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[1] The Norwegian Atlantic Current (NWAC) and its eddy field are examined using data
from surface drifters. The data set used spans nearly 20 years, from June 1991 to
December 2009. The results are largely consistent with previous estimates, which were
based on data from the first decade only. With our new data set, statistical analysis of the
mean fields can be calculated with larger confidence. The two branches of the NwAC,
one over the continental slope and a second further offshore, are clearly captured. The
Norwegian Coastal Current is also resolved. In addition, we observe a semipermanent
anticylonic eddy in the Lofoten Basin, a feature seen previously in hydrography and in
models. The eddy kinetic energy (EKE) is intensified along the path of the NwWAC, with
the largest values occurring in the Lofoten Basin. The strongest currents, exceeding

100 cm s, occur west of Lofoten. Lateral diffusivities were computed in five domains
and ranged from 1-5 x 107 cm? s '. The Lagrangian integral time and space scales are
1-2 days and 7-23 km, respectively. The data set allows studies of seasonal and
interannual variations as well. The strongest seasonal signal is in the NwAC itself, as the
mean flow strengthens by approximately 20% in winter. The EKE and diffusivities on
the other hand do not exhibit consistent seasonality in the sampled regions. There are no

consistent indications of changes in either the mean or fluctuating surface velocities

between the 1990s and 2000s.

Citation: Andersson, M., K. A. Orvik, J. H. LaCasce, 1. Koszalka, and C. Mauritzen (2011), Variability of the Norwegian
Atlantic Current and associated eddy field from surface drifters, J. Geophys. Res., 116, C08032, doi:10.1029/2011JC007078.

1. Introduction

[2] During the International Polar Year (IPY) a dedicated
surface drifter project, the POLEWARD experiment, was
conducted in the Nordic Seas during the period 2007—2009.
In the experiment, 148 surface drifters, drogued at 15 m,
were released at various locations west of the Norwegian
coast, in the Barents Sea and south of Spitsbergen. The
primary goal was to study the evolution of the warm waters
entering the Nordic Seas as they flow north toward Spits-
bergen, cool and become denser. The main feature of this
flow is the Norwegian Atlantic Current (NWAC), the northern
extension of the North Atlantic Current (NAC). This is the
shallow branch of the thermohaline circulation, and the
cooling and freshening which occurs in the Nordic Seas is
fundamental in determining the density of the North Atlantic
Deep Water which returns to the North Atlantic [Mauritzen,
1996].

[3] The NwAC commences at the Iceland-Scotland ridge,
continuing northward in two branches [Dietrich et al., 1980;
Omrvik and Niiler, 2002]. 1t is strongly steered by topography
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and its path can accordingly be traced along the isobaths
[Poulain et al., 1996, Orvik and Niiler, 2002]. The eastern
branch of the NwAC lies over the continental slope and has
a significant barotropic component. A portion of this branch
flows into the Barents Sea and the Arctic Ocean, linking the
North Atlantic, Arctic Ocean and the Barents Sea [Orvik and
Skagseth, 2005]. The western branch is a baroclinic jet along
the Polar front; it can be traced throughout the Nordic Seas
toward the Fram Strait [Orvik et al., 2001; Orvik and Niiler,
2002].

[4] There is significant exchange between the two branches,
as has been observed both with surface drifters [Poulain et al.,
1996; Orvik and Niiler, 2002; Jakobsen et al., 2003] and with
subsurface floats [Soiland et al., 2008].

[5] Using position and velocity data from surface drifters,
Poulain et al. [1996] computed quasi-Eulerian statistics using
drifter data from the 1990s. The authors found a vigorous
eddy field near the principal currents and in the Lofoten
Basin. The latter has a distinct hydrographic signature as
well, as the isopycnals of the warm Atlantic water lay deeper
in that basin than further north and south [Orvik, 2004].
The Lofoten Basin evidently acts as a reservoir for Atlantic
water, facilitating heat exchange with the atmosphere. There
are indications that warm water is transported into the
basin from the eastern branch of the NwAC via eddies [e.g.,
Rossby et al., 2009]. The eddies also affect the circulation
in the basin. In particular, model simulations suggest that
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Figure 1. Major pathways of Atlantic water with bathym-
etry of the Nordic Seas and sites of drifter deployments by
the POLEWARD project (red stars), historical deployments
(green stars), and recent non-POLEWARD deployments
(black stars).

anticyclonic eddies migrate into the interior where they
sustain a quasi-permanent anticyclonic circulation Kdh/
[2007].

[6] Subsequent drifter studies in the Nordic Seas have
provided greater detail of the flows [Orvik and Niiler, 2002;
Jakobsen et al., 2003]. Recently, Koszalka et al. [2011]
compared two methods of estimating mean velocities and
diffusivities from surface drifter observations from the Nordic
Seas. It was concluded that the clustering method, relying on
a clustering algorithm, provides finer resolution in densely
sampled regions compared to the more conventional binning
method. The binning technique, on the other hand, is suit-
able for temporal variability analysis. In the present study,
the POLEWARD data is used in combination with the
existing data to obtain new estimates. As the combined data
set is larger, the statistical estimates are more robust than
previously. And as they span a longer period of time, they
permit a study of the seasonal variability and of the contrast
between the 1990s with the 2000s. For the first time, tem-
poral variability analysis of diffusivities in the Nordic Seas
using drifter data are performed.

[7] Previously, Orvik and Skagseth [2003] suggested that
the variability in the Nordic Seas is correlated with the wind
stress curl over the North Atlantic. If so, the variability
might also be correlated with the NAO index. The early
1990s correspond to strong positive NAO years, while the
2000s had more fluctuating values of NAO [Hurrell, 1995],
and this would imply a difference in variability between the
2 decades.

[8] The paper is organized as follows. In section 2, the
drifters, the deployments and the methods of data processing
are discussed. In section 3, the Eulerian mean circulation,
Lagrangian statistics, and seasonal and interannual vari-
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ability are presented. Section 4 concludes with a discussion
of the results.

2. Data and Methods

[9] The 148 POLEWARD surface drifters that were
deployed in the Nordic Seas in the period from June 2007
to July 2009 yield 15,200 buoy days. The drifters were
deployed under the Surface Velocity Program (SVP) of
the Global Drifter Program. The historical data is from SVP
drifters in the same region. The combined set comprises
more than 77,000 buoy days of position from 487 drifters,
from June 1991 to December 2009.

[10] The drifter consists of a surface buoy, with a trans-
mitter and a temperature sensor, and a subsurface drogue
centered at 15 m depth. The drifter has a tether strain sensor
to verify the presence of the drogue. Only data from drogued
drifters was used in this study. The drifters follow the near-
surface flow in the mixed layer, including the Ekman drift
[Niiler et al., 1987; Lumpkin et al., 2001]. They are tracked
by the Argos satellite system, yielding positions with 150—
1000 m accuracy, with 16-20 satellite fixes per day. The
AOML’s (Atlantic Oceanographic and Meteorological Labo-
ratory) drifter Data Assembly Center (DAC) assembles the raw
data, applies quality control, and interpolates them to uniform
6 hourly intervals using a kriging technique [Lumpkin and
Pazos, 2006]. This initial processing of the data, including
quality control and interpolation of the positions to 6 h inter-
val, is described in detail by Hansen and Poulain [1996].

[11] The drifters were released at 5 deployment sites along
the path of the NwAC: the Svingy Section, west of Lofoten
Islands, Bjerneya, the Barents Sea opening and in the Lofoten
Basin. They were deployed during the June/July 2007 period,
in October 2007, March 2008, October 2008, and in June/July
2009. The deployment positions, along with the major path-
ways of Atlantic water, are shown in Figure 1.

[12] The area of investigation stretches from 30°W to 30°E
and 60°N to 80°N. It encompasses the Greenland, Lofoten,
and Norwegian basins; the Iceland Plateau; the Barents Sea
opening and the region where the Atlantic water enters the
Nordic Seas. For the subsequent statistics, the area is limited
to 15°W to 19°E and 60°N to 74°N, as this is the region with
the greatest data availability. The different areas and the
drifter trajectories are shown in Figure 2.

[13] Drifter velocities were obtained by differencing their
positions. To remove the high frequency current compo-
nents, especially the tidal and inertial currents, the interpo-
lated positions were low-pass filtered with a Butterworth
filter with a cut-off period of 25 h. Other than this filtering
the data were not averaged in time. Drifters with time gaps
greater than 1 day were treated as separated drifters.

[14] Drifters are not fully Lagrangian, as they only track
horizontal velocities. Nevertheless, they can be used to infer
transport properties of the surface flow [Davis, 1991]. Spe-
cifically, the evolution of a passive tracer can be described by
the mean initial field from the statistics of single particles
[Davis, 1983]. This involves both the mean velocity and the
diffusivity, both of which are assumed to vary in space. The
diffusivity parametrization assumes that the dispersion is
due to small-scale eddies, i.e., that there is a scale separation
between eddies and the mean flow.
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Figure 2. Drogued drifter trajectories from GDP (Global
Drifter Program) database; POLEWARD trajectories in red
and non-POLEWARD data in blue. The five domains where
the Lagrangian statistics have been estimated are shown.
IFF, Iceland-Faroe Front; IP, Iceland Plateau; NB, Norwe-
gian Basin; LB, Lofoten Basin; NwAC, Norwegian Atlantic

Current.

[15] To obtain pseudo-Eulerian averages, we grouped the
drifter velocities into geographical bins and calculated means
and variances [e.g., Poulain and Niiler, 1989; Poulain et al.,
1996; Swenson and Niiler, 1996; Fratantoni, 2001]. The
robustness of such maps is discussed by Lumpkin [2003]. The
internal Rossby radius in the Nordic Seas is ~10 km
[Chelton et al., 1998] and the dominant eddy scale is about
50 km [Poulain et al., 1996]. As such, we grouped the
observations into 2° longitude x 1° latitude bins, or roughly
110 km square, which provides a reasonable depiction of the
major circulation features. To ensure that the bins contain
sufficient data to form statistically reliable values only bins
containing more than 50 observations and from at least 2
different drifters were used [Poulain et al., 1996; Poulain
and Niiler, 1989]. Smaller bins does not provide enough
data in bins to study seasonal and decadal variability.

[16] In each bin, U(x, y) is computed as the ensemble
average of all available velocity measurements u(x, y, f),
where x and y denote the position and ¢ the time. The
residual velocity, u'(x, y, t), is defined as the deviation of
u(x, y, t) from U(x, y). The eddy kinetic energy (EKE) is
12((u”) + (v'*)), where u and v are the zonal and meridional
velocities, respectively, and where the brackets () denote an
average over the particle ensemble. All observations were
accorded equal weight, as described by Davis [1991].

[17] Principal component analysis on the velocity fields
was performed to determine the principal axes of current
velocity variance (kinetic energy) [Emery and Thomson,
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2001]. The trend and mean were removed from the data in
each bin.

[18] In calculating the Lagrangian averages, we assume
the velocity statistics are stationary. The diffusivity is cal-
culated following Taylor [1921], as prescribed by Davis
[1991]

k(t) = % %<X2> = (X(Hu(r)) = /Ot(u(X, Hu(X,7))dr, (1)

where X(7) is the displacement and 7 is the time lag. The
diffusivity thus is the integral of the velocity autocorrelation
and is calculated from the residual velocities. If the flow is
stationary, then

k(1) = u'Z/O R(7)dr, (2)

where % is the velocity variance and R(7) the time-lagged
velocity autocorrelation, [Lumpkin et al., 2001; LaCasce,
2008]. This equation holds in locally homogeneous regions.
The integral of the autocorrelation, normalized by the vari-
ance of the residual velocities, is the Lagrangian time scale.
(For definitions of the Lagrangian time and length scales see
Equations Al and A2 in Appendix A.) Following Taylor
[1921], the diffusivity obtains in the limit # — oo. But as
the record lengths are finite and noise dominates the auto-
correlation function at large lags [Lumpkin et al., 2001], the
integral is necessarily truncated at a finite lag. The most
common approach is to integrate to the first zero crossing of
R [e.g. Freeland et al., 1975; Krauss and Béning, 1987,
Poulain and Niiler, 1989]. Integrating to the first zero crossing
of R corresponds to the first maximum of the integral time
scale and the resulting value is usually an upper bound to the
actual value. However others integrate to a constant, pre-
chosen lag (e.g., 20 days) [Speer et al., 1999]. In this case,
the lag is chosen by visual inspection of the integral curves.

[19] We adopt an approach similar to the latter above.
Specifically, we estimate the diffusivities, and the corre-
sponding time and length scales, by averaging the autocor-
relation integral over the period from 6 to 10 days. In many
cases, the integral levels off after several days, and using
this period provides a reasonable average. Using a shorter
time is problematic as the integral has not yet converged
[e.g., Koszalka and LaCasce, 2010] and longer times are
not desirable as the errors increase as the square root of
time [Davis, 1991]. An example of the mean autocorrela-
tion and its integral, from the Lofoten Basin region, is
shown in Figure 3.

[20] We calculated diffusivities and integral scales in five
geographical domains. These are the Iceland-Faroe Front
(IFF) region, the Iceland Plateau (IP), the Norwegian (NB)
and Lofoten basins (LB), and the NwAC region (Figure 2).
Using larger regions for the diffusivities improves their
convergence, as the diffusivity is a more Lagrangian sta-
tistic, involving averages over particle paths.

[21] Throughout the paper, errors were estimated using
the independent number of observations, n*. The value of
n* was computed as nA#/2T;, where n is the total number
of observations, At is the sampling interval and 7; the
Lagrangian timescale, here assumed to be 1 day.
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Figure 3. Time-lagged (a) velocity variance and (b) diffusivity versus time lag for the Lofoten Basin

domain.

[22] To study how the statistics vary with season, we
require that the observations are available for most of the
year. The distribution of observations by month is close to
uniform, as shown in Figure 4. We divide the data into two
subsets, one representing summer (May to October) and the
other winter (November to April). The data from the sum-
mer season constitutes 53% of the whole set and that from
the winter season the remaining 47%.

[23] There are nevertheless regional variations in the
coverage, as expected due to spatially varying mean currents

DRIFTER DAYS IN THE NORDIC SEAS

and eddy field and intermittent deployments; there are more
observations in some regions in winter than in summer, and
vice versa. To quantify this, we used the method of Lumpkin
[2003], in which each observation is assigned a complex
number, with unit amplitude and a phase determined by year
day. The numbers are then averaged in the 2° x 1° bins. The
results are shown in Figure 5. An amplitude of zero indi-
cates homogeneous sampling through the seasons and an
amplitude of one implies one season is sampled exclusively.
The sampling is reasonably uniform, except in a few loca-
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Figure 4. Number of drifter days (a) per year and (b) per month. POLEWARD observations are marked

in red.
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Figure 5. (a) Amplitude of the seasonal observational bias and (b) the ratio of summer to winter observa-
tions for bins where the amplitude exceeds 0.3. Blue areas show where winter data is over represented and
red areas show where summer data is over represented, the more intense the color the greater the difference.

tions. It is large at the western periphery, where the sam-
pling is sparse. But it is also elevated in some regions in the
east (Figure 5a).

[24] In Figure 5b, the ratio of summer to winter obser-
vations is plotted for regions where the amplitude exceeds
0.3. There are several regions along the Norwegian coast
which have an excess of wintertime observations. Parts of
the western Barents Sea on the other hand and the Lofoten
Basin were sampled more in the summertime, due to sum-
mertime deployments.

[25] As we have data spanning almost 20 years, we can
also examine the change in statistics between the first and
second decades. Specifically we will compare the mean
velocities, the eddy kinetic energies and diffusivities for the
two periods. Defining the first period to be from 1991 to
1998 and the second from 1999 to 2009 resulted in a nearly
even distribution of observations. The first period corre-
sponds to 56% of the whole set and the second the
remaining 44%. Nevertheless, the regional sampling varies
in the two periods, and this will be seen to be important.
To reduce seasonal biasing, only bins with more than 25
observations from summer and 25 observations from winter
were included.

3. Results

3.1. Eulerian Mean Circulation 1991-2009

[26] The mean velocities for the entire sampled period are
shown in Figure 6. Qualitatively the current structure is
consistent with earlier studies: Both the eastern and the
western branch of the NwAC are clearly seen, with strongest
currents just west of the Lofoten and Vesteralen Islands. The
strongest currents exceed 100 cm s ', north of the Lofoten
Basin and near the Lofoten Islands. The eastern branch
follows the Norwegian shelf edge and its continuation
towards the Fram Strait. There is clear exchange between
the eastern branch and the Norwegian Coastal Current
(NwCC), which lies near the coast. There is also a bifur-

cation north of Norway, with part of the flow entering the
Barents Sea. The western branch follows the topographic
slope of the Vering Plateau toward Jan Mayen. Then it turns
northeast, following Mohn’s Ridge. West of Bjerneya,
it turns northward and continues along the Knipovich Ridge
toward the Fram Strait. An anticyclonic recirculation,
though barely resolved, is seen too in the western Lofoten
Basin.

[27] The eddy kinetic energy and principal axes of the
variance are shown in Figures 7 and 8. The largest kinetic
energies occur where the mean currents are strongest. There

MEAN VELOCITY FIELD [cms™]
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Figure 6. Mean velocity vectors computed from drogued
observations in 2° longitude by 1° latitude bins. The results
for bins with less than 50 six hourly observations and from
less than two different drifters are not shown.
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Figure 7. Distribution of the fluctuation or eddy kinetic
energy calculated from drifter data in 2° longitude by
1° latitude bins.

are both energetic regions (near the Iceland Faroe Front, the
NwAC and in the Lofoten Basin) and quiescent regions (the
Iceland Plateau and the Norwegian Basin). The largest eddy
kinetic energies (>530 cm? s °) are found in the Lofoten
Basin, northwest of the Lofoten and Vesteralen Islands. The
minimum energies (<20 cm® s ) occur near the Iceland
plateau. The axes suggest the variability is most anisotropic
where the mean currents are strongest. Here the variability is
also aligned with the topography. Offshore, the variability is
more nearly isotropic. It has been suggested that there are
jet-like structures extending westward from the strong cur-
rents [Poulain et al., 1996; Kohl, 2007; Rossby et al., 2009],
but such structures are not apparent in the variance axes.

[28] Our variance contours are similar to those of Poulain
et al. [1996, Figure 3], except that their values are slightly
greater in the Lofoten region than ours. This may result from
the fact that we only use drogued drifter data while Poulain
et al. [1996] also include wind-corrected data, or simply
that we have more data, with targeted deployments in the
Lofoten Basin.

3.2. Diffusivities 1991-2009

[20] We calculated diffusivities in five larger regions,
denoted the Iceland Faroe front (IFF), the Iceland Plateau
(IP), the Norwegian (NB) and Lofoten (LB) basins, and the
NwAC region (Figure 2). The results are shown in Figure 9.
Figure 9a shows the velocity variances in each of the regions,
and Figure 9b shows the diffusivities, calculated using
Equation 2. The corresponding values obtained by Poulain
et al. [1996] are marked in green. The variances and diffu-
sivities are also listed in Table Al in Appendix A, along with
the corresponding integral time and space scales.

[30] Regarding the variances, we see that the zonal and
meridional estimates are the same within the errors in all
five regions. As could be anticipated from the previous
results, the weakest variability is in the Iceland Plateau
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region (with variances of <40 cm® s %). The variances are
over 6 times greater in the Lofoten Basin (near 260 em?®s72).
The estimates in all five regions are consistent with those
of Poulain et al. [1996].

[31] The diffusivities show similar variations, with the
smallest values in the Iceland Plateau region and the largest
in the Lofoten Basin. The diffusivities are near 1 x 10’ cm?s ™"
in the former and 2.7-3.6 x 10" cm® s ' in the latter. In this
case there are significant differences between our values and
the values obtained by Poulain et al. [1996]. Theirs are
generally larger than ours, particularly in the NwAC region.
The result is in line with Koszalka et al. [2011] who found that
the diffusivities were suppressed at the core of the NwAC,
while they were elevated in the Lofoten Basin.

[32] As discussed in section 2, the diffusivity is propor-
tional to the variance for a stationary flow. As our variances
are comparable to those of Poulain et al. [1996], the dif-
ferences in diffusivity evidently stem from the Lagrangian
time scales. Poulain et al. [1996] used the maximum values
of the diffusivities in the 0-20 day range whereas we used
the mean value between 6 and 10 days. To check this, we
recalculated the diffusivities using data from the same
period (1991-1995) and used the maximum value during the
0-20 day period. This yielded values comparable to those of
Poulain et al. [1996], except in the NwAC region, where
our diffusivities were still somewhat lower. We also calcu-
late the residual velocities in a different manner than
Poulain et al. [1996], but as our variances are comparable,
this evidently does not affect the diffusivities. (We calculate
the means in geographical bins and interpolate them onto
individual trajectories to obtain the residuals. Poulain et al.
[1996] calculated Lagrangian averages along the trajectories
and subtracted those.)
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Figure 8. Principal axes of variance and contours of eddy
kinetic energy computed from drogued observation data in

2° longitude by 1° latitude bins.
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Figure 9. (a) Velocity variance and (b) diffusivity as computed in the five domains in the Nordic Seas.
The open circles and stars denote zonal and meridional directions, respectively. The error bars show the
95% confidence level based on a chi-square probability distribution with n* — 1 degrees of freedom for
the variances and a Student’s 7 distribution for the diffusivities. The green marks are the results from

Poulain et al. [1996].

[33] The Lagrangian integral timescales vary from 1-
1.5 days in most regions. The length scales are mostly
between 10 and 20 km, with the smallest values occurring in
the Iceland Plateau region. All values are listed in Table Al
in Appendix A.

3.3. Seasonal and Decadal Variability

[34] To examine seasonal variations, we divided the data
into two sets, one for summer (May to October) and the
other for winter (November to April). Then we calculated
velocity statistics for each period and compared them. As
noted, each season has approximately the same amount of
data, and the regional coverage is also similar during the two
periods.

[35] The mean circulations for the two seasons are shown
in Figure 10. The overall picture is very similar, indicating
that there are no major changes in the structure of the cur-
rents. Both the eastern and the western branches of the
NwAC are present, as is the NwCC. In the difference between

SUMMER

80°N

75°N

15°W 0°

the means, shown in Figure 11, the gray shaded bins rep-
resent means which differ at the 95% level, as determined
by a vectorial ¢ test [Garraffo et al., 2001]. (Using the ¢ test
assumes the data are normally distributed. We tested this by
calculating the kurtosis of the residual velocities in each bin,
and found that the values were indeed generally near three.
A timescale of 2 days was used to determine the degrees of
freedom in each bin.) While the means are different in a
number of bins, the bins with significant differences are
spread approximately uniformly throughout the domain.
There is nevertheless evidence for winter intensification in
several locations: near the inflow (0° and 63° N), at Svingy,
west of Lofoten Islands and in the continuation towards
Spitsbergen. Furthermore, the anticyclonic recirculation in
the Lofoten Basin is seen in summer but not in winter.

[36] Some of these differences stem from differences in
sampling. Particularly in the Lofoten Basin, where there was
a targeted deployment during a summer cruise in 2009. A
number of these drifters were launched in or near the eddy.

WINTER

30°E

Figure 10. Mean velocity vectors computed from drogued observations in 2° longitude by 1° latitude
bins for (a) summer and (b) winter seasons. Only bins that are present both seasons are shown.
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Figure 11. Seasonal variation of the pseudo-Eulerian near-
surface currents calculated as the difference between winter
and summer. The shading indicates areas where the differ-
ence is statistically significant to the 95% level based on
the vectorial ¢ test described by Garraffo et al. [2001].

In contrast, the winter sampling comes from drifters deployed
outside the basin which subsequently passed through. These
drifters evidently were not entrained by the eddy, but simply
skirted it.

[37] The eddy kinetic energies for the summer and winter
seasons are shown in Figure 12; Figure 13 shows the dif-
ference in EKE between winter and summer in bins where
the variance is statistically different between the seasons at
the 95% level. The results suggest the variability is greater

EKE, SUMMER [cm? 572
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60°N- T | — -400
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Figure 13. Difference in EKE between winter and summer
(winter minus summer), shown in bins where the difference
in variance is statistically significant to the 95% level based
on the F test.

in winter in particular regions, most noticeably in the Lofoten
Basin. The difference moreover appear to be significant in
many bins.

[38] Now consider the changes between the 1990s and the
2000s. The mean circulations for both periods are shown in
Figure 14 and the difference field is shown in Figure 15.
There are regional variations in the fields, but these are
mostly insignificant or related to differences in sampling, for
example west of Spitsbergen. The anticyclonic recirculation
in the Lofoten Basin seen in Figure 6 is apparent during
the 2000s but not the 1990s; however, this also is likely the
result of the targeted deployments in the Lofoten during the
summer of 2009.

EKE, WINTER [em? 579

80°N
600
500
75°N 400
300

0°N
200
65°N { it - 100

60° N -
30°W 15°w 15°E 30°E

Figure 12. Distribution of the fluctuation or eddy kinetic energy calculated from drifter data for
(a) summer and (b) winter seasons in 2° longitude by 1° latitude bins. Only bins that are present both

seasons are shown.
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Figure 14. Mean velocity vectors computed from drogued observations in 2° longitude by 1° latitude
bins for (a) 1991-1998 and (b) 1999-2009. Only bins that are present both decades are shown.

[39] The eddy kinetic energy for the two periods are
shown in Figure 16 and the difference between the decades
is shown in Figure 17, in bins where the differences are
significant. In several regions, there is more variability in the
2000s than in the 1990s; in the Lofoten region and near the
Iceland-Faroe ridge. However, the significance is variable.
We do not see for instance that the changes over the entire
Lofoten region are significant.

[40] Because the data coverage varies between seasons
and decades, it is advantageous to average the data over
larger regions. For this, we use the five regions defined
earlier. We calculate the means and variances for the winter
and summer seasons of each year. This yields a time series
over the entire time period for each region.

[41] The velocities, averaged in this way, are shown in
Figure 18. The number of observations used in each average
is shown in Figure 19. Only seasons with at least 25 obser-
vations are shown.

[42] In the IFF (Iceland-Faroe Front) region, the mean
zonal velocity is generally positive and the mean meridional
velocity negative, indicating a flow to the southeast. There is
an indication of seasonal variability in the zonal velocity in
the early 90s. However, at later times the seasonality is less
apparent and it is not seen in the meridional velocity. In
addition, the means in the 2 decades are not different, within
the errors. The zonal velocity appears to weaken after 2007,
but the error bars are larger; so the changes are not signif-
icant. We conclude that the mean velocities in the IFF
region have little seasonality and have not changed between
the 2 decades.

[43] The situation is much the same in the Iceland Plateau,
Norwegian Basin and Lofoten Basin regions. The season-
ality is weak to nonexistent and the means are essentially
unchanged between the decades. The periods where the
velocities deviate strongly from the means are also periods
where there are few observations, for example during 1996
in the IP region. While the error bars are often small enough
so that the deviations appear significant, this reflects that the
few drifters present had similar velocities. But because there

are so few observations, the region was not well sampled
and the mean thus unreliable.

[44] The region which stands out here is the NwAC. This
also happens to be the best-sampled region, with the number
of observations frequently exceeding 5000 in a season
(Figure 19). The means are positive in both directions, indi-
cating a flow toward the northeast. And while the decadal

DIFFERENCE OF MEAN VELOCITY, INTERANNUAL
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Figure 15. Interannual variation of the pseudo-Eulerian
near-surface currents calculated as the difference between
1999-2009 and 1991-1998. Only bins with at least 25
observations during both seasons are shown. The shading
indicates areas where the difference is statistically signifi-
cant to the 95% level based on the vectorial ¢ test described

by Garraffo et al. [2001].
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Figure 16. Distribution of the fluctuation or eddy kinetic energy calculated from drifter data for the per-
iods (a) 1991-1998 and (b) 1999-2009 in 2° longitude by 1° latitude bins. Only bins that are present both

decades are shown.

means aren’t significantly different, there is a pronounced
sawtooth pattern in both curves, indicating strong season-
ality. The winter means are typically about 20% greater than
the summer means.

[45] Thus Figure 18 suggests that the mean velocities do
not change significantly between the 2 decades, nor do they
vary consistently with season. The exception is the NwAC
region, which shows a consistent intensification in winter.
The NwAC region primarily reflects the eastern branch of
the inflow, so that inflow is stronger in the wintertime. This
is consistent with results by Orvik and Skagseth [2005]
based on current meter data from the Svingy Section.

[46] Now consider the region-averaged variances, shown
in Figure 20. In the IFF region, the variances are fairly
constant during the 1990s, with the error bars in most sea-
sons overlapping the average for the decade. There are
instances both when the winter variance is greater than the
preceding summer and vice versa. Thus the variance don’t
change consistently with season. The season-to-season
variation increases markedly during the 2000s, and the
decadal averages are higher than in the 1990s. Thus at first
glance, the region appears to have undergone a substantial
change during the second decade. However, the observa-
tions during this period also have a seasonal variation, with
fewer observations in summer than winter (Figure 19).
Moreover, the error bars have increased dramatically during
this period, so that many of the seasonal averages are not
different from the decadal average during the 1990s. Thus
while there might be an actual change in the variances in the
2000s, it is just as likely that the data from that decade are
yielding less stable averages than earlier. We conclude that
there is no significant evidence for either seasonality or
decadal changes in the variances here.

[47] Similar comments apply in the other four regions.
The variances are not significantly different between the
decades and the seasonality is weak. Instances with strong
variations can generally be traced to having few observations,
for example the summer 1999 maximum in the Norwegian
Basin or the winter 2005 maximum in the NwAC.

[48] These regional time series shed light on the maps in
Figures 10—-15. The mean velocities in Figure 10 are greater
in winter in the eastern branch of the NwAC, but not signif-
icantly different elsewhere. The mean velocities in Figure 14
on the other hand are not appreciably different. Figures 12
and 16 suggest the variability near the Lofoten Islands is
greater in winter and in the 2000s. But the results of Figure 20
imply these higher values likely stem from several isolated
periods (the winters of 2005 and 2006) when there were few
observations. Thus the differences in both Figures 12 and 16
are probably insignificant.

[cm2 3"2]
3 200

DIFFERENCE IN EKE (2000s — 1990s)

150

100

-100
-150

‘ - -200
20°W  10°W 0° 10°E

N
30°W

Figure 17. Difference in EKE between the 2000s and the
1990s (2000s minus 1990s), shown in bins where the differ-
ence in variance is statistically significant to the 95% level
based on the F test.
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Figure 18. Velocity averaged by year and season for the five domains. The blue curves indicate the
mean zonal velocity and the red indicate the meridional velocity. The means for the 2 decades with errors
are indicated by the horizontal lines, green for zonal and yellow for meridional. The errors show the 95%
confidence level based on a Student’s ¢ distribution with n* — 1 degrees of freedom.

[49] The Lagrangian length and time scales are given in
Tables A2—AS5 in Appendix A. The time scales are remark-
ably consistent and do not vary with season or decade. In most
regions the time scale is between 1 and 1.2 days. Likewise,
the length scales do not vary seasonally, except in the Lofoten
where they are slightly larger in winter. In most cases, the
length scales are between 10 and 20 km.

4. Summary and Discussion

[s0] Satellite-tracked drifters drogued at 15 m depth have
been used to examine the near-surface mean currents and
variability in the eastern Nordic Seas from June 1991 to
December 2009. The data distribution is almost uniform
with respect to season permitting an assessment of seasonal
variability. Furthermore, since the sampling spans a 20 year
period, we were able to make a rough assessment of inter-
decadal changes.

[s1] With all the new data added, the general structure of
the mean field remains the same: The mean flow is domi-
nated by the NwAC, which has two branches. Both are
strongly steered by topography. The NwCC is also resolved,
near the Norwegian coast, and this merges with the inner
branch of the NwAC in several locations. The strongest
measured currents were approximately 100 cm s, in the
vicinity of the Lofoten Basin and Islands. The latter is a
region with steep topography, and the current accelerates
where the isobaths constrict. There is an anticyclonic
standing eddy in the Lofoten Basin, as noted previously
[fvanov and Korablev, 1995; Kohl, 2007]. This was par-
ticularly apparent during the POLEWARD period, in the
summer, when there was a targeted deployment in the
Lofoten Basin in 2009.

[52] The eddy field is thoroughly inhomogeneous. The
variability is greatest near the main branches of the NwAC,
suggesting there are continually spawning eddies through
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Figure 19. Number of observations by year and season for the five domains. Note the different scaling

on the y axis.

instability. The variability is greatest of all in the Lofoten
Basin, where the variances exceed 600 c¢cm® s 2. The
Lagrangian time scales are remarkably consistent over the
whole region, having values typically from 1 to 1.5 days.
Thus the diffusivities resemble the variances, with the largest
values occurring in the Lofoten Basin. Averaged over the
Basin, the diffusivities are on the order of 3 x 107 cm? s .

[53] The elevated variability in the Lofoten area appears to
stem from eddies propagating into the basin from the slope
region, where they are generated. Such an effect was sug-
gested by Poulain et al. [1996]. It has also been inferred in
modeling studies [Spall, 2004; Kohl, 2007] and from sub-
surface float data [Rossby et al., 2009].

[54] Our length scales of 10-20 km are consistent with but
on the low end of the range (10—40 km) inferred by Poulain
et al. [1996]. The length scales nevertheless are like those
inferred by LaCasce [2005] (10-20 km) using current meters
over the western Norwegian shelf and slope. The deformation

radius here is on the order of 10 km, so deformation scale
eddies are a natural candidate to explain the variability.
Krauss et al. [1990] and Stammer [1997] maintain that eddy
scales in the North Atlantic scale with the deformation
radius, and the present result is consistent.

[55] The means and variances exhibit some season to
season variations throughout the region. However the only
mean field which shows consistent seasonality is the NwAC
itself; this strengthens by about 20% in winter. The results
are thus consistent with previous results by Orvik and
Skagseth [2005] and Jakobsen et al. [2003], who found
that the main currents strengthened by about 5 cm s ' in
winter (corresponding to about 20% of the mean). There is
no evidence that the fluctuating field does change consis-
tently between seasons.

[s6] While there are instances of the EKE in a given
region increasing dramatically during a given season or year
(see for instance the NwAC region 2005 in Figure 20), the
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Figure 20. Velocity variance averaged by year and season for the five domains. The blue curves indicate
the mean zonal velocity variance and the red the indicate the meridional velocity variance. The means for the
2 decades with errors are indicated by the horizontal lines, green for zonal and yellow for meridional. The
errors show the 95% confidence level based on a chi-square probability distribution with n* — 1 degrees

of freedom.

errors are also proportionally larger. So we cannot reject the
possibility that the fluctuations during such periods is in fact
the same on average as during the more quiescent periods.

[57] Previously, Isachsen et al. [2003] found that the
circulation in the Nordic Seas gyres (the Lofoten, Norwe-
gian and Greenland gyres) intensifies in winter. This occurs
as the wind forcing is greater in winter, driving a stronger
along-isobath flow in regions of closed topographic con-
tours. The only basin that is sampled well enough by the
drifters to possibly detect this is the Lofoten Basin. In that
basin we do indeed find evidence of increased EKE in the
winter (Figure 12), but not of the mean flow. On the other
hand, the variances averaged by year and season (Figure 20)
shows weak seasonality. Where the variance is greater in the
Lofoten in winter, the errors are also greater. Thus we
cannot resolve a significant difference with confidence.

[s8] Recently Hakkinen and Rhines [2009] suggested that
the variability along the path of the NwAC has increased in

the last decade, as compared to the 1990s, based on altimeter
data. There is no evidence in the drifter data set of such a
strengthening of the NwAC. The averages of the drifter-
derived statistics are remarkably similar in the two sampled
decades. In regions where there appears to be greater vari-
ability in one of the decades, the errors are proportionally
larger. We consider it likely that those differences are due to
variations in the drifter coverage rather than an actual
change in the currents.

Appendix A: Lagrangian Statistics

[59] The characteristic timescale of dispersion is the
Lagrangian eddy timescale 7,

TL:/ dTR.
0

(A1)
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Table Al. Lagrangian Statistics Estimated as a Mean Over 6-10 Days for the Period 1991-2009*

Region Number of Observations (u'2) (u2) (Fuw) (Ko L, (km) L,, (km) T, (days) T,, (days)

IFF 19,366 183.1 179.8 2.25 1.64 16 12 1.2 0.9

P 17,686 359 37.7 0.68 0.66 9 9 1.5 1.3

NB 22,718 113.7 1234 1.45 2.38 12 18 1.2 1.5

LB 25,433 257.0 264.5 3.64 2.65 20 15 1.3 1.0

NwAC 73,035 198.7 207.5 2.38 2.63 16 18 1.2 1.3
*The velocity variances (') and diffusivities (k) are given in cm® s and 107 cm® s~', respectively.

Table A2. Lagrangian Statistics Estimated as a Mean Over 6-10 Days for Summer Season®

Region Number of Observations (u’uz,,) <u’v2v) () (K Ly, (km) L,, (km) T, (days) T,, (days)

IFF 10,158 173.6 160.6 1.86 2.05 13 16 1.1 1.4

1P 8605 32.0 35.8 0.81 0.54 10 7 1.5 1.0

NB 12,424 111.0 115.7 1.17 1.62 11 13 1.1 1.2

LB 13,951 192.9 2143 2.31 2.69 15 17 1.2 1.2

NwAC 28,979 186.6 183.0 2.18 1.90 15 13 1.2 1.0
*The velocity variances (') and diffusivities (k) are given in cm® s and 107 cm® ™', respectively.

Table A3. Lagrangian Statistics Estimated as a Mean Over 6-10 Days for Winter Season®

Region Number of Observations (u'2) (u'2) (Fuu) (Ko L,,, (km) L,, (km) T, (days) T,, (days)

IFF 9208 193.6 201.1 242 2.24 16 15 1.2 1.1

1P 9081 39.6 39.5 0.59 0.61 8 8 1.2 1.2

NB 10,294 117.0 132.7 1.25 1.58 11 12 1.0 1.0

LB 11,482 334.9 325.4 4.27 3.64 21 19 1.2 1.2

NwAC 44,056 206.7 223.5 2.31 2.39 16 16 1.2 1.2
The velocity variances (1'%) and diffusivities () are given in cm® s 2 and 107 em?® ™', respectively.

Table A4. Lagrangian Statistics Estimated as a Mean Over 6-10 Days for the Period 1991-1998*

Region Number of Observations (u'2) (u'2) () (Ko L,, (km) L,, (km) T,. (days) T,, (days)

IFF 15,159 161.9 155.7 1.89 1.68 15 13 1.3 1.2

IP 16,342 343 35.7 0.46 0.58 7 8 1.0 1.2

NB 11,642 107.4 108.5 1.26 1.60 11 12 1.1 1.1

LB 12,257 224.5 217.7 2.73 2.27 16 15 1.1 1.1

NwAC 32,315 181.9 175.1 2.28 2.04 16 15 1.2 1.3
The velocity variances (1) and diffusivities () are given in cm® s 2 and 107 cm® s~', respectively.

Table AS. Lagrangian Statistics Estimated as a Mean Over 6-10 Days for the Period 1999-2009*

Region Number of Observations (u'2) (u2) () (Ko L, (km) L,, (km) T, (days) T,, (days)

IFF 4207 284.4 302.6 4.32 2.79 23 15 1.4 0.9

1P 1344 56.0 61.8 0.54 1.26 8 14 1.2 1.9

NB 11,076 120.0 139.1 1.58 2.44 13 18 1.2 1.5

LB 13,176 287.3 308.5 3.76 2.92 20 16 1.2 1.0

NwAC 40,720 212.0 233.1 242 2.99 16 19 1.2 1.4

The velocity variances (') and diffusivities (k) are given in cm? s 2 and 107 cm?® s~
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Table A6. Trajectory Segments Used for Estimating the Lagrangian
Statistics for 1991-2009

Length (days)

Number
Region  of Segments  Minimum  Maximum  Median = Mean
IFF 125 4 133 32 38
P 46 5 324 59 96
NB 142 4 259 18 39
LB 182 4 334 18 34
NwAC 373 4 303 32 48

[60] This is the lag over which a particle’s speed stays
strongly correlated with itself. Because the particle moves at
a characteristic eddy speed u’ given by the standard devia-
tion of u, this timescale corresponds to a distance

LL = M'TL7 (AZ)

called the Lagrangian eddy length scale [Lumpkin et al.,
2001].

[61] The results of the Lagrangian statistics for 1991—
2009, summer and winter seasons, and for 1991-1998 and
1999-2009 are shown in Tables A1-AS5. The diffusivities
and the time and length scales are found in the last columns.

[62] The number of trajectory segments along with mini-
mum, maximum, median and mean segment length for each
of the five regions are listed in Table A6. The segments
were used for estimating the Lagrangian statistics for the
period 1991-2009.
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