613 research outputs found
Non-supersymmetric heterotic model building
We investigate orbifold and smooth Calabi-Yau compactifications of the
non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau
backgrounds in order to recycle commonly employed techniques, like index
theorems and cohomology theory, to determine both the fermionic and bosonic 4D
spectra. We argue that the N=0 theory never leads to tachyons on smooth
Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on
certain singular orbifolds, we conjecture that such tachyonic states are lifted
in the full blow-up. We perform model searches on selected orbifold geometries.
In particular, we construct an explicit example of a Standard Model-like theory
with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions
added, matches version published in JHE
Searching singlet extensions of the supersymmetric standard model in orbifold compactification of heterotic string
We search for supersymmetric standard model realizations with extra singlets
and extra using the heterotic string compactification on the orbifold with two Wilson lines. We analyze the vacuum restabilization
mechanism for three representative Pati-Salam string models obtained in the
literature and present detailed results for the effective superpotential
compatible with the string selection rules. An automated selection of
semi-realistic vacua along flat directions in the non-Abelian singlet modes
field space is performed by requiring the presence of massless pairs of
electroweak Higgs bosons having trilinear superpotential couplings with
massless singlet modes and the decoupling of color triplet exotic modes needed
to suppress and number violating processes.Comment: revtex4 format, 21 pages, 7 tables, shortened version added
reference
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
Evaluating the extent and impact of the extreme Storm Gloria on Posidonia oceanica seagrass meadows
Extreme storms can trigger abrupt and often lasting changes in ecosystems by affecting foundational (habitat-forming) species. While the frequency and intensity of extreme events are projected to increase under climate change, its impacts on seagrass ecosystems remain poorly documented. In January 2020, the Spanish Mediterranean coast was hit by Storm Gloria, one of the most devastating recent climate events in terms of intensity and duration. We conducted rapid surveys of 42 Posidonia oceanica meadows across the region to evaluate the extent and type of impact (burial, unburial and uprooting). We investigated the significance of oceanographic (wave impact model), geomorphological (latitude, depth, exposure), and structural (patchiness) factors in predicting impact extent and intensity. The predominant impact of Storm Gloria was shoot unburial. More than half of the surveyed sites revealed recent unburial, with up to 40 cm of sediment removed, affecting over 50 % of the meadow. Burial, although less extensive, was still significant, with 10–80 % of meadow cover being buried under 7 cm of sediment, which is considered a survival threshold for P. oceanica. In addition, we observed evident signs of recently dead matte in some meadows and large amounts of detached drifting shoots on the sea bottom or accumulated as debris on the beaches. Crucially, exposed and patchy meadows were much more vulnerable to the overall impact than sheltered or continuous meadows. Given how slow P. oceanica is able to recover after disturbances, we state that it could take from decades to centuries for it to recoup its losses. Seagrass ecosystems play a vital role as coastal ecological infrastructure. Protecting vulnerable meadows from anthropogenic fragmentation is crucial for ensuring the resilience of these ecosystems in the face of the climate crisis.This study was funded by the CSIC project “Effects of storm Gloria on the western Mediterranean meadows (202030E052) and “Storms of change: as phenomena extreme weather alters Mediterranean coastal ecosystems, their services and their perception by society" (PID2020-113745RB-I00), state program of I+D+I Oriented to the Challenges of the Society and within the framework of the activities of the Spanish Government through the "Maria de Maeztu Centre of Excellence” accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198). We want to thank the SPAS (Society of Fishing and Underwater Activities of Mataró) and the Mataró City Council, which has financed 25 years of the Alguer de Mataró project
Study protocol for a pragmatic randomised controlled trial in general practice investigating the effectiveness of acupuncture against migraine
<p>Abstract</p> <p>Background</p> <p>Migraine is a chronic neurologic disease that can severely affect the patient's quality of life. Although in recent years many randomised studies have been carried out to investigate the effectiveness of acupuncture as a treatment for migraine, it remains a controversial issue. Our aim is to determine whether acupuncture, applied under real conditions of clinical practice in the area of primary healthcare, is more effective than conventional treatment.</p> <p>Methods/Design</p> <p>The design consists of a pragmatic multi-centre, three-armed randomised controlled trial, complemented with an economic evaluation of the results achieved, comparing the effectiveness of verum acupuncture with sham acupuncture, and with a control group receiving normal care only.</p> <p>Patients eligible for inclusion will be those presenting in general practice with migraine and for whom their General Practitioner (GP) is considering referral for acupuncture. Sampling will be by consecutive selection, and by randomised allocation to the three branches of the study, in a centralised way following a 1:1:1 distribution (verum acupuncture; sham acupuncture; conventional treatment). Secondly, one patient in three will be randomly selected from each of the acupuncture (verum or sham) groups for a brain perfusion study (by single photon emission tomography). The treatment with verum acupuncture will consist of 8 treatment sessions, once a week, at points selected individually by the acupuncturist. The sham acupuncture group will receive 8 sessions, one per week, with treatment being applied at non-acupuncture points in the dorsal and lumbar regions, using the minimal puncture technique. The control group will be given conventional treatment, as will the other two groups.</p> <p>Discussion</p> <p>This trial will contribute to available evidence on acupuncture for the treatment of migraine. The primary endpoint is the difference in the number of days with migraine among the three groups, between the baseline period (the 4 weeks prior to the start of treatment) and the period from weeks 9 to 12. As a secondary aspect, we shall record the index of laterality and the percentage of change in the mean count per pixel in each region of interest measured by the brain perfusion tomography, performed on a subsample of the patients within the real and sham acupuncture groups.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN98703707.</p
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes
- …