716 research outputs found

    Hamiltonian model of capture into mean motion resonance

    Full text link
    Mean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. Full details can be found in \cite{2010submitted}. (Abridged)Comment: 4 pages, Proceedings of IAUS276 "The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution

    Socialization of the elderly in outdoor health circuits

    Get PDF
    En los parques biosaludables, originalmente concebidos para la población madura y anciana, se encuentran usuarios de diferentes edades y con distintas formas de entender la actividad física. El presente trabajo intenta examinar las relaciones de las personas mayores con el resto de usuarios para determinar en qué medida dichos parques pueden cumplir alguna función social más allá del fomento de hábitos saludables. Para ello se ha llevado a cabo una serie de observaciones, participantes y no participantes, en tres parques de la ciudad de Granada, donde se ha visto que, si bien existe una proporción minoritaria pero importante de usuarios jóvenes (aproximadamente un tercio del total), estos tienden a evitar una interacción que parte de los usuarios de mayor edad buscan expresamente

    Investigating the flyby scenario for the HD 141569 system

    Full text link
    HD 141569, a triple star system, has been intensively observed and studied for its massive debris disk. It was rather regarded as a gravitationally bound triple system but recent measurements of the HD 141569A radial velocity seem to invalidate this hypothesis. The flyby scenario has therefore to be investigated to test its compatibility with the observations. We present a study of the flyby scenario for the HD141569 system, by considering 3 variants: a sole flyby, a flyby associated with one planet and a flyby with two planets. We use analytical calculations and perform N-body numerical simulations of the flyby encounter. The binary orbit is found to be almost fixed by the observational constraint on a edge-on plane with respect to the observers. If the binary has had an influence on the disk structure, it should have a passing time at the periapsis between 5000 and 8000 years ago and a distance at periapsis between 600 and 900 AU. The best scenario for reproducing the disk morphology is a flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130 AU. Although the global disk shape is reasonably well reproduced, some features cannot be explain by the present model and the likehood of the flyby event remains an issue. Dynamically speaking, HD 141569 is still a puzzling system

    Epidemics in Networks of Spatially Correlated Three-dimensional Root Branching Structures

    Full text link
    Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common 'SIR' epidemiological model onto the bond percolation problem, we show how the spatially-correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants, render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.Comment: 21 pages, 8 figure

    On the observability of resonant structures in planetesimal disks due to planetary migration

    Full text link
    We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.Comment: 16 pages, 13 figures. Accepted for publication in A&

    A general model of resonance capture in planetary systems: First and second order resonances

    Full text link
    Mean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities. More massive planets can capture particles at higher eccentricities and migration rates. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. We discuss implications for several scenarios: (i) Planet migration through gas discs trapping other planets or planetesimals in resonances. (ii) Planet migration through a debris disc. (iii) Dust migration through PR drag. The Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or similar missions. [Abridged]Comment: 19 pages, 14 figures; accepted to MNRA

    Morphology of the very inclined debris disk around HD 32297

    Get PDF
    Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that bring constraints on their properties, in particular the spatial distribution of dust. New techniques combining observing strategy and data processing now allow very high contrast imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and complement space telescopes while improving angular resolution at near infrared wavelengths. We carried out a program at the VLT with NACO to image known debris disks with higher angular resolution in the near IR than ever before in order to study morphological properties and ultimately to detect signpost of planets. The observing method makes use of advanced techniques: Adaptive Optics, Coronagraphy and Differential Imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" like GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects like circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence to bring constraints on the morphology of debris disks. From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6". The modeling stage confirms a very high inclination (i=88{\deg}) and the presence of an inner cavity inside r_0~110AU. We also found that the spine (line of maximum intensity along the midplane) of the disk is curved and we attributed this feature to a large anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged ...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    Fine Structure of Avalanches in the Abelian Sandpile Model

    Full text link
    We study the two-dimensional Abelian Sandpile Model on a square lattice of linear size L. We introduce the notion of avalanche's fine structure and compare the behavior of avalanches and waves of toppling. We show that according to the degree of complexity in the fine structure of avalanches, which is a direct consequence of the intricate superposition of the boundaries of successive waves, avalanches fall into two different categories. We propose scaling ans\"{a}tz for these avalanche types and verify them numerically. We find that while the first type of avalanches has a simple scaling behavior, the second (complex) type is characterized by an avalanche-size dependent scaling exponent. This provides a framework within which one can understand the failure of a consistent scaling behavior in this model.Comment: 10 page
    corecore