178 research outputs found
Domain wall structure in magnetic bilayers with perpendicular anisotropy
We study the magnetic domain wall structure in magnetic bilayers (two
ultrathin ferromagnetic layers separated by a non magnetic spacer) with
perpendicular magnetization. Combining magnetic force and ballistic electron
emission microscopies, we are able to reveal the details of the magnetic
structure of the wall with a high spatial accuracy. In these layers, we show
that the classical Bloch wall observed in single layers transforms into
superposed N\'eel walls due to the magnetic coupling between the ferromagnetic
layers. Quantitative agreement with micromagnetic calculations is achieved.Comment: Author adresses AB, SR, JM and AT: Laboratoire de Physique des
Solides, CNRS, Universit\'e Paris Sud, UMR 8502, 91405 Orsay Cedex, France ML
: Laboratoire PMTM, Institut Galil\'ee, CNRS, Universit\'e Paris-13, UPR
9001, 93430 Villetaneuse, Franc
Nanoscale magnetic field mapping with a single spin scanning probe magnetometer
We demonstrate quantitative magnetic field mapping with nanoscale resolution,
by applying a lock-in technique on the electron spin resonance frequency of a
single nitrogen-vacancy defect placed at the apex of an atomic force microscope
tip. In addition, we report an all-optical magnetic imaging technique which is
sensitive to large off-axis magnetic fields, thus extending the operation range
of diamond-based magnetometry. Both techniques are illustrated by using a
magnetic hard disk as a test sample. Owing to the non-perturbing and
quantitative nature of the magnetic probe, this work should open up numerous
perspectives in nanomagnetism and spintronics
Universal dephasing in a chiral 1D interacting fermion system
We consider dephasing by interactions in a one-dimensional chiral fermion
system (e.g. a Quantum Hall edge state). For finite-range interactions, we
calculate the spatial decay of the Green's function at fixed energy, which sets
the contrast in a Mach-Zehnder interferometer. Using a physically transparent
semiclassical ansatz, we find a power-law decay of the coherence at high
energies and zero temperature (T=0), with a universal asymptotic exponent of 1,
independent of the interaction strength. We obtain the dephasing rate at T>0
and the fluctuation spectrum acting on an electron.Comment: 5 pages, 3 figures; minor changes, version as published
Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures
The nucleation of reversed magnetic domains in Pt/Co/AlO
microstructures with perpendicular anisotropy was studied experimentally in the
presence of an in-plane magnetic field. For large enough in-plane field,
nucleation was observed preferentially at an edge of the sample normal to this
field. The position at which nucleation takes place was observed to depend in a
chiral way on the initial magnetization and applied field directions. An
explanation of these results is proposed, based on the existence of a sizable
Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this
interaction is that the energy of domain walls can become negative for in-plane
fields smaller than the effective anisotropy field.Comment: Published version, Physical Review Letters 113, 047203 (2014
Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)
Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited
regime to yield a nanotemplate in the form of a uniaxial array of hills and
grooves aligned along the [001] direction. The topography and organization of
the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are
tilted 18° away from (110). The lateral period could be varied from 4 to
12nm by tuning the deposition temperature. Magnetic nanowires were formed in
the grooves by deposition of Fe at 150°C on such templates. Fe/W wires
display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris
Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia
We report on our ongoing effort to measure the Boltzmann constant,
using the Doppler broadening technique on ammonia. This paper presents some of
the improvements made to the mid-infrared spectrometer including the use of a
phase-stabilized quantum cascade laser, a lineshape analysis based on a refined
physical model and an improved fitting program 2 increasing the confidence in
our estimates of the relevant molecular parameters, and a first evaluation of
the saturation parameter and its impact on the measurement of k B. A summary of
the systematic effects contributing to the measurement is given and the optimal
experimental conditions for mitigating those effects in order to reach a
competitive measurement of at a part per million accuracy level are
outlined
Spin-Wave-Assisted Thermal Reversal of Epitaxial Perpendicular Magnetic Nanodots
The magnetic susceptibility of self-organized two-dimensional Co nanodots on
Au(111) has been measured as a function of their size in the 2-7~nm diameter
range. We show that the activation energy for the thermal reversal displays a
power law behavior with the dot volume. Atomic scale simulations based on the
Heisenberg hamiltonian show that this behavior is due to a deviation from the
macrospin model for dot size as small as 3~nm in diameter. This discrepancy is
attributed to finite temperature effects through the thermal excitation of
spin-wave modes inside the particlesComment: 4 pages, 4 figure
Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations
Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has
revealed unprecedented 2D long range ordered growth of uniform cobalt
nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111)
reconstructed vicinal surface is analyzed by Variable Temperature Scanning
Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots
(3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range
lying from 60 K to 300 K. Although the nanodot lattice is stable at room
temperature, this paper focus on the early stage of ordered nucleation and
growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading
to the nanodots array are elucidated by comparing statistical analysis of
VT-STM images with multi-scaled numerical calculations combining both Molecular
Dynamics for the quantitative determination of the activation energies for the
atomic motion and the Kinetic Monte Carlo method for the simulations of the
mesoscopic time and scale evolution of the Co submonolayer
The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field
Nanoscale magnetic skyrmions are considered as potential information carriers
for future spintronics memory and logic devices. Such applications will require
the control of their local creation and annihilation, which involves so far
solutions that are either energy consuming or difficult to integrate. Here we
demonstrate the control of skyrmion bubbles nucleation and annihilation using
electric field gating, an easily integrable and potentially energetically
efficient solution. We present a detailed stability diagram of the skyrmion
bubbles in a Pt/Co/oxide trilayer and show that their stability can be
controlled via an applied electric field. An analytical bubble model, with the
Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account
for the observed electrical skyrmion switching effect. This allows us to unveil
the origin of the electrical control of skyrmions stability and to show that
both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction
play an important role in the skyrmion bubble stabilization
Field-free deterministic ultra fast creation of skyrmions by spin orbit torques
Magnetic skyrmions are currently the most promising option to realize
current-driven magnetic shift registers. A variety of concepts to create
skyrmions were proposed and demonstrated. However, none of the reported
experiments show controlled creation of single skyrmions using integrated
designs. Here, we demonstrate that skyrmions can be generated deterministically
on subnanosecond timescales in magnetic racetracks at artificial or natural
defects using spin orbit torque (SOT) pulses. The mechanism is largely similar
to SOT-induced switching of uniformly magnetized elements, but due to the
effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not
required. Our observations provide a simple and reliable means for skyrmion
writing that can be readily integrated into racetrack devices
- …