34 research outputs found

    Human demography changes in Morocco and environmental imprint during the Holocene

    Get PDF
    The aim of this work is to reconstruct the periods of growth and decline of human populations in Morocco and their potential impacts on the landscape over the past 10,000 years. In order to estimate the trends in the human population size between 10,000 and 3000 years ago, we used a summed probability distribution (SPD) of radiocarbon dates from a wide range of archaeological sites throughout Morocco. Landscape changes were identified and quantified from a dataset of fossil pollen records. Different anthropogenic pollen markers, as well as natural vegetation groups and taxonomic richness were used to analyse the relationship between long-term trends in human population expansion or regression and type of impact on the landscape. The sub-regions of Morocco have different topographies and climates, which have either favoured or prevented the establishment and/or spread of human populations. In order to identify the areas most significantly impacted by humans and the timing of such impacts, we have reconstructed and compared the same past anthropogenic and landscape proxies along with the population trends within the lowlands and mountainous areas. The lowlands were more strongly impacted earlier in the Holocene than the mountainous areas. Anthropogenic markers indicate that farming expanded in the lowlands during the first major expansion of human populations between ca. 7200 and 6700 cal. yr BP at the start of the Neolithic period. In the Atlas and Rif Mountains, anthropogenic impact is not clearly detectable in any of these areas before 4000 cal. BP. </jats:p

    The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of drill cores with two‐dimensional and spatially resolved geophysical measurements

    Get PDF
    The complex and non-linear fluvial river dynamics are characterized by repeated periods of fluvial erosion and re-deposition in different parts of the floodplain. Understanding the fluvial architecture (i.e. the three-dimensional arrangement and genetic interconnectedness of different sediment types) is therefore fundamental to obtain well-based information about controlling factors. However, investigating the fluvial architecture in buried floodplain deposits without natural exposures is challenging. We studied the fluvial architecture of the middle Weiße Elster floodplain in Central Germany, an extraordinary long-standing archive of Holocene flooding and landscape changes in sensitive loess-covered Central European landscapes. We applied a novel systematic approach by coupling two-dimensional transects of electrical resistivity tomography (ERT) measurements and closely spaced core drillings with spatially resolved measurements of electromagnetic induction (EMI) of larger floodplain areas at three study sites. This allowed for (i) time and cost-efficient core drillings based on preceding ERT measurements and (ii) spatially scaling up the main elements of the fluvial architecture, such as the distribution of thick silt-clay overbank deposits and paleochannel patterns from the floodplain transects to larger surrounding areas. We found that fine-grained sand and silt-clay overbank deposits overlying basal gravels were deposited during several periods of intensive flooding. Those were separated from each other by periods of reduced flooding, allowing soil formation. However, the overbank deposits were severely laterally eroded before and during each sedimentation period. This was probably linked with pronounced meandering or even braiding of the river. Our preliminary chronological classification suggests that first fine-grained sedimentation must have occurred during the Early to Middle Holocene, and the last phase of lateral erosion and sedimentation during the Little Ice Age. Our study demonstrates the high archive potential of the buried fluvial sediments of the middle Weiße Elster floodplain and provides a promising time and cost-effective approach for future studies of buried floodplain sediments

    Holocene sediment dynamics in the vicinity of a roman battle field near Osnabrueck (NW-Germany)

    Get PDF
    The interpretation of the Holocene sediment dynamics at Mount Kalkriese in the Wiehengebirge mountains (northwestern Germany) shows that the onset and the extent of human land use corresponds well with most colluvial archives in Central European loess regions: The onset of soil erosion in the Wiehengebirge mountains started during the Early Neolithic period. For the Bronze Age, erosion and colluviation are documented as well. A considerable increase of soil erosion with correlated reworking of colluvial sediments was found since Roman times, indicated by the burial of Germanic artifacts of Roman Age at the toe-slopes. Unfortunately, no absolute ages exist for the post roman period. However, in analogy to other sites it can be assumed that highest erosion rates occurred during the Middle Ages. This study also shows typical problems when using the soilscape model for calculating the sediment budget: since truncated soil profifi les are used to model eroded volumes, only minimum soil erosion is mapped. This can lead to a considerable discrepancy between eroded and accumulated volumes. Therefore, we have to assume that soil erosion at the plateau and in upslope areas at Mount Kalkriese was much higher than predicted by the soilscape model. In addition, extensive anthropogenic accumulation soils (Plaggen soils) were deposited in the downslope areas, thereby increasing the discrepancy between erosion and accumulation volumes. The combination of mapping erosion and accumulation with augerings and trenches, calculation of the mass balance by GIS, relative and absolute dating and geophysical evidence provides a powerful tool in landscape interpretation. Due to the small number of numerical ages, the landscape model at Mount Kalkriese has to be considered preliminary

    Charlemagne's Summit Canal: An Early Medieval Hydro-Engineering Project for Passing the Central European Watershed

    Get PDF
    <div><p>The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and <i>in situ</i> findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.</p></div

    Distribution of Chernozems and Phaeozems in Central Germany during the Neolithic period

    No full text
    A well-based knowledge about the former distribution of Chernozems and Phaeozems is necessary to (i) better understand the factors influencing formation and degradation of these highly fertile soils, and (ii) better explain prehistoric settlement patterns that were also determined by natural factors such as soil fertility. During this archaeopedological study carried out in Central Germany we applied sedimentological and micromorphological methods to compare soils and pedosediments from the recent Chernozem/Phaeozem region with black-coloured pedosediments buried in early Neolithic structures of the recent Luvisol area directly to the east. Relocated clay coatings and significantly lower magnetic enhancement compared to Chernozem/Phaeozem-derived material were found in most black-coloured pedosediments in the Luvisol area. This demonstrates that despite their location next to an extensive Chernozem/Phaeozem area these sediments do not originate from Chernozems or Phaeozems. Instead, their dark colour must either originate from anthropogenic input similar to black-coloured Anthrosols (“Dark Earth”), or must stem from Ah-material of former Luvisols. Consequently, may be apart from a small relatively dry and carbonate-rich Luvisol region northwest of Leipzig there was obviously no significantly larger distribution of Neolithic Chernozems and Phaeozems in this region during the past. Consequently, the regional early Neolithic settlers of the Linear Pottery Culture settled intensively also in areas outside the distribution of Chernozems and Phaeozems, and the activities of these settlers did not lead to the formation of such soils. Thus, fertile soils were obviously only one factor among probably others to explain the regional Neolithic settlement pattern. Significantly lower carbonate contents were found for the parent material of the black-coloured pedosediments in the Luvisol region compared with the parent material of Chernzems and Phaeozems. This demonstrates that the decisive factor to explain the recent and former spatial distribution of Chernozems and Phaeozems in this relatively dry area is the carbonate dynamics. Anthropogenic activity since the early Neolithic period obviously helped to preserve the naturally formed Chernozems and Phaeozems by re-carbonatization processes, but humans were not the main soil forming factor in early settled regions
    corecore