297 research outputs found

    An open-source Julia code for geotechnical MPM

    Get PDF
    There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is transferable to other computational geotechnics methods and tools

    Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    Get PDF
    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions

    Cone Penetration Tests (CPTs) in layered soils: a Material Point approach

    Get PDF
    Cone Penetration Tests (CPTs) can be used to determine in-situ soil properties and represent a practical choice for site investigation offshore, especially for linear infrastructure, such as offshore wind export cables. Information gained from CPTs is key for predicting soil-structure interaction behaviour, for example when predicting the tow forces involved in seabed ploughing, as the CPT provides an analogue to the process. The numerical modelling of CPTs is challenging due to the significant distortion in the soil displaced by the penetrating cone. This means that solving this sort of problem using finite elements, although not impossible, is numerically tiresome in terms of remeshing and mapping of state variables. Therefore, in this paper we adopt the Material Point Method (MPM) to develop a CPT prediction tool in layered soils. This MPM is combined with a novel non-matching mesh frictional boundary to represent the penetrometer. The developed tool will be used to understand the response of layered soils commonly found offshore as a step towards predicting the interaction of ploughs and anchors with the seabed

    An open-source Julia code for geotechnical MPM

    Get PDF
    There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is transferable to other computational geotechnics methods and tools

    Application of X-band radars for deriving intertidal bathymetries and characterising coastal behaviours

    Get PDF
    Coastal monitoring techniques aim to capture the relationship between physical forcing factors and morphological change, at a range of timescales to understand ongoing coastal processes and identify areas prone to erosion and flooding hazards posed by storms. Standard marine radar provides temporally and spatially continuous monitoring data over a wide area in all conditions, and images can be processed to generate intertidal bathymetries to assess morphological change across event (days-years) timescales. This research applies a series of intertidal bathymetries derived from a standard marine radar deployed at Camber Sands, southeast England in XBeach, a process-based, storm response model, to assess wave runup hazard at the coast during a high energy storm event from the deployment period. Wave runup is dependent on offshore wave climate and beach slope and used here as a proxy to explore the influence of nearshore morphological variability, represented by different processing techniques to derive intertidal bathymetries from the marine radar images, on a coastal hazard. XBeach is used in combination with beach survey data from the site to first demonstrate reasonable skill in reproducing wave runup observations. Intertidal bathymetries are derived from the marine radar images using either a local or regional water level signal, and an average of 1, 5, or 10 days of images preceding the storm event. Modelled wave runup shows up to 0.32 m sensitivity to input intertidal bathymetries, which could be important for overwash predictions. The slope and resolution of the radar-derived intertidal bathymetries is sensitive to the water level time series used. This research is the first time that radar-derived intertidal bathymetries have been used to assess a coastal hazard in a process-based model, and results show that ideally users would have a locally measured water level to accurately generate intertidal bathymetries, and extended beach surveys for ground truthing

    Cone Penetration Tests (CPTs) in layered soils: a Material Point approach

    Get PDF
    Cone Penetration Tests (CPTs) can be used to determine in-situ soil properties and represent a practical choice for site investigation offshore, especially for linear infrastructure, such as offshore wind export cables. Information gained from CPTs is key for predicting soil-structure interaction behaviour, for example when predicting the tow forces involved in seabed ploughing, as the CPT provides an analogue to the process. The numerical modelling of CPTs is challenging due to the significant distortion in the soil displaced by the penetrating cone. This means that solving this sort of problem using finite elements, although not impossible, is numerically tiresome in terms of remeshing and mapping of state variables. Therefore, in this paper we adopt the Material Point Method (MPM) to develop a CPT prediction tool in layered soils. This MPM is combined with a novel non-matching mesh frictional boundary to represent the penetrometer. The developed tool will be used to understand the response of layered soils commonly found offshore as a step towards predicting the interaction of ploughs and anchors with the seabed

    Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials

    Get PDF
    A wide selection of thermal, chemical and optical methods have been proposed for the quantification of black carbon (BC) in environmental matrices, and the results to date differ markedly depending upon the method used. A new approach is hydropyrolysis (hypy), where pyrolysis assisted by high hydrogen pressures (150 bar) facilitates the complete reductive removal of labile organic matter, so isolating a highly stable portion of the BC continuum (defined as BChypy). Here, the potential of hypy for the isolation and quantification of BC is evaluated using the 12 reference materials from the International BC Ring Trial, comprising BC-rich samples, BC-containing environmental matrices and BC-free potentially interfering materials. By varying the hypy operating conditions, it is demonstrated that lignocellulosic, humic and other labile organic carbon material (defined as non-BChypy) is fully removed by 550 °C, with hydrogasification of the remaining BChypy not commencing until over 575 °C. The resulting plateau in sample mass and carbon loss is apparent in all of the environmental samples, facilitating BC quantification in a wide range of materials. The BChypy contents for all 12 ring trial samples fall within the range reported in the BC inter-comparison study, and systematic differences with other methods are rationalised. All methods for BC isolation, including hypy are limited by the fact that BC cannot be distinguished from extremely thermally mature organic matter; for example in high rank coals. However, the data reported here indicates that BChypy has an atomic H/C ratio of less than 0.5 and therefore comprises a chemically well-defined polyaromatic structure in terms of the average size of peri-condensed aromatic clusters of >7 rings (24 carbon atoms), that is consistent across different sample matrices. This, together with the sound underlying rationale for the reductive removal of labile organic matter, makes hypy an ideal approach for matrix independent BC quantification. The hypy results are extremely reproducible, with BChypy determinations from triplicate analyses typically within ±2% across all samples, limited mainly by the precision of the elemental analyser

    Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics

    Get PDF
    We present a systematic study on the effect of starting species, gas composition, temperature, particle size and duration of heating upon the molecular and stable isotope composition of high density (mangrove) and low density (pine) wood. In both pine and mangrove, charcoal was depleted in o13C relative to the starting wood by up to 1.6% and 0.8%, respectively. This is attributed predominantly to the progressive loss of isotopically heavier polysaccharides, and kinetic effects of aromatization during heating. However, the pattern of o13C change was dependant upon both starting species and atmosphere, with different structural changes associated with charcoal production from each wood type elucidated by Solid-State o13C Nuclear Magnetic Resonance Spectroscopy. These are particularly evident at lower temperatures, where variation in the oxygen content of the production atmosphere results in differences in the thermal degradation of cellulose and lignin. It is concluded that production of charcoal from separate species in identical conditions, or from a single sample exposed to different production variables, can result in significantly different o13C of the resulting material, relative to the initial wood. These results have implications for the use of charcoal isotope composition to infer past environmental change

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore