
Proceedings 10th NUMGE 2023

10th European Conference on Numerical Methods in Geotechnical Engineering

Zdravković L, Konte S, Taborda DMG, Tsiampousi A (eds)

ISSN

© Authors: All rights reserved, 2023

doi: 10numge-2023-Y-XXXX

 1 NUMGE 2023 - Proceedings

An open-source Julia code for geotechnical MPM

N.D. Gavin, R.E. Bird, W.M. Coombs, C.E. Augarde

Department of Engineering, Durham University, Durham, UK

ABSTRACT: There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community

since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard

finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at

Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers

wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for

major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively

new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just

transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate

this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is

transferable to other computational geotechnics methods and tools.

Keywords: Material Point Method; Julia; AMPLE

1 INTRODUCTION

The Material Point Method (MPM), originally

developed by Sulsky and co-workers in the 1990s

(Sulsky et al., 1994), models a problem domain as a

collection of material points at which all information

pertaining to that location in the domain is stored. It is

not however a meshless method, as sometimes

supposed since the calculations to determine

deformation response to a load event (in the case of

quasi-statics for instance) are carried out on a

background Finite Element (FE) mesh or grid.

Information is mapped from the material points to the

grid nodes, a standard FE solve carried out and the

results mapped back to the material points. The

advantage of this arrangement is that a new undistorted

background mesh can be used for the subsequent load

step/increment regardless of the magnitude of
deformations of material points and therefore the key

issue of mesh distortion met with in standard FE
methods is totally avoided.

This key feature, and hence its utility for problems

involving large deformation, has promoted considerable

interest in the computational geotechnics community as

evidenced by an increasing number of publications and

two recent conferences (Fern et al., 2019). Recent

examples of its use can be found for landslides (e.g. Xu

et al., 2018; Conte et al., 2019), site investigations (e.g.

Ceccato et al., 2016; Francesca et al., 2020) and

offshore foundations (e.g. Brinkgreve et al. 2017,

Galavi et al. 2019). Its close relation to standard FE

methods means it is easy to transfer material models and

other numerical methods to run in MPM from an

existing FE code. Having said this, the MPM is not

without its challenges, for instance much effort is being

expended in the MPM research community trying to

address solutions to problems such as poor system

conditioning due to low numbers of material points in a

background element (Coombs, 2022).

 The open-source code AMPLE (Coombs & Augarde,

2020) is a MPM implementation for solid mechanics

developed to specifically address the steep learning

curve met by those wishing to experiment with the

MPM. AMPLE is a MATLAB implementation of the

MPM with relatively few options, but with the emphasis

on code clarity and lack of ambiguity. While MATLAB

is a good framework in which to develop code and

prototype, it is not fast and actually using it to carry out

large analyses (in terms of numbers of degrees of

freedom) is difficult. In this paper we describe a new

version of AMPLE written in the Julia language, which

combines the clarity of the MATLAB implementation

but with a much lower computational cost. We do not

claim here to be the first developers of an MPM code in

Julia, as there are other examples, e.g. Sinaie et al.

(2017) covers similar ground and in greater detail, but

for an explicit MPM code rather than implicit as in

AMPLE and most geotechnical FEA. Other useful

guidance on the use of Julia can be found in Xiong et al.

(2020) and Xiao et al. (2022).

2 THE JULIA LANGUAGE

The Julia language was developed initially in 2009 to

"address the needs of high-performance numerical and

Finite element, finite difference, discrete element, material point and other methods

 2 NUMGE 2023 - Proceedings

scientific computing." (Core Julia development team,

2023a). It has since gathered a large following and has

a strong and supportive user community. It is also an

exciting, flexible, and relatively new language. Julia has

a modern, expressive syntax, automatic memory

management, and built-in support for parallel

computing. Julia also has a growing ecosystem of

packages and libraries, making it well-suited for a wide

range of applications.

2.1 Key differences

Since the syntax for MATLAB and Julia look similar

(as both do to Python), it is easy to assume that

behaviour expected from MATLAB will also happen

for a similar-looking code fragment in Julia and that can

lead to surprising annoyances in code development and

debugging. Some of these differences are now

described.

A key syntax difference that is immediately obvious

if moving a code from MATLAB to Julia is the use of

brackets. For example, for indexing of arrays, a

MATLAB code fragment

bc(node*2-1,:)=[node*2-1 0]

would have the equivalent in Julia of

bc[node*2-1,:]=[node*2-1, 0]

which is almost the same apart from the use of square

rather than curved brackets for the left hand side.

Function calling also looks a little different: the

MATLAB call to a function form2D with four

arguments would look like this

[ep,cd] = form2D(nx,ny,lx,ly)

and in Julia like this

ep,cd= form2D(nx,ny,lx,ly).

Julia functions also by default return the last value

calculated so it is important to override that default and

ask explicitly for what you want returning, e.g. the

fragment at the end of a function

else
 Svp =0
 dSvp=0
end
return Svp, dSvp
end

without the return statement will just return dSvp.
 In the original AMPLE, all data for material points is

held in a structure array (a “struct”) containing 20 fields.

In Julia the equivalent is a mutable struct, the “mutable”

indicating that field values can be changed during

execution.

One pitfall to be aware of is how Julia handles the

assignment of one variable to another. If variable A is

an array and is assigned to variable B, MATLAB will

create a new memory address for the new variable.

However, Julia simply creates a “shallow copy”

meaning that B becomes a reference to the memory

address in which A is located. This means that errors can

arise when working with both variables. For example, if

A is an array of integers and we assign A to variable B,

B will produce the same output as A,

A = [1,2,3,4]
B = A
>> B = [1,2,3,4]

Now, if an element of B is altered, the corresponding

element in the variable A will also be altered

B[1] = 5
>> B = [5,2,3,4]
>> A = [5,2,3,4]

This is inevitably going to cause errors within the code

if A and B are to be used in separate calculations. In

order to overcome this, the copy() (Core Julia

development team 2023f) function should be used, this

will create a new memory address for B in which the

contents of A will be stored when assigning to the new

variable.

A = [1,2,3,4]
B = copy(A)
B[1] = 5
>> A = [1,2,3,4]
>> B = [5,2,3,4]

By copying the variable A into B, it is now possible to

alter the elements of A (or B) without affecting the

contents of B (or A).

3 JULIA NUANCES

Moving on from the syntactical differences, some of

which have been covered above, it is useful to be aware

that many optimisation practices that are used in more

traditional languages have already been considered in

the development of Julia and are simple to apply once

one is aware. This includes; making use of contiguous

memory, vectorisation, cache optimisation and memory

allocation and reuse. Additionally, due to the large

open-source community that uses Julia, and its inherent

speed, it is simple to include a range of open source

optimised numerical packages, and also produce your

An open-source Julia code for geotechnical MPM

 3 NUMGE 2023 - Proceedings

own, with relative ease. Some of the optimisation

procedures inherent in Julia are now discussed.

3.1 Predefining variable types

Variables in Julia belong to “types” ̧ and this can be

exploited to make parametric and hierarchical code

(Core Julia development team, 2023d), a particularly

powerful tool for numerical modelling. By default,

variable and function types are ambiguous making the

code very flexible and powerful, however if the type is

ambiguous then high performance compiled code is

unlikely to exist, as additional decisions and operations

will be performed at runtime, thus slowing the code. It

is therefore routine to define types wherever possible.

An example of a variable defined with a type is,

A:: Matrix{Float64},

where A is a matrix of 64-bit floating point (IEEE 754

standard) values. Matrix and Vector in Julia are

based on the mutable data type Array{T,N} where T

is the type (e,g, Float64) and N is the number of

dimensions; Matrix has N=2 and Vector,
N=1.Different results are obtained for slight changes in

assignments

e.g. a=[1 2 3] will give a 1 × 3 Matrix, while

a=[1,2,3] or a=[1;2;3] will give a 3-element

Vector (i.e. a 3 × 1 Array).

3.2 Predefining variable memory

Predefining variable memory is another way to optimise

compiler performance and is achieved by allocating a

size to the variable’s definition

A = zeros(6,6)::Matrix{Float64}.

Predefining memory has two purposes. Firstly, if

correct, it prevents reallocation of memory during a

calculation since the variable’s size, and attributed

memory, has already been defined. Secondly, it allows

for memory reuse during repeated rewrites to a variable,

therefore preventing unnecessary memory allocation

which significantly slows code (Core Julia development
team, 2023d). As an example, a function that does as

much as it can to supply useful information for the

compiler, that squares the Float64 a, to produce the

output Float64 b, is

a = 2::Float64
b = 0::Float64
function sqr_flt!(a::Float64,b::Float64)
b=a^2

end

The exclamation mark ! in the function definition

prevents memory allocation when the function is called,

it allows variables in the function to be edited directly

and prevents new memory being allocated each time the

function is called. This is particularly critical if the

function is called multiple times.

3.3 Macros

Macros in Julia provide a mechanism to include

generated code in the final body of a program; they

change existing source code or generate entirely new

code (Core Julia development team, 2023b). Julia

optimisation packages have been written so they can be

deployed with a macro, in most cases this means a

significantly optimised version of the code can be

achieved with an edit to a single line. One of the most

useful packages is LoopVectorization (Elrod,

2023), which is used with macro @turbo and

demonstrated below.

One of the most common calculations in implicit

MPM and finite element codes is the element stiffness

contribution at an integration point 𝑖 (FEs) or a material

point i (MPM).

𝑘𝑖
𝑒 ≈ 𝐵⊤𝐷𝐵 (1)

where 𝑘𝑖
𝑒 is the local stiffness matrix contribution from

point 𝑖 to the element 𝑒, 𝐵 is the shape function

derivative matrix and 𝐷 is the material stiffness matrix.

The approximation in Equation (1) represents the fact

that there will be weighting of the matrix triple product,

e.g. Gauss quadrature weights for FEs and volume/mass

for the MPM. For 3D elasticity 𝐵 is 9 × 3𝑛, where 𝑛 is

the number of element nodes, and 𝐷 is 9 × 9. Within a

MPM or finite element code Equation (1) is a small

matrix operation undertaken many times. In the MPM

case, Equation (1) is calculated at each material point in

every iteration of the non-linear solve.

A performance test of the calculation of Equation (1)

is used here to demonstrate the @turbo macro. The

timing of the code was performed with the

benchmarking toolbox BenchmarkTools (Churavy,

2023) on a single core 2.10 GHz machine. Two different

methods to multiply matrices are considered. First, to

multiply the matrix A, of size 𝐼 × 𝐾, with matrix B, of

size 𝐾 × 𝐽, to form C, the following code segment is

used:

function my_mul!(C::Matrix{Float64},
A::Matrix{Float64},B::Matrix{Float64},
I::Int64,J::Int64,K::Int64)
 @turbo for j in 1:I
 for k in 1:J
 for i in 1:K
 C[i,j] += A[i,k]*B[k,j]
 end

Finite element, finite difference, discrete element, material point and other methods

 4 NUMGE 2023 - Proceedings

 end
 end
end

With the @turbo macro initiated on the first for loop of

my_mul! To calculate the two matrix multiplications in

Equation (1) my_mul! is called twice.

Secondly, this is compared to the native

implementation:

function k_mul!(
k::Matrix{Float64},
B::Matrix{Float64},
BT::Matrix{Float64},
D::Matrix{Float64})
k = BT*D*B

end

where the multiplication operator * is called from the

native LinearAlgebra package, which in turn calls

LAPACK (Anderson et al., 1999). The speed of k_mul!

is compared to my_mul! for the calculation of 𝑘𝑖
𝑒 when

𝑛 = 10, representing a linear tetrahedral element. The

run times of the two code segments are compared, and

presented, in Table 1. The table clearly shows the

improved speed from a bespoke user multiplication with

the @turbo macro.

Table 1. Run times of native multiplication and @turbo.

Function used Time (ns)

no @turbo

Time (ns)

@turbo

k_mul! 671.3 n/a

my_mul! 1334.9 158.0

This example also demonstrates where Julia performs

well with a nest of loops, which may feel counter

intuitive.

3.4 The dot syntax

Normally, vectorised code needs to be structured as

such during writing, and one of the most useful features

of Julia is the dot syntax (Core Julia development team,
2023a) which allows for the vectorisation of code

without the overhead of writing code in a vectorised
form and the subsequent lower readability.

However, the syntax is much more powerful than just

as an improvement to readability (Core Julia

development team, 2023a). The dot allows for

vectorised operations to be recognised at the syntactic

level, and hence loop vectorisation is a syntactic

guarantee, not a compiled optimisation that might

occur. Using the condensed example from Johnson

(2017), operations for the vectorized code

f(X) = 2*X.^2

will be

tmp1 = X.^2
tmp2 = 2*tmp1
X = f(tmp2)

This both requires memory allocation for tmp1 and

tmp2, but also means that loops over the array X occur

separately and sequentially over X. This in turn will

cause repeated memory transfers to and from the RAM

to CPU cache for values within X (assuming that X does

not fit in the CPU cache). Rewriting f as

f(X) = 2*X^2

and calling it with f.(X), fuses the loops that would

exist for tmp1 and tmp2. This means that each value in

the array is called into the cache once, all operations are

performed and then it is stored back into the RAM;

increasing code speed. The true power of the dot syntax,

which is unique to Julia (Johnson, 2017), is that this can

be applied to any function type, even those created by

the user.

3.5 Preallocating and reusing variables

It can often be the case in loops that some variables only

exist within the loop and are recalculated in every

instance of the loop, this means that an allocation will

occur each time, for example

C = zeros(Float64,3,3,100)
for i in 1:100
 A = rand(Float64,3,3)
 B = rand(Float64,3,3)
 C[:,:,i] = A * B
end

Here, variables A and B are allocated 100 times,

however, if the sizes of A, B and C are known before

entering the loop, these matrices can be pre-allocated

and the contents of the matrices can be altered within

each loop rather than reallocating the variables each

time. This is done by using the broadcast operator .=
(Core Julia development 2023g), reducing the number of

allocations by rewriting the values within the 3x3

matrices stored at the pre-existing memory address.

Using the broadcast operator along with the my_mul!

function presented in section 3.3, an improved code

becomes

A = zeros(Float64,3,3)
B = zeros(Float64,3,3)
C = zeros(Float64,3,3,100)
for i in 1:100
A .= rand(Float64,3,3)
B .= rand(Float64,3,3)

An open-source Julia code for geotechnical MPM

 5 NUMGE 2023 - Proceedings

my_mul!(C[:,:,i],A,B)
end

Knowing the sizes of the variables used throughout a

code can be useful, as variables can be used throughout

by storing variables in a “tuple” (Core Julia

development team 2023e), which are immutable

collections of variables. Once created, the contents of

the tuple cannot be changed, meaning that variables

cannot be added to the tuple or variables within the tuple

cannot be removed or altered, but the contents of the

variables can be changed. For example, a tuple is

created with two variables, X (a 3x3 matrix) and Y (a

3x1 vector), the values of within X and Y can be changed

using the broadcast operator, but the sizes and types of

the two variables cannot change. The variables held

within the tuple can be used in the same way as a struct

in MATLAB.

tpl = (X = zeros(Float64,3,3),
Y = zeros(Float64,3))
>> tpl.X = [0 0 0; 0 0 0; 0 0 0]
>> tpl.Y = [0, 0, 0]

tpl.X .= Diagonal([1, 2, 3])
>> tpl.X = [1 0 0; 0 2 0; 0 0 3]

tpl.Y .= [4, 5, 6]
>> tpl.Y = [4, 5, 6]

Z = tpl.X * tpl.Y
>> Z = [4, 10, 18]

This tuple can be passed into every function of a code

and the variables can be used as many times as required,

reducing the total number of allocations and thus

improving the performance. Tuples are also useful to

hold key variables that are used throughout the code

without having to pass them in and out of functions. In

AMPLE for example, the number of material points is

constant throughout an analysis (unlike the number of

active nodes) and therefore one can exploit this feature

to set up tuples for variables containing material point

data, zeroing all of the contents of the pre-allocated

variable at the start of a load step and altering its

contents in each Newton-Raphson iteration rather than

creating a new variable every load step.

4 AN EXAMPLE

To demonstrate the Julia version of AMPLE a very

simple geotechnical problem is modelled, and the

computational cost in terms of runtime measured. The

problem is somewhat artificial for simplicity, but

includes material non-linearity and involves large

deformations. An embankment of material 8 units high

is modelled (using symmetry to reduce the problem

domain modelled by half) where the base is assumed to

be supported on a surface with zero friction. Two

discretisations of bilinear quad elements are used:

“small” where the element size is 1 unit and “large”

where the element size is 0.5 units. The starting material

point distribution is a 6 × 6 grid in each element and the

total numbers of material points are 1440 and 5760

respectively.

Using compatible units, the material has a density of

1000 and is elastic-perfectly plastic with a von Mises

failure criterion, with a deviatoric yield stress of 𝜌𝑦 =

2 × 104 where the yield surface is defined as

 𝑓 = 𝜌 − 𝜌𝑦 = 0 (2)

where 𝜌 = √2𝐽2 , 𝐽2 =
1

2
𝑡𝑟([𝑠][𝑠]) &

[𝑠] = [𝜏] −
1

3
𝑡𝑟([𝜏])

Figure 1. Example problem (small version) (a) original configuration;

(b) final slumped shape: colours represent horizontal displacement.

Finite element, finite difference, discrete element, material point and other methods

 6 NUMGE 2023 - Proceedings

in which [𝜏] is the Kirchhoff stress tensor. Elastic

properties are Young’s modulus, 𝐸 = 106 and

Poisson’s ratio, 𝜈 = 0.3. The embankment is loaded

from increasing the gravitational acceleration over forty

increments. As expected the embankment material

slumps outwards as shown in Figure 1 and large

deformations are evident.

Table 2 shows the runtimes (mean of five instances)

for this problem for three versions of AMPLE: A.

Original AMPLE in MATLAB, B. AMPLE in Julia

where none of the nuances of Julia cited in Section 4

have been used and C. AMPLE in Julia where they

have. The results show the huge advantages of the third

implementation where large time savings (even for

these relatively small problems) are achieved for
intelligent Julia code over MATLAB, i.e. around 1.5-

1.7 times faster. It also demonstrates that plain

conversion from MATLAB to Julia is not a good idea.

Table 2. Runtimes (in seconds) for the example problems

Code Small problem Large problem

A 35.226 145.335
B 125.828 547.869

C 20.160 92.596

5 CONCLUSIONS

Julia is an ideal language in which developers of

computational geotechnics technology can work being

almost as clear as MATLAB in syntax (as compared to

C++ for instance) but used correctly, can be much

faster, as demonstrated here, via the use of a few simple-

to-understand commands and structures.

Work is now underway in the group at Durham to

expand the capabilities of Julia implementations to

include multiphase materials, contact and friction and

HPC. The Julia code used here will be made available

via Github in the near future

(https://wmcoombs.github.io/).

6 ACKNOWLEDGEMENTS

This work is supported by activity in the Computational

Mechanics Research Node, Department of Engineering,

Durham University, Author 1 is supported by a UK

EPSRC studentship under grant EP/T518001/1 while

author 2 is supported by UK EPSRC project grant

EP/W000970/1.

7 REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Del, J.,

Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling,

S., McKenney, A., Sorensen, D. 1999. LAPACK Users'

Guide, SIAM, Philadelphia, PA.

Brinkgreve, R., Burg, M., Lim, L. J., & Andreykiv, A. 2017.

On the practical use of the Material Point Method for

offshore geotechnical applications. In Proc.19th

ICSMGE, 2269-2272.

Ceccato, F., Beuth, L., Vermeer, P. A., Simonini, P., 2016.

Two-phase material point method applied to the study of

cone penetration. Computers & Geotechnics, 80, 440-452.

Churavy, V., 2023. BenchmarkTools.jl. GitHub repository,
https://github.com/vchuravy

Conte, E., Pugliese, L., Troncone, A., 2019. Post-failure

stage simulation of a landslide using the material point

method. Engineering Geology, 253, 149-159.

Coombs, W.M. 2022. Ghost stabilisation of the Material

Point Method for stable quasi-static and dynamic analysis

of large deformation problems,

 https://arxiv.org/abs/2209.10955.

Coombs, W.M., Augarde, C.E. 2020. AMPLE: A Material

Point Learning Environment, Advances in engineering

software, 139:102748.

Core Julia development team 2023a. Functions.

https://docs.julialang.org/en/v1/manual/functions/

Core Julia development team 2023b.

 Julia Homepage. https://julialang.org/

Core Julia development team 2023c. Metaprogramming.

Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/manual/metaprogrammin

g/

Core Julia development team 2023d. Julia Performance

Tips. Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/manual/performance-

tips/

Core Julia development team 2023e. Types. Julia 1.8

documentation.

 https://docs.julialang.org/en/v1/ manual/types/

Core Julia development team 2023f, Essentials.

 Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/base/base/#Essentials

Core Julia development 2023g. Broadcasting. Julia 1.8

documentation.

https://docs.julialang.org/en/v1/manual/arrays/#Broadcas

ting

Elrod, C., 2023. LoopVectorization.jl. GitHub repository,

https://github.com/JuliaSIMD/LoopVectorization.jl

Fern, J., Rohe, A., Soga, K., Alonso, E., 2019. The Material

Point Method for Geotechnical Engineering. CRC Press.

Francesca, C., Lars, B., Paolo, S., 2020. Analysis of

Piezocone Penetration under Different Drainage

Conditions with the Two-Phase Material Point Method.

Journal of Geotech & Geoenv Engineering, 142,

04016066.

Galavi, V., Martinelli, M., Elkadi, A., Ghasemi, P., Thijssen,

R. 2019. Numerical simulation of impact driven offshore

monopiles using the material point method. Proc XVII

ECSMGE.

Johnson, S.G. 2017. More Dots: Syntactic Fusion in Julia.

Julia Blog. More Dots: Syntactic Loop Fusion in Julia

(julialang.org)

Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.

2017.Programming the material point method in Julia.

Advances in Engineering Software, 105, 17-29,

Sulsky, D., Chen, Z., Schreyer, H.L., 1994. A particle

method for history-dependent materials. Computer

https://wmcoombs.github.io/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/W000970/1
https://github.com/vchuravy
https://arxiv.org/abs/2209.10955
https://docs.julialang.org/en/v1/manual/functions/
https://julialang.org/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/%20manual/types/
https://docs.julialang.org/en/v1/base/base/#Essentials
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting
https://github.com/JuliaSIMD/LoopVectorization.jl
https://julialang.org/blog/2017/01/moredots/#:~:text=The%20dots%20allow%20Julia%20to,occur%20for%20carefully%20written%20code.
https://julialang.org/blog/2017/01/moredots/#:~:text=The%20dots%20allow%20Julia%20to,occur%20for%20carefully%20written%20code.

An open-source Julia code for geotechnical MPM

 7 NUMGE 2023 - Proceedings

Methods in Applied Mechanics and Engineering, 118,

179-196.

Xiao, L., Mei, G., Xi, N., Piccialli, F. 2022. Julia Language

in Computational Mechanics: A New Competitor. Arch.

Computational Methods in Engineering, 29, 1713–1726.

Xiong, H., Yin, Z-Y, Nicot, F. 2020. Programming a micro-

mechanical model of granular materials in Julia.

Advances in Engineering Software, 145, 2020,102816.

Xu, X., Jin, F., Sun, Q., Soga, K., Zhou, G.G., 2018. Three-

dimensional material point method modelling of runout

behavior of the Hongshiyan landslide. Canadian

Geotechnical Journal, 56(9): 1318-1337.

	1 introduction
	2 The julia language
	2.1 Key differences

	3 Julia nuances
	3.1 Predefining variable types
	3.2 Predefining variable memory
	3.3 Macros
	3.4 The dot syntax
	3.5 Preallocating and reusing variables

	4 An example
	5 Conclusions
	6 ACKNOWLEDGEMENTS
	7 References

