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ABSTRACT: There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community 

since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard 

finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at 

Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers 

wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for 

major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively 

new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just 

transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate 

this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is 

transferable to other computational geotechnics methods and tools.  
 

Keywords: Material Point Method; Julia; AMPLE 

 

 

1 INTRODUCTION 

The Material Point Method (MPM), originally 

developed by Sulsky and co-workers in the 1990s 

(Sulsky et al., 1994), models a problem domain as a 

collection of material points at which all information 

pertaining to that location in the domain is stored. It is 

not however a meshless method, as sometimes 

supposed since the calculations to determine 

deformation response to a load event (in the case of 

quasi-statics for instance) are carried out on a 

background Finite Element (FE) mesh or grid. 

Information is mapped from the material points to the 

grid nodes, a standard FE solve carried out and the 

results mapped back to the material points. The 

advantage of this arrangement is that a new undistorted 

background mesh can be used for the subsequent load 

step/increment regardless of the magnitude of 
deformations of material points and therefore the key 

issue of mesh distortion met with in standard FE 
methods is totally avoided. 

This key feature, and hence its utility for problems 

involving large deformation, has promoted considerable 

interest in the computational geotechnics community as 

evidenced by an increasing number of publications and 

two recent conferences (Fern et al., 2019). Recent 

examples of its use can be found for landslides (e.g. Xu 

et al., 2018; Conte et al., 2019), site investigations (e.g. 

Ceccato et al., 2016; Francesca et al., 2020) and 

offshore foundations (e.g. Brinkgreve et al. 2017, 

Galavi et al. 2019). Its close relation to standard FE 

methods means it is easy to transfer material models and 

other numerical methods to run in MPM from an 

existing FE code. Having said this, the MPM is not 

without its challenges, for instance much effort is being 

expended in the MPM research community trying to 

address solutions to problems such as poor system 

conditioning due to low numbers of material points in a 

background element (Coombs, 2022). 

 The open-source code AMPLE (Coombs & Augarde, 

2020) is a MPM implementation for solid mechanics 

developed to specifically address the steep learning 

curve met by those wishing to experiment with the 

MPM. AMPLE is a MATLAB implementation of the 

MPM with relatively few options, but with the emphasis 

on code clarity and lack of ambiguity. While MATLAB 

is a good framework in which to develop code and 

prototype, it is not fast and actually using it to carry out 

large analyses (in terms of numbers of degrees of 

freedom) is difficult. In this paper we describe a new 

version of AMPLE written in the Julia language, which 

combines the clarity of the MATLAB implementation 

but with a much lower computational cost. We do not 

claim here to be the first developers of an MPM code in 

Julia, as there are other examples, e.g. Sinaie et al. 

(2017) covers similar ground and in greater detail, but 

for an explicit MPM code rather than implicit as in 

AMPLE and most geotechnical FEA. Other useful 

guidance on the use of Julia can be found in Xiong et al. 

(2020) and Xiao et al. (2022). 

2 THE JULIA LANGUAGE  

The Julia language was developed initially in 2009 to 

"address the needs of high-performance numerical and 
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scientific computing." (Core Julia development team, 

2023a). It has since gathered a large following and has 

a strong and supportive user community. It is also an 

exciting, flexible, and relatively new language. Julia has 

a modern, expressive syntax, automatic memory 

management, and built-in support for parallel 

computing. Julia also has a growing ecosystem of 

packages and libraries, making it well-suited for a wide 

range of applications. 

2.1 Key differences 

Since the syntax for MATLAB and Julia look similar 

(as both do to Python), it is easy to assume that 

behaviour expected from MATLAB will also happen 

for a similar-looking code fragment in Julia and that can 

lead to surprising annoyances in code development and 

debugging. Some of these differences are now 

described. 

A key syntax difference that is immediately obvious 

if moving a code from MATLAB to Julia is the use of 

brackets. For example, for indexing of arrays, a 

MATLAB code fragment 

 
bc(node*2-1,:)=[node*2-1 0] 
 

would have the equivalent in Julia of 

 

bc[node*2-1,:]=[node*2-1, 0] 
 
which is almost the same apart from the use of square 

rather than curved brackets for the left hand side. 

Function calling also looks a little different: the 

MATLAB call to a function form2D with four 

arguments would look like this 

 

[ep,cd] = form2D(nx,ny,lx,ly) 
 

and in Julia like this 

 

ep,cd= form2D(nx,ny,lx,ly).  
 
Julia functions also by default return the last value 

calculated so it is important to override that default and 

ask explicitly for what you want returning, e.g. the 

fragment at the end of a function 

 
else                                                                         
  Svp =0 
  dSvp=0 
end 
return Svp, dSvp 
end 
 

without the return statement will just return dSvp. 
 In the original AMPLE, all data for material points is 

held in a structure array (a “struct”) containing 20 fields. 

In Julia the equivalent is a mutable struct, the “mutable” 

indicating that field values can be changed during 

execution. 

One pitfall to be aware of is how Julia handles the 

assignment of one variable to another. If variable A is 

an array and is assigned to variable B, MATLAB will 

create a new memory address for the new variable. 

However, Julia simply creates a “shallow copy” 

meaning that B becomes a reference to the memory 

address in which A is located. This means that errors can 

arise when working with both variables. For example, if 

A is an array of integers and we assign A to variable B, 

B will produce the same output as A, 

 

A = [1,2,3,4] 
B = A 
>> B = [1,2,3,4] 
 

Now, if an element of B is altered, the corresponding 

element in the variable A will also be altered 

 

B[1] = 5 
>> B = [5,2,3,4]  
>> A = [5,2,3,4] 
 

This is inevitably going to cause errors within the code 

if A and B are to be used in separate calculations. In 

order to overcome this, the copy() (Core Julia 

development team 2023f ) function should be used, this 

will create a new memory address for B in which the 

contents of A will be stored when assigning to the new 

variable. 

 

A = [1,2,3,4] 
B = copy(A) 
B[1] = 5 
>> A = [1,2,3,4] 
>> B = [5,2,3,4] 
 

By copying the variable A into B, it is now possible to 

alter the elements of A (or B) without affecting the 

contents of B (or A). 

3 JULIA NUANCES 

Moving on from the syntactical differences, some of 

which have been covered above, it is useful to be aware 

that many optimisation practices that are used in more 

traditional languages have already been considered in 

the development of Julia and are simple to apply once 

one is aware. This includes; making use of contiguous 

memory, vectorisation, cache optimisation and memory 

allocation and reuse. Additionally, due to the large 

open-source community that uses Julia, and its inherent 

speed, it is simple to include a range of open source 

optimised numerical packages, and also produce your 



An open-source Julia code for geotechnical MPM 

       3 NUMGE 2023 - Proceedings 

own, with relative ease. Some of the optimisation 

procedures inherent in Julia are now discussed.  

3.1 Predefining variable types  

Variables in Julia belong to “types”  ̧ and this can be 

exploited to make parametric and hierarchical code 

(Core Julia development team, 2023d), a particularly 

powerful tool for numerical modelling. By default, 

variable and function types are ambiguous making the 

code very flexible and powerful, however if the type is 

ambiguous then high performance compiled code is 

unlikely to exist, as additional decisions and operations 

will be performed at runtime, thus slowing the code. It 

is therefore routine to define types wherever possible. 

An example of a variable defined with a type is,  

 

A:: Matrix{Float64},  

 

where A is a matrix of 64-bit floating point (IEEE 754 

standard) values. Matrix and Vector in Julia are 

based on the mutable data type Array{T,N} where T 

is the type (e,g, Float64) and N is the number of 

dimensions; Matrix has N=2 and Vector, 
N=1.Different results are obtained for slight changes in 

assignments  

e.g. a=[1 2 3] will give a 1 × 3 Matrix, while 

a=[1,2,3] or a=[1;2;3] will give a 3-element 

Vector (i.e. a 3 × 1 Array).  

3.2 Predefining variable memory 

Predefining variable memory is another way to optimise 

compiler performance and is achieved by allocating a 

size to the variable’s definition 

 

A  = zeros(6,6)::Matrix{Float64}. 
 

Predefining memory has two purposes. Firstly, if 

correct, it prevents reallocation of memory during a 

calculation since the variable’s size, and attributed 

memory, has already been defined. Secondly, it allows 

for memory reuse during repeated rewrites to a variable, 

therefore preventing unnecessary memory allocation 

which significantly slows code (Core Julia development 
team, 2023d). As an example, a function that does as 

much as it can to supply useful information for the 

compiler, that squares the Float64 a, to produce the 

output Float64 b, is 
 
a = 2::Float64 
b = 0::Float64 
function sqr_flt!(a::Float64,b::Float64) 
b=a^2 

end 

 

The exclamation mark ! in the function definition 

prevents memory allocation when the function is called, 

it allows variables in the function to be edited directly 

and prevents new memory being allocated each time the 

function is called. This is particularly critical if the 

function is called multiple times.  

3.3 Macros 

Macros in Julia provide a mechanism to include 

generated code in the final body of a program; they 

change existing source code or generate entirely new 

code (Core Julia development team, 2023b). Julia 

optimisation packages have been written so they can be 

deployed with a macro, in most cases this means a 

significantly optimised version of the code can be 

achieved with an edit to a single line. One of the most 

useful packages is LoopVectorization (Elrod, 

2023), which is used with macro @turbo and 

demonstrated below. 

One of the most common calculations in implicit 

MPM and finite element codes is the element stiffness 

contribution at an integration point 𝑖 (FEs) or a material 

point i (MPM).  

 

𝑘𝑖
𝑒 ≈ 𝐵⊤𝐷𝐵                (1) 

 

where 𝑘𝑖
𝑒  is the local stiffness matrix contribution from 

point 𝑖 to the element 𝑒, 𝐵 is the shape function 

derivative matrix and 𝐷 is the material stiffness matrix. 

The approximation in Equation (1) represents the fact 

that there will be weighting of the matrix triple product, 

e.g. Gauss quadrature weights for FEs and volume/mass 

for the MPM. For 3D elasticity 𝐵 is 9 × 3𝑛, where 𝑛 is 

the number of element nodes, and 𝐷 is 9 × 9. Within a 

MPM or finite element code Equation (1) is a small 

matrix operation undertaken many times. In the MPM 

case, Equation (1) is calculated at each material point in 

every iteration of the non-linear solve. 

A performance test of the calculation of Equation (1)  

is used here to demonstrate the @turbo macro. The 

timing of the code was performed with the 

benchmarking toolbox BenchmarkTools (Churavy, 

2023) on a single core 2.10 GHz machine. Two different 

methods to multiply matrices are considered. First, to 

multiply the matrix A, of size 𝐼 × 𝐾, with matrix B, of 

size 𝐾 × 𝐽, to form C, the following code segment is 

used: 

 

function my_mul!(C::Matrix{Float64}, 
A::Matrix{Float64},B::Matrix{Float64}, 
I::Int64,J::Int64,K::Int64) 
    @turbo for j in 1:I 
        for k in 1:J 
            for i in 1:K 
                C[i,j] += A[i,k]*B[k,j] 
            end 
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        end 
    end 
end 
 

With the @turbo macro initiated on the first for loop of 

my_mul! To calculate the two matrix multiplications in 

Equation (1) my_mul! is called twice.  

Secondly, this is compared to the native 

implementation: 

 

function k_mul!( 
k::Matrix{Float64}, 
B::Matrix{Float64}, 
BT::Matrix{Float64}, 
D::Matrix{Float64}) 
k = BT*D*B 

end 
  

where the multiplication operator * is called from the 

native LinearAlgebra package, which in turn calls 

LAPACK (Anderson et al., 1999). The speed of k_mul! 

is compared to my_mul! for the calculation of  𝑘𝑖
𝑒  when  

𝑛 = 10, representing a linear tetrahedral element. The 

run times of the two code segments are compared, and 

presented, in Table 1. The table clearly shows the 

improved speed from a bespoke user multiplication with 

the @turbo macro. 

 
Table 1. Run times of native multiplication and @turbo. 

Function used Time (ns)  

no @turbo 

Time (ns) 

@turbo  

k_mul! 671.3  n/a 

my_mul!  1334.9 158.0 

 

This example also demonstrates where Julia performs 

well with a nest of loops, which may feel counter 

intuitive. 

3.4 The dot syntax 

Normally, vectorised code needs to be structured as 

such during writing, and one of the most useful features 

of Julia is the dot syntax (Core Julia development team, 
2023a) which allows for the vectorisation of code 

without the overhead of writing code in a vectorised 
form and the subsequent lower readability.  

However, the syntax is much more powerful than just 

as an improvement to readability (Core Julia 

development team, 2023a). The dot allows for 

vectorised operations to be recognised at the syntactic 

level, and hence loop vectorisation is a syntactic 

guarantee, not a compiled optimisation that might 

occur. Using the condensed example from Johnson 

(2017), operations for the vectorized code 

 

f(X) = 2*X.^2 

 

will be 

  

tmp1 = X.^2 
tmp2 = 2*tmp1 
X = f(tmp2) 
 

This both requires memory allocation for tmp1 and 

tmp2, but also means that loops over the array X occur 

separately and sequentially over X. This in turn will 

cause repeated memory transfers to and from the RAM 

to CPU cache for values within X (assuming that X does 

not fit in the CPU cache). Rewriting f as  
 

f(X) = 2*X^2 

 

and calling it with f.(X), fuses the loops that would 

exist for tmp1 and tmp2. This means that each value in 

the array is called into the cache once, all operations are 

performed and then it is stored back into the RAM; 

increasing code speed. The true power of the dot syntax, 

which is unique to Julia (Johnson, 2017), is that this can 

be applied to any function type, even those created by 

the user. 

3.5 Preallocating and reusing variables 

It can often be the case in loops that some variables only 

exist within the loop and are recalculated in every 

instance of the loop, this means that an allocation will 

occur each time, for example 

 

C = zeros(Float64,3,3,100) 
for i in 1:100 
 A = rand(Float64,3,3) 
 B = rand(Float64,3,3) 
 C[:,:,i] = A * B 
end 
 

Here, variables A and B are allocated 100 times, 

however, if the sizes of A, B and C are known before 

entering the loop, these matrices can be pre-allocated 

and the contents of the matrices can be altered within 

each loop rather than reallocating the variables each 

time. This is done by using the broadcast operator .= 
(Core Julia development 2023g),  reducing the number of 

allocations by rewriting the values within the 3x3 

matrices stored at the pre-existing memory address. 

Using the broadcast operator along with the my_mul! 

function presented in section 3.3, an improved code 

becomes 

 

A = zeros(Float64,3,3) 
B = zeros(Float64,3,3) 
C = zeros(Float64,3,3,100) 
for i in 1:100 
A .= rand(Float64,3,3) 
B .= rand(Float64,3,3) 
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my_mul!(C[:,:,i],A,B) 
end 
 

Knowing the sizes of the variables used throughout a 

code can be useful, as variables can be used throughout 

by storing variables in a “tuple” (Core Julia 

development team 2023e), which are immutable 

collections of variables. Once created, the contents of 

the tuple cannot be changed, meaning that variables 

cannot be added to the tuple or variables within the tuple 

cannot be removed or altered, but the contents of the 

variables can be changed. For example, a tuple is 

created with two variables, X (a 3x3 matrix) and Y (a 

3x1 vector), the values of within X and Y can be changed 

using the broadcast operator, but the sizes and types of 

the two variables cannot change. The variables held 

within the tuple can be used in the same way as a struct 

in MATLAB. 

 

tpl = (X = zeros(Float64,3,3),  
Y = zeros(Float64,3)) 
>> tpl.X = [0 0 0; 0 0 0; 0 0 0] 
>> tpl.Y = [0, 0, 0] 
 
tpl.X .= Diagonal([1, 2, 3]) 
>> tpl.X = [1 0 0; 0 2 0; 0 0 3] 
 
tpl.Y .= [4, 5, 6] 
>> tpl.Y = [4, 5, 6] 
 

Z = tpl.X * tpl.Y 
>> Z = [4, 10, 18] 
 

This tuple can be passed into every function of a code 

and the variables can be used as many times as required, 

reducing the total number of allocations and thus 

improving the performance. Tuples are also useful to 

hold key variables that are used throughout the code 

without having to pass them in and out of functions. In 

AMPLE for example, the number of material points is 

constant throughout an analysis (unlike the number of 

active nodes) and therefore one can exploit this feature 

to set up tuples for variables containing material point 

data, zeroing all of the contents of the pre-allocated 

variable at the start of a load step and altering its 

contents in each Newton-Raphson iteration rather than 

creating a new variable every load step. 

4 AN EXAMPLE 

To demonstrate the Julia version of AMPLE a very 

simple geotechnical problem is modelled, and the 

computational cost in terms of runtime measured. The 

problem is somewhat artificial for simplicity, but 

includes material non-linearity and involves large 

deformations. An embankment of material 8 units high 

is modelled (using symmetry to reduce the problem 

domain modelled by half) where the base is assumed to 

be supported on a surface with zero friction. Two 

discretisations of bilinear quad elements are used: 

“small” where the element size is 1 unit and “large” 

where the element size is 0.5 units. The starting material 

point distribution is a 6 × 6 grid in each element and the 

total numbers of material points are 1440 and 5760 

respectively.  

Using compatible units, the material has a density of 

1000 and is elastic-perfectly plastic with a von Mises 

failure criterion, with a deviatoric yield stress of 𝜌𝑦 =

2 × 104 where the yield surface is defined as 

 

 𝑓 = 𝜌 − 𝜌𝑦 = 0               (2) 

 

where 𝜌 = √2𝐽2 , 𝐽2 =  
1

2
𝑡𝑟([𝑠][𝑠])   &   

[𝑠] = [𝜏] −
1

3
𝑡𝑟([𝜏]) 

          
 

Figure 1. Example problem (small version) (a) original configuration;  

(b) final slumped shape: colours represent horizontal displacement. 
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in which [𝜏] is the Kirchhoff stress tensor. Elastic 

properties are Young’s modulus, 𝐸 = 106  and 

Poisson’s ratio, 𝜈 = 0.3. The embankment is loaded 

from increasing the gravitational acceleration over forty 

increments. As expected the embankment material 

slumps outwards as shown in Figure 1 and large 

deformations are evident.  

Table 2 shows the runtimes (mean of five instances) 

for this problem for three versions of AMPLE: A. 

Original AMPLE in MATLAB, B. AMPLE in Julia 

where none of the nuances of Julia cited in Section 4 

have been used and C. AMPLE in Julia where they 

have. The results show the huge advantages of the third 

implementation where large time savings (even for 

these relatively small problems) are achieved for 
intelligent Julia code over MATLAB, i.e. around 1.5-

1.7 times faster. It also demonstrates that plain 

conversion from MATLAB to Julia is not a good idea. 

 
Table 2. Runtimes (in seconds) for the example problems 

Code Small problem Large problem 

A 35.226 145.335  
B 125.828  547.869 

C 20.160  92.596 

5 CONCLUSIONS 

Julia is an ideal language in which developers of 

computational geotechnics technology can work being 

almost as clear as MATLAB in syntax (as compared to 

C++ for instance) but used correctly, can be much 

faster, as demonstrated here, via the use of a few simple-

to-understand commands and structures.  

Work is now underway in the group at Durham to 

expand the capabilities of Julia implementations to 

include multiphase materials, contact and friction and 

HPC. The Julia code used here will be made available 

via Github in the near future 

(https://wmcoombs.github.io/). 
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