198 research outputs found

    The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    Get PDF
    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations

    GONADOTROPHIN RESPONSES TO GnRH PULSES IN HYPOGONADOTROPHIC HYPOGONADISM: LH RESPONSIVENESS IS MAINTAINED IN THE PRESENCE OF LUTEAL PHASE CONCENTRATIONS OF OESTROGEN AND PROGESTERONE

    Full text link
    LH pulse secretion changes during the menstrual cycle from a rapid regular pattern in the follicular phase to a slower and irregular pattern in the luteal phase. To determine whether the irregular LH pulse pattern in the luteal phase reflects altered GnRH secretion or altered pituitary responsiveness to GnRH, we gave low dose GnRH pulses (25 ng/kg i.v.) every 2 h or every hour for 10 or 12 d to three women with isolated GnRH deficiency. After 4 d of GnRH alone, oestradiol (E 2 ) was given and after 6 d progesterone (P) was added to mimic the hormonal milieu of the luteal phase. LH and FSH were measured every 4 h throughout and also every 20 min for 6 or 12 h, before and after GnRH alone (day 0 and day 4), after E 2 (day 6), and after E 2 + P (day 10 and day 12). Both GnRH pulse frequencies resulted in a rapid increase in plasma FSH to peaks on day 4 (every 2 h) and day 2 and 3 (every hour). FSH concentrations then declined as plasma E 2 rose to 50–80 pg/ml reflecting the selective inhibitory effect of E 2 on FSH release. Plasma LH was also increased after the hourly GnRH injections and this regimen was associated with a more rapid rise in E 2 reflecting follicular maturation. In contrast to the differences in mean hormone concentrations, administration of GnRH at both frequencies resulted in sustained one-on-one responsiveness of LH that was maintained in the presence of both oestrogen and progesterone at mid-luteal phase concentrations. We conclude that the slow frequency of LH pulses observed during the luteal phase reflects decreased GnRH pulse frequency rather than impaired pituitary responsiveness to GnRH.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74947/1/j.1365-2265.1987.tb00786.x.pd

    Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Get PDF
    This work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100) subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions

    Effects of follicular phase exercise on luteinizing hormone pulse characteristics in sedentary eumenorrhoeic women

    Full text link
    OBJECTIVE Current studies reveal little regarding the Inception of exercise-induced LH changes during physical training. This study aimed to assess the susceptibility of the hypothalamic–pituitary axis to the acute physical stress of exercise in untrained, physically inactive women. The acute effects of submaximal endurance exercise upon the pulsatile LH secretion in the follicular phase were compared with those accompanying leisurely strolling for a similar time period. SUBJECTS All subjects were eumenorrhoelc, as determined by biphasic temperature patterns, detection of the urinary LH surge, and mid-luteal serum progesterone levels. Subjects were not physically active and had little history of strenuous exercise ( V o 2 max = 38·0 ± 1·8) (mean ± SEM) ml/kg/min). DESIGN All women completed a 13·5-hour pulsatility test which included three consecutive 20-minute runs on a treadmill at 50, 60 and 70% of the subjects’maximum oxygen uptake ( n = 16). Six of these same subjects completed a separate test on another occasion in which one hour of leisurely strolling was substituted for exercise. Blood was sampled every 10 minutes via an indwelling cannula for 4·5 hours before and 8 hours after one hour of exercise and or strolling. MEASUREMENTS A pulse algorithm (Pulsar) was used to quantify LH pulse characteristics. RESULTS Exercise produced no significant effects upon LH pulse frequency or mean serum LH concentration. However, exercise of moderate intensity caused a significant increase in LH pulse amplitude ( P < 0·05). Strolling produced no significant changes in LH secretion. CONCLUSION Acute exercise of moderate intensity in the follicular phase of untrained women is an insufficient stimulus to inhibit the GnRH pulse generator in the post-exercise period, yet may produce a slight stimulatory effect on the amount of LH released per pulsePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73507/1/j.1365-2265.1994.tb02794.x.pd

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Search for single top quark production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb1^{-1} of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 pb in the t-channel.Comment: 9 pages, 4 figure
    corecore