30 research outputs found

    Are chimpanzees really so poor at understanding imperative pointing? Some new data and an alternative view of canine and ape social cognition

    Get PDF
    There is considerable interest in comparative research on different species’ abilities to respond to human communicative cues such as gaze and pointing. It has been reported that some canines perform significantly better than monkeys and apes on tasks requiring the comprehension of either declarative or imperative pointing and these differences have been attributed to domestication in dogs. Here we tested a sample of chimpanzees on a task requiring comprehension of an imperative request and show that, though there are considerable individual differences, the performance by the apes rival those reported in pet dogs. We suggest that small differences in methodology can have a pronounced influence on performance on these types of tasks. We further suggest that basic differences in subject sampling, subject recruitment and rearing experiences have resulted in a skewed representation of canine abilities compared to those of monkeys and apes

    The evolution of self-control

    Get PDF
    This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group led by C.L.N. and B.H. NESCent is supported by the National Science Foundation (NSF) EF-0905606. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). Y.S. thanks the National Natural Science Foundation of China (Project 31170995) and National Basic Research Program (973 Program: 2010CB833904). E.E.B. thanks the Duke Vertical Integration Program and the Duke Undergraduate Research Support Office. J.M.P. was supported by a Newton International Fellowship from the Royal Society and the British Academy. L.R.S. thanks the James S. McDonnell Foundation for Award 220020242. L.J.N.B. and M.L.P. acknowledge the National Institutes of Mental Health (R01-MH096875 and R01-MH089484), a Duke Institute for Brain Sciences Incubator Award (to M.L.P.), and a Duke Center for Interdisciplinary Decision Sciences Fellowship (to L.J.N.B.). E.V. and E.A. thank the Programma Nazionale per la Ricerca–Consiglio Nazionale delle Ricerche (CNR) Aging Program 2012–2014 for financial support, Roma Capitale–Museo Civico di Zoologia and Fondazione Bioparco for hosting the Istituto di Scienze e Tecnologie della Cognizione–CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchin monkeys. K.F. thanks the Japan Society for the Promotion of Science (JSPS) for Grant-in-Aid for Scientific Research 20220004. F. Aureli thanks the Stages in the Evolution and Development of Sign Use project (Contract 012-984 NESTPathfinder) and the Integrating Cooperation Research Across Europe project (Contract 043318), both funded by the European Community’s Sixth Framework Programme (FP6/2002–2006). F. Amici was supported by Humboldt Research Fellowship for Postdoctoral Researchers (Humboldt ID 1138999). L.F.J. and M.M.D. acknowledge NSF Electrical, Communications, and Cyber Systems Grant 1028319 (to L.F.J.) and an NSF Graduate Fellowship (to M.M.D.). C.H. thanks Grant-in-Aid for JSPS Fellows (10J04395). A.T. thanks Research Fellowships of the JSPS for Young Scientists (21264). F.R. and Z.V. acknowledge Austrian Science Fund (FWF) Project P21244-B17, the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 311870 (to F.R.), Vienna Science and Technology Fund Project CS11-026 (to Z.V.), and many private sponsors, including Royal Canin for financial support and the Game Park Ernstbrunn for hosting the Wolf Science Center. S.M.R. thanks the Natural Sciences and Engineering Research Council (Canada). J.K.Y. thanks the US Department of Agriculture–Wildlife Services–National Wildlife Research Center. J.F.C. thanks the James S. McDonnell Foundation and Alfred P. Sloan Foundation. E.L.M. and B.H. thank the Duke Lemur Center and acknowledge National Institutes of Health Grant 5 R03 HD070649-02 and NSF Grants DGE-1106401, NSF-BCS-27552, and NSF-BCS-25172. This is Publication 1265 of the Duke Lemur Center.Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.PostprintPeer reviewe

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    The age of museomics : How to get genomic information from museum specimens of Lepidoptera

    No full text
    In the age of museomics, the ability to sequence the genetic material from old museum specimens provides an invaluable and often untapped molecular resource. The application of the latest Next-Generation sequencing (NGS) technologies to such specimens allows us to utilise the diverse biobank that is natural history museums. These approaches provide the opportunity to study both extinct or difficult to collect taxa. The aim of this thesis is to apply NGS techniques to museum specimens of Lepidoptera, to better investigate the types of data generated and their uses.In the first chapter, we use a targeted enrichment (TE) approach to sequence nuclear loci from museum specimens dating back to 1892 for 35 taxa across the order Lepidoptera. Loci recovery ranged from 500-1,747. The success of this technique across the specimens highlights the usefulness of such a kit to study the entire order, thereby enabling the potential to resolve both shallow and deeper nodes in the phylogeny.In the second chapter, we applied the TE approach to three moth families belonging to the superfamily Geometroidea. Thirty-three museum specimens collected between 2001 and 1892 were sequenced from the families Epicopeiidae, Sematuridae and Pseudobistonidae. We recovered up to 1,383 raw loci per individual. Loci recovered in 20 or more specimens were carried forward for phylogenetic analysis, with a final data set consisting of 378 loci. These loci from another 19 publically available genomes and transcriptomes were combined to complete our dataset. We find strong support for the hypothesis that Sematuridae is the sister group to Epicopeiidae + Pseudobistonidae.Further expanding on our results from the TE approach, in the third chapter we apply whole genome sequencing (WGS) to expand our dataset. We sequenced whole genomes of 30 museum specimens of Epicopeiidae and Sematuridae. Recovery of the 387 loci from the TE experiment ranged from 20 - 94%. The resulting phylogeny confirms the phylogenetic relationships within these families. Additionally, we compared the data generated between the two approaches, presenting the advantages and disadvantages of each approach.In the final chapter, we investigated the usefulness of museum specimen WGS for population genomics studies. Data was generated for 13 specimens of Pieris napi, a common butterfly in Sweden. The availability of a recently published genome allows us to demonstrate that ~81% of the recovered DNA is from the target specimen. Average genomic coverage was 15.6X for nuclear DNA, and 1,963X for the mitochondria. We found that individuals originating from Abisko are genetically distinct from the remaining P. napi populations. This study highlights the potential of museum specimens for looking at changes in population genetic dynamics through time.In summary, we show the usefulness of various museomics applications. In particular, we focus on the use of TE and WGS for phylogenomic studies. Additionally, we highlight that WGS sequencing can also be utilized for population genetic-based studies, opening a window to the past

    Museomics : Phylogenomics of the Moth Family Epicopeiidae (Lepidoptera) Using Target Enrichment

    No full text
    Billions of specimens can be found in natural history museum collections around the world, holding potential molecular secrets to be unveiled. Among them are intriguing specimens of rare families of moths that, while represented in morphology-based works, are only beginning to be included in genomic studies: Pseudobistonidae, Sematuridae, and Epicopeiidae. These three families are part of the superfamily Geometroidea, which has recently been defined based on molecular data. Here we chose to focus on these three moth families to explore the suitability of a genome reduction method, target enrichment (TE), on museum specimens. Through this method, we investigated the phylogenetic relationships of these families of Lepidoptera, in particular the family Epicopeiidae. We successfully sequenced 25 samples, collected between 1892 and 2001. We use 378 nuclear genes to reconstruct a phylogenetic hypothesis from the maximum likelihood analysis of a total of 36 different species, including 19 available transcriptomes. The hypothesis that Sematuridae is the sister group of Epicopeiidae + Pseudobistonidae had strong support. This study thus adds to the growing body of work, demonstrating that museum specimens can successfully contribute to molecular phylogenetic studies

    Adding leaves to the Lepidoptera tree : capturing hundreds of nuclear genes from old museum specimens

    No full text
    Museum collections around the world contain billions of specimens, including rare and extinct species. If their genetic information could be retrieved at a large scale, this would dramatically increase our knowledge of genetic and taxonomic diversity information, and support evolutionary, ecological and systematic studies. We here present a target enrichment kit for 2953 loci in 1753 orthologous nuclear genes + the barcoding region of cytochrome C oxidase 1, for Lepidoptera and demonstrate its utility to obtain a large number of nuclear loci from dry, pinned museum material collected from 1892 to 2017. We sequenced enriched libraries of 37 museum specimens across the order Lepidoptera, many from higher taxa not yet included in high-throughput molecular studies, showing that our kit can be used to generate comparable data across the order, and provides resolution both for shallower and deeper nodes. The filtered datasets (172 taxa, 234 464 amino acid positions and corresponding nucleotides from 1835 CDS regions) were used to infer a phylogeny of Lepidoptera, which is largely congruent in topology to recent phylogenomic studies, but with the addition of some key taxa. We furthermore present our TEnriAn (Target Enrichment Analysis) workflow for processing and combining target enrichment, transcriptomic and genomic data

    Regular or covert sex defines two lineages and worldwide superclones within the leaf-curl plum aphid (Brachycaudus helichrysi, Kaltenbach)

    No full text
    International audienceAsexual reproduction occurs widely in plants and animals, particularly in insects. Aphid species usually reproduce by cyclic parthenogenesis, but many species include obligate asexual lineages. We recently showed that the leaf-curl plum aphid, Brachycaudus helichrysi, actually encompasses two lineages, B.helichrysi H1 and H2. Ecological data suggest that these lineages have different life cycles. We conducted a large population genetics study, based on 14 microsatellite loci, to infer their respective life cycles and investigate their population structure and geographical distribution. Brachycaudus helichrysi H1 displayed the genetic signature of cyclical parthenogenesis, using plum trees as primary hosts for sexual reproduction, as classically described for B.helichrysi. B.helichrysi H2 displayed the typical signature of obligate asexual reproduction. H2 encompassed at least eight highly successful genotypes or superclones. B.helichrysi H2 population that underwent sexual reproduction, which was collected from peach trees, in Northern India. Our results confirm that H1 and H2 have different life cycles. Brachycaudus helichrysi H1 is clearly heteroecious using plum trees as primary hosts, while B.helichrysi H2 encompasses several anholocyclic lineages, and some heteroecious populations that until now have only been found associated with peach trees as primary hosts. We discuss implications of these findings for the pest status of B.helichrysi lineages
    corecore