182 research outputs found
A rapid microwave-assisted procedure for easy access to Nx polydentate ligands for potential application in α-RIT
International audienceHeterocycles bearing a hydrazine moiety react with bisaldehydes or bisketones to afford new Nx polydentate ligands suitable for α-radioimmunotherapy. We developed a fast and efficient method using microwave-assisted technology to obtain chelators with variable size and number of coordination centres which were fully characterized. The complexation efficiency with astatine will be assessed
Role of environmental factors for the vertical distribution (0–1000 m) of marine bacterial communities in the NW Mediterranean Sea
Bacterioplankton plays a central role in energy and matter fluxes in the sea, yet the factors that constrain its variation in marine systems are still poorly understood. Here we use the explanatory power of direct multivariate gradient analysis to evaluate the driving forces exerted by environmental parameters on bacterial community distribution in the water column. We gathered and analysed data from a one month sampling period from the surface to 1000 m depth at the JGOFS-DYFAMED station (NW Mediterranean Sea). This station is characterized by very poor horizontal advection currents which makes it an ideal model to test hypotheses on the causes of vertical stratification of bacterial communities. Capillary electrophoresis single strand conformation polymorphism (CE-SSCP) fingerprinting profiles analyzed using multivariate statistical methods demonstrated a vertical zonation of bacterial assemblages in three layers, above, in or just below the chlorophyll maximum and deeper, that remained stable during the entire sampling period. Through the use of direct gradient multivariate ordination analyses we demonstrate that a complex array of biogeochemical parameters is the driving force behind bacterial community structure shifts in the water column. Physico-chemical parameters such as phosphate, nitrate, salinity and to a lesser extent temperature, oxygen, dissolved organic carbon and photosynthetically active radiation acted in synergy to explain bacterial assemblages changes with depth. Analysis of lipid biomarkers of organic matter sources and fates suggested that bacterial community structure in the surface layers was in part explained by lipids of chloroplast origin. Further detailed analysis of pigment-based phytoplankton diversity gave evidence of a compartmentalized influence of several phytoplankton groups on bacterial community structure in the first 150 m depth
In situ geological and geochemical study of an active hydrothermal site on the North Fiji basin ridge
International audienc
Le cadre géologique d'un site hydrothermal actif : la campagne STARMER 1 du submersible Nautile dans le Bassin Nord-Fidjien
International audienc
RÉSISTANCE DE CERTAINS GÉNOTYPES A LA MALADIE DE MAREK CHEZ LA POULE I. - COMPARAISON DE QUELQUES LIGNÉES PARENTALES DE TYPE CHAIR
Résistance de certains génotypes a la maladie de marek chez la poule I. - Comparaison de quelques lignées parentales de type chair
International audienc
Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge)
Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic
core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic
extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial
stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their
slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex
chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault
plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous
moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges
overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension
direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry
and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover
is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite
at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of
lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread
present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the
138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous
relationship between hydrothermal activity and oceanic detachment formation and evolution
- …
