566 research outputs found

    Pattern recognition on a quantum computer

    Get PDF
    By means of a simple example it is demonstrated that the task of finding and identifying certain patterns in an otherwise (macroscopically) unstructured picture (data set) can be accomplished efficiently by a quantum computer. Employing the powerful tool of the quantum Fourier transform the proposed quantum algorithm exhibits an exponential speed-up in comparison with its classical counterpart. The digital representation also results in a significantly higher accuracy than the method of optical filtering. PACS: 03.67.Lx, 03.67.-a, 42.30.Sy, 89.70.+c.Comment: 6 pages RevTeX, 1 figure, several correction

    Self Duality and Oblique Confinement in Planar Gauge Theories

    Get PDF
    We investigate the non-perturbative structure of two planar Zp×ZpZ_p \times Z_p lattice gauge models and discuss their relevance to two-dimensional condensed matter systems and Josephson junction arrays. Both models involve two compact U(1) gauge fields with Chern-Simons interactions, which break the symmetry down to Zp×ZpZ_p \times Z_p. By identifying the relevant topological excitations (instantons) and their interactions we determine the phase structure of the models. Our results match observed quantum phase transitions in Josephson junction arrays and suggest also the possibility of {\it oblique confining ground states} corresponding to quantum Hall regimes for either charges or vortices.Comment: 32 pages, harvma

    On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection

    Full text link
    Abstract. This paper investigates genetic drift in multi-parent genetic algorithms (MPGAs). An exact model based on Markov chains is pro-posed to formulate the variation of gene frequency. This model iden-tifies the correlation between the adopted number of parents and the mean convergence time. Moreover, it reveals the pairwise equivalence phenomenon in the number of parents and indicates the acceleration of genetic drift in MPGAs. The good fit between theoretical and experi-mental results further verifies the capability of this model.

    The Trail Pheromone of the Venomous Samsum Ant, Pachycondyla sennaarensis

    Get PDF
    Ant species use branching networks of pheromone trails for orientation between nest and resources. The current study demonstrated that workers of the venomous samsum ant, Pachycondyla sennaarensis (Mayr) (Hymenoptera: Formicidae: Ponerinae), employ recruitment trail pheromones discharged from the Dufour's gland. Secretions of other abdomen complex glands, as well as hindgut gland secretions, did not evoke trail following. The optimum concentration of trail pheromone was found to be 0.1 gland equivalent/40 cm trail. This concentration demonstrated effective longevity for about one hour. This study also showed that P. sennaarensis and Tapinoma simrothi each respond to the trail pheromones of the other species as well as their own

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization

    Get PDF
    This chapter presents ParadisEO-MOEO, a white-box object-oriented software framework dedicated to the flexible design of metaheuristics for multi-objective optimization. This paradigm-free software proposes a unified view for major evolutionary multi-objective metaheuristics. It embeds some features and techniques for multi-objective resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the problems they are intended to solve. This separation confers a maximum design and code reuse. This general-purpose framework provides a broad range of fitness assignment strategies, the most common diversity preservation mechanisms, some elitistrelated features as well as statistical tools. Furthermore, a number of state-of-the-art search methods, including NSGA-II, SPEA2 and IBEA, have been implemented in a user-friendly way, based on the fine-grained ParadisEO-MOEO components

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore