884 research outputs found

    Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments

    Get PDF
    Microalgae have a lot of potential as a source of several compounds of interest to various industries. However, developing a sustainable and efficient harvesting process on a large scale is still a major challenge. This is particularly a problem when the production of low-value products is intended. Chemical flocculation, followed by sedimentation, is seen as an alternative method to improve the energetic and economic balance of the harvesting step. In this study, inorganic (aluminum sulfate, ferric sulfate, ferric chloride) and organic (Zetag 8185, chitosan, Tanfloc SG) flocculants were tested to harvest Chlorella vulgaris in batch mode. Preliminary assays were conducted to determine the minimum dosages of each flocculant that generates primary flocs at different pH. Except for chitosan, the organic flocculants required small dosages to initiate floc formation. Additional studies were performed for the flocculants with a better performance in the preliminary assays. Zetag 8185 had the best results, reaching 98.8% and 97.9% efficiencies with dosages of 50 and 100 mg L-1, respectively. Lastly, a 2(4) full factorial design experiment was performed to determine the effects of the flocculant dosage, settling time, and mixing time on the Zetag 8185 harvesting efficiency. The harvesting efficiency of C. vulgaris was optimal at a dosage of 100 mg L-1 and 3 min of rapid mixing

    Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system

    Get PDF
    Leaching of nitrate from fertilisers diminishes nitrogen use efficiency (the portion of nitrogen used by a plant) and is a major source of agricultural pollution. To improve nitrogen capture, grasses such as brachiaria are increasingly used, especially in South America and Africa, as a cover crop, either via intercropping or in rotation. However, the complex interactions between soil structure, nitrogen and the root systems of maize and different species of forage grasses remain poorly understood. This study explored how soil structure modification by the roots of maize (Zea maize), palisade grass (Brachiaria brizantha cv. Marandu) and ruzigrass (Brachiaria ruziziensis) affected nitrate leaching and retention, measured via chemical breakthrough curves. All plants were found to increase the rate of nitrate transport suggesting root systems increase the tendency for preferential flow. The greater density of fine roots produced by palisade grass, subtly decreased nitrate leaching potential through increased complexity of the soil pore network assessed with X-ray Computed Tomography. A dominance of larger roots in ruzigrass and maize increased nitrate loss through enhanced solute flow bypassing the soil matrix. These results suggest palisade grass could be a more efficient nitrate catch crop than ruzigrass (the most extensively used currently in countries such as Brazil) due to retardation in solute flow associated with the fine root system and the complex pore network

    Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography

    Get PDF
    Zero-tillage (ZT) is being increasingly adopted globally as a conservationist management system due to the environmental and agronomic benefits it provides. However, there remains little information on the tillage effect on soil pore characteristics such as shape, size and distribution, which in turn affect soil physical, chemical and biological processes. X-ray micro Computed Tomography (μCT) facilitates a non-destructive method to assess soil structural properties in three-dimensions. We used X-ray μCT at a resolution of 70 μm to assess and calculate the shape, size and connectivity of the pore network in undisturbed soil samples collected from a long-term experiment (~30 years) under zero tillage (ZT) and conventional tillage (CT) systems in Botucatu, Southeastern Brazil. In both systems, a single, large pore (>1000 mm3) typically contributed to a large proportion of macroporosity, 91% in CT and 97% in ZT. Macroporosity was higher in ZT (19.7%) compared to CT (14.3%). However the average number of pores was almost twice in CT than ZT. The largest contribution in both treatments was from very complex shaped pores, followed by triaxial and acircular shaped. Pore connectivity analysis indicated that the soil under ZT was more connected that the soil under CT. Soil under CT had larger values of tortuosity than ZT in line with the connectivity results. The results from this study indicate that long-term adoption of ZT leads to higher macroporosity and connectivity of pores which is likely to have positive implications for nutrient cycling, root growth, soil gas fluxes and water dynamics

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    Get PDF
    <p><b>Abstract</b></p> <p><b>Background</b></p> <p>In tropical countries, losses caused by bovine tick <it>Rhipicephalus (Boophilus) microplus</it> infestation have a tremendous economic impact on cattle production systems. Genetic variation between <it>Bos taurus</it> and <it>Bos indicus</it> to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (<it>Bos indicus</it>) × Holstein (<it>Bos taurus</it>) cross.</p> <p>Results</p> <p>Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23.</p> <p>Conclusions</p> <p>The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.</p

    Functional ectodomain of the hemagglutinin-neuraminidase protein is expressed in transgenic tobacco cells as a candidate vaccine against Newcastle disease virus.

    Get PDF
    Recently, the use of plants for the production of recombinant proteins has been well demonstrated with promising outcomes. In this study, an efficient Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells system expressing the ectodomain of hemagglutinin-neuraminidase (eHN) protein from Newcastle disease virus (NDV) strain AF2240 was established. Transgenic tobacco BY-2 cell cultures expressing the immunogenic eHN protein were generated and the translation efficiency of eHN protein was enhanced using the 5′-untranslated region of Nicotiana tabacum alcohol dehydrogenase gene (NtADH 5′-UTR) under the control of strong cauliflower mosaic virus (CaMV 35S) promoter. Transgenic lines verified by real-time PCR showed high level of eHN mRNA transcripts and immunoblotting confirmed the presence of 66 kD eHN protein. The eHN protein was stably produced in an average of 0.2–0.4 % total soluble protein. Green fluorescent protein-tagged eHN protein was expressed and localized at the cytosol of BY-2 cell. All mice receiving purified eHN protein from transgenic tobacco BY-2 cells produced specific anti-NDV antibodies. We concluded that plant made eHN elicit immune response and can serve as candidate vaccine against NDV

    Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic

    Get PDF
    Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the “dichromatic” wallaby and the “trichromatic” dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20–25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
    corecore