177 research outputs found

    Ernest Meissonier: Master In His Genre

    Get PDF
    This study documents the career of one of the most widely known French artists of the nineteenth century. The embodiment of mainstream taste, Jean-Louis-Ernest Meissonier was scorned by the avant-garde, but his jewellike genre paintings were highly regarded by his middle-class audience. Examining his art in detail, Constance Cain Hungerford follows Meissonier from his formation as a wood engraving designer to his virtuous production of small scale genre scenes, his larger battlefield paintings, and his several images of modern revolution and war. Also analyzed are the state administered exhibition system, which Meissonier worked to his advantage, and developments in the marketing of art, both in Europe and in the United States

    Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion

    Full text link
    We examine the cosmological constraining power of future large-scale weak lensing surveys on the model of \emph{Euclid}, with particular reference to primordial non-Gaussianity. Our analysis considers several different estimators of the projected matter power spectrum, based on both shear and flexion, for which we review the covariances and Fisher matrices. The bounds provided by cosmic shear alone for the local bispectrum shape, marginalized over σ8\sigma_8, are at the level of ΔfNL100\Delta f_\mathrm{NL} \sim 100. We consider three additional bispectrum shapes, for which the cosmic shear constraints range from ΔfNL340\Delta f_\mathrm{NL}\sim 340 (equilateral shape) up to ΔfNL500\Delta f_\mathrm{NL}\sim 500 (orthogonal shape). The competitiveness of cosmic flexion constraints against cosmic shear ones depends on the galaxy intrinsic flexion noise, that is still virtually unconstrained. Adopting the very high value that has been occasionally used in the literature results in the flexion contribution being basically negligible with respect to the shear one, and for realistic configurations the former does not improve significantly the constraining power of the latter. Since the flexion noise decreases with decreasing scale, by extending the analysis up to max=20,000\ell_\mathrm{max} = 20,000 cosmic flexion, while being still subdominant, improves the shear constraints by 10\sim 10% when added. However on such small scales the highly non-linear clustering of matter and the impact of baryonic physics make any error estimation uncertain. By considering lower, and possibly more realistic, values of the flexion intrinsic shape noise results in flexion constraining power being a factor of 2\sim 2 better than that of shear, and the bounds on σ8\sigma_8 and fNLf_\mathrm{NL} being improved by a factor of 3\sim 3 upon their combination. (abridged)Comment: 30 pages, 4 figures, 4 tables. To appear on JCA

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012

    Get PDF
    Airborne and ground-based measurements of methane (CH4), carbon dioxide (CO2) and boundary layer thermodynamics were recorded over the Fennoscandian landscape (67–69.5° N, 20–28° E) in July 2012 as part of the MAMM (Methane and other greenhouse gases in the Arctic: Measurements, process studies and Modelling) field campaign. Employing these airborne measurements and a simple boundary layer box model, net regional-scale (~ 100 km) fluxes were calculated to be 1.2 ± 0.5 mg CH4 h−1 m−2 and −350 ± 143 mg CO2 h−1 m−2. These airborne fluxes were found to be relatively consistent with seasonally averaged surface chamber (1.3 ± 1.0 mg CH4 h−1 m−2) and eddy covariance (1.3 ± 0.3 mg CH4 h−1 m−2 and −309 ± 306 mg CO2 h−1 m−2) flux measurements in the local area. The internal consistency of the aircraft-derived fluxes across a wide swath of Fennoscandia coupled with an excellent statistical comparison with local seasonally averaged ground-based measurements demonstrates the potential scalability of such localised measurements to regional-scale representativeness. Comparisons were also made to longer-term regional CH4 climatologies from the JULES (Joint UK Land Environment Simulator) and HYBRID8 land surface models within the area of the MAMM campaign. The average hourly emission flux output for the summer period (July–August) for the year 2012 was 0.084 mg CH4 h−1 m−2 (minimum 0.0 and maximum 0.21 mg CH4 h−1 m−2) for the JULES model and 0.088 mg CH4 h−1 m−2 (minimum 0.0008 and maximum 1.53 mg CH4 h−1 m−2) for HYBRID8. Based on these observations both models were found to significantly underestimate the CH4 emission flux in this region, which was linked to the under-prediction of the wetland extents generated by the models

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Plant Location Models for a Honey Packer. Sensitivity of Findings to Some Alternative Specifications

    No full text
    This paper discusses plant location models applied to a honey processing-ma,rketing firm with emphasis on sensitivity of findings to some alternative objectives and specifications
    corecore