17 research outputs found

    A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure

    Get PDF
    A Mission Control Architecture is presented for a Robotic Lunar Sample Return Mission which builds upon the experience of the landed missions of the NASA Mars Exploration Program. This architecture consists of four separate processes working in parallel at Mission Control and achieving buy-in for plans sequentially instead of simultaneously from all members of the team. These four processes were: Science Processing, Science Interpretation, Planning and Mission Evaluation. Science Processing was responsible for creating products from data downlinked from the field and is organized by instrument. Science Interpretation was responsible for determining whether or not science goals are being met and what measurements need to be taken to satisfy these goals. The Planning process, responsible for scheduling and sequencing observations, and the Evaluation process that fostered inter-process communications, reporting and documentation assisted these processes. This organization is advantageous for its flexibility as shown by the ability of the structure to produce plans for the rover every two hours, for the rapidity with which Mission Control team members may be trained and for the relatively small size of each individual team. This architecture was tested in an analogue mission to the Sudbury impact structure from June 6-17, 2011. A rover was used which was capable of developing a network of locations that could be revisited using a teach and repeat method. This allowed the science team to process several different outcrops in parallel, downselecting at each stage to ensure that the samples selected for caching were the most representative of the site. Over the course of 10 days, 18 rock samples were collected from 5 different outcrops, 182 individual field activities - such as roving or acquiring an image mosaic or other data product - were completed within 43 command cycles, and the rover travelled over 2,200 m. Data transfer from communications passes were filled to 74%. Sample triage was simulated to allow down-selection to 1kg of material for return to Earth

    Compositional variations of Titan's impact craters indicates active surface erosion

    No full text
    International audienceTitan, the only moon in the solar system with a considerable atmosphere, is host to a variety of exogenic processes that shape its surface. These processes form features that are quite similar to features on Earth, including sand dunes, rivers, and lakes. The combination of a thick atmosphere and active surface processes also leads to a scarcity of impact craters on the surface of Titan. The compositions of these craters vary and may relate to the type and extent of erosion occurring at their location. In this work, we examined the composition of 12 impact features on Titan using Cassini's Visible and Infrared Mapping Spectrometer (VIMS) and 2.18-cm emissivity data from the RADAR radiometer on board the probe. Comparisons were made between crater composition as inferred from VIMS and composition as inferred from emissivity data with corresponding crater characteristics such as latitude, longitude and erosional state. We see a correlation between crater subsurface composition as inferred from the emissivity data and its erosional state and location. Well-preserved craters typically are more enriched in water-ice than degraded, organic-rich craters, suggesting that variations in composition are partially controlled by erosion and infilling. Moreover, craters located in dune fields show more subsurface organic enrichment than craters within the plains, which indicates that the efficiency of erosion and infilling varies with location and geologic context. VIMS data provide complementary information about crater surficial composition. We note that VIMS spectra do not change with erosional state, but rather appear to depend on the crater location on the moon. We suggest that there are active surface processes occurring on Titan, such as wind or rain, which are actively clearing off its surface and filling in subsurface fractures with organic materials. These processes would act to change the emissivity of the craters over time but leave the surface sensed by VIMS unchanged

    Titan’s surface properties inferred from the seasonal brightness variation at 2-cm wavelength

    No full text
    International audienceA comprehensive calibration and mapping of the thermal microwave emission from Titan’s surface at 2.2-cm wavelength has been completed by the passive radiometer included in the Cassini RADAR instrument. A seasonal brightness temperature variation has been determined that is comparable to but slightly smaller than that obtained by Cassini's Composite Infrared Spectrometer (CIRS). This difference has implications for the composition and structure of Titan’s surface; namely, that most of Titan’s surface is covered by the deposition and possible redistribution of tholin-like atmospheric photochemical products to a depth of at least a meter

    Cryovolcanic Features on Titan

    No full text
    International audienceWe present evidence to support the cryovolcanic origin of some features, which includes the deepest pit known on Titan (Sotra Patera) and some of the highest mountains (Doom and Erebor Montes). We interpret this region to be a cryovolcanic complex of multiple cones, craters, and flows. Elsewhere, a circular feature, approximately 100 km across, is morphologically similar to a laccolith, showing a cross pattern interpreted to be extensional fractures. However, we find that some other previously supposed cryovolcanic features were likely formed by other processes. We discuss implications for eruption style and composition of cryovolcanism on Titan. Our analysis shows the great value of combining data sets when interpreting Titan's geology and in particular stresses the value of topographic dat
    corecore