVP) e complacência pulmonar (CP). RESULTADOS: A PaO2 (FiO2 100%) passou de um valor médio de 193,3 mmHg no doador para 495,3 mmHg durante a PPEV. Após uma hora de PPEV, a RVP média era de 737,3 dinas/seg/ cm5 e a CP era de 42,2 ml/cmH2O. CONCLUSÕES: O modelo de avaliação pulmonar ex vivo pode melhorar a capacidade de oxigenação de pulmões "marginais" inicialmente rejeitados para transplante. Isso denota um grande potencial do método para aumentar a disponibilidade de pulmões para transplante e, possivelmente, reduzir o tempo de espera nas filas.OBJECTIVE: Only about 15% of the potential candidates for lung donation are considered suitable for transplantation. A new method for ex vivo lung perfusion (EVLP) has been developed and can be used for evaluation and reconditioning of "marginal" and unacceptable lungs. This is a report of functional evaluation experience with ex vivo perfusion of twelve donor lungs deemed unacceptable in São Paulo, Brazil. METHODS: After harvesting, the lungs are perfused ex vivo with Steen Solution, an extra-cellular solution with high colloid osmotic pressure. A membrane oxygenator connected to the circuit receives gas from a mixture of nitrogen and carbon dioxide and maintains a normal mixed venous blood gas level in the perfusate. The lungs are gradually rewarmed, reperfused and ventilated. They are evaluated through analyses of oxygenation capacity, pulmonary vascular resistance (PVR), lung compliance (LC). RESULTS: The arterial oxygen pressure (with inspired oxygen fractions of 100%) increased from a mean of 193.3 mmHg in the organ donor at the referring hospital to a mean of 495.3 mmHg during the ex vivo evaluation. After 1 hour of EVLP, mean PVR was 737.3 dynes/sec/cm5, and mean LC was 42.2 ml/cmH2O. CONCLUSIONS: The ex vivo evaluation model can improve oxygenation capacity of "marginal" lungs rejected for transplantation. It has a great potential to increase lung donor availability and, possibly, to reduce the waiting time on the list.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FarmoterápicaBraile Biomédic

    Genome-wide association study of germline variants and breast cancer-specific mortality

    Get PDF
    BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10

    Hemangioma of the Rib

    No full text
    An asymptomatic 48-year-old woman presented to our hospital with a tumor of the rib incidentally diagnosed on a chest roentgenogram. The patient was investigated and underwent tumor resection of the chest wall. The pathologic study revealed that it was cavernous hemangioma. This tumor of the bone is a distinctly uncommon benign vascular tumor, generally occurring in the spine or skull. Hemangiomas involving the rib are even more rare, with only 22 cases described in the literature. However, we suggest that this tumor of the rib should be considered in the differential diagnosis, principally in asymptomatic patients. (Ann Thorac Surg 2011;91:595-6) (C) 2011 by The Society of Thoracic Surgeon

    Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model

    Get PDF
    OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035). The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0), and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71). CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation

    Histologic and functional evaluation of lungs reconditioned by ex vivo lung perfusion

    No full text
    BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de So Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de So Paulo (FAPESP)Braile Biomedica (Sao Jose do Rio Preto, SP, Brazil)Braile Biomedica (Sao Jose do Rio Preto, SP, Brazil)Farmoterapica (Sao Paulo, SP Brazil)Farmoterapica (Sao Paulo, SP Brazil)Vitrolife (Goteborg, Sweden)Vitrolife, Goteborg, Swede

    Modelo experimental ex vivo com bloco pulmonar dividido

    No full text
    Modelos de recondicionamento pulmonar ex vivo têm sido avaliados desde sua proposição. Quando são utilizados pulmões humanos descartados para transplante, a grande variabilidade entre os casos pode limitar o desenvolvimento de alguns estudos. No intuito de reduzir esse problema, desenvolvemos uma técnica de separação do bloco pulmonar em direito e esquerdo com posterior reconexão, permitindo que um lado sirva de caso e o outro de controle
    corecore