182 research outputs found

    Multiple stakeholders’ perspectives of marine social ecological systems, a case study on the Barents Sea

    Get PDF
    The Barents Sea ecosystem components and services are under pressure from climate change and other anthropogenic impacts. Following an Ecosystem-based management approach, multiple simultaneous pressures are addressed by using integrative strategies, but regular prioritization of key issues is needed. Identification of such priorities is typically done in a ‘scoping’ phase, where the characterization of the social-ecological system is defined and discussed. We performed a scoping exercise using an open and flexible multi-stakeholder approach to build conceptual models of the Barents Sea social-ecological system. After standardizing vocabulary, a com plex hierarchical model structure containing 155 elements was condensed to a simpler model structure con taining a maximum of 36 elements. To capture a common understanding across stakeholder groups, inputs from the individual group models were compiled into a collective model. Stakeholders’ representation of the Barents Sea social-ecological system is complex and often group specific, emphasizing the need to include social scientific methods to ensure the identification and inclusion of key stakeholders in the process. Any summary or simpli fication of the stakeholders’ representation neglects important information. Some commonalities are highlighted in the collective model, and additional information from the hierarchical model is provided by multicriteria analysis. The collective conceptual stakeholder model provides input to an integrated overview and strengthens prioritization in Ecosystem-based management by supporting the development of qualitative network models. Such models allow for exploration of perturbations and can inform cross-sectoral management trade-offs and prioritiespublishedVersio

    Capabilities of Global Ocean Programmes to Inform Climate Services

    Get PDF
    AbstractClimate services are identified as a means of providing the information that is needed to support decision makers in assessing the impacts of climate change on the oceans. We discuss the current observation programs to support these services, and their capacity to provide the information needed to monitor and address key science questions. An analysis of the current oceanographic observation programs is shown to be undersubscribed from their original plans. There are vulnerabilities in the current observing programs, particularly in relation to satellite measurements. The interaction of climate services with the research community, with policy makers and stakeholders and operational centres is outlined and leads to four recommendations. The key recommendations are for the more pervasisve development of climate services and for a modest increment in the observing program informed by the recommendations of the OceanObs’09 conference

    Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters

    Get PDF
    The Norwegian Atlantic Current (NwAC) and its eddy field are examined using data from surface drifters. The data set used spans nearly 20 years, from June 1991 to December 2009. The results are largely consistent with previous estimates, which were based on data from the first decade only. With our new data set, statistical analysis of the mean fields can be calculated with larger confidence. The two branches of the NwAC, one over the continental slope and a second further offshore, are clearly captured. The Norwegian Coastal Current is also resolved. In addition, we observe a semipermanent anticylonic eddy in the Lofoten Basin, a feature seen previously in hydrography and in models. The eddy kinetic energy (EKE) is intensified along the path of the NwAC, with the largest values occurring in the Lofoten Basin. The strongest currents, exceeding 100 cm s−1, occur west of Lofoten. Lateral diffusivities were computed in five domains and ranged from 1–5 × 107 cm2 s−1. The Lagrangian integral time and space scales are 1–2 days and 7–23 km, respectively. The data set allows studies of seasonal and interannual variations as well. The strongest seasonal signal is in the NwAC itself, as the mean flow strengthens by approximately 20% in winter. The EKE and diffusivities on the other hand do not exhibit consistent seasonality in the sampled regions. There are no consistent indications of changes in either the mean or fluctuating surface velocities between the 1990s and 2000s

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC

    Temporal Variability of Diapycnal Mixing in Shag Rocks Passage

    Get PDF
    Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here we present results from a method developed to calculate diapycnal diffusivity from moored Acoustic Doppler Current Profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400 m depth, 600 m above the sea floor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10-4 m2 s-1 near the sea floor, decreasing to the expected background level of ~ 0.1 × 10-4 m2 s-1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400 to 1800 m; thus the moored time series was obtained from a region of moderately enhanced diffusivity. The diffusivity time series has a median of 3.3 × 10-4 m2 s-1 and a range of 0.5 × 10-4 m2 s-1 to 57 × 10-4 m2 s-1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately fourteen days (likely due to the spring-neaps tidal cycle), and at periods of 3.8 and 2.6 days most likely due to topographically-trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically-trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anti-correlated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography

    Deep and abyssal ocean warming from 35 years of repeat hydrography

    Get PDF
    Global and regional ocean warming deeper than 2000 m is investigated using 35 years of sustained repeat hydrographic survey data starting in 1981. The global long-term temperature trend below 2000 m, representing the time period 1991–2010, is equivalent to a mean heat flux of 0.065 ± 0.040 W m?2 applied over the Earth's surface area. The strongest warming rates are found in the abyssal layer (4000–6000 m), which contributes to one third of the total heat uptake with the largest contribution from the Southern and Pacific Oceans. A similar regional pattern is found in the deep layer (2000–4000 m), which explains the remaining two thirds of the total heat uptake yet with larger uncertainties. The global average warming rate did not change within uncertainties pre-2000 versus post-2000, whereas ocean average warming rates decreased in the Pacific and Indian Oceans and increased in the Atlantic and Southern Oceans

    Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L22601, doi:10.1029/2008GL035619.We analyze abyssal temperature data in the western North Atlantic Ocean from the 1980s–2000s, showing that reductions in Antarctic Bottom Water (AABW) signatures have reached even that basin. Trans-basin oceanographic sections occupied along 52°W from 1983–2003 and 66°W from 1985–2003 quantify abyssal warming resulting from deepening of the strong thermal boundary between AABW and North Atlantic Deep Water (NADW), hence a local AABW volume reduction. Repeat section data taken from 1981–2004 along 24°N also show a reduced zonal gradient in abyssal temperatures, consistent with decreased northward transport of AABW. The reduction in the Antarctic limb of the MOC within the North Atlantic highlights the global reach of climate variability originating around Antarctica.NOAA and NSF supported the 2003 U.S. CLIVAR/CO2 Repeat Hydrography Program reoccupations of the 52 W and 66 W sections, led by Chief Scientists John Toole and Terrence Joyce, respectively. The U.K. National Environment Research Council supported the 2004 reoccupation of the 24 N section, led by Chief Scientist Stuart Cunningham. The hard work of all contributing to the collection and processing of data analyzed here is gratefully acknowledged. The NOAA Office of Oceanic and Atmospheric Research and the NOAA Climate Program Office supported the analysis

    Surface currents in operational oceanography: Key applications, mechanisms, and methods

    Get PDF
    This paper reviews physical mechanisms, observation techniques and modelling approaches dealing with surface currents on short time scales (hours to days) relevant for operational oceanography. Key motivations for this article include fundamental difficulties in reliable measurements and the persistent lack of a widely held consensus on the definition of surface currents. These problems are augmented by the fact that various methods to observe and model ocean currents yield very different representations of a surface current. We distinguish between four applicable definitions for surface currents; (i) the interfacial surface current, (ii) the direct wind-driven surface current, (iii) the surface boundary layer current, and (iv) an effective drift current. Finally, we discuss challenges in synthesising various data sources of surface currents - i.e. observational and modelling – and take a view on the predictability of surface currents concluding with arguments that parts of the surface circulation exhibit predictability useful in an operational context

    Model studies of dense water overflows in the Faroese Channels Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

    Get PDF
    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with the experimental observations and measurements. In addition, the comparisons show that strong temporal variability in the predicted outflow pathways and circulations have a strong influence in regulating the Faroe Bank Channel and Wyville-Thomson Ridge overflows, as well as in determining the overall response in the Faroese Channels to changes in the Faroe-Shetland Channel inlet boundary conditions. © 2014 Springer-Verlag Berlin Heidelberg
    • …
    corecore