135 research outputs found

    Addition of Rituximab in Reduced Intensity Conditioning Regimens for B-Cell Malignancies Does Not Influence Transplant Outcomes: EBMT Registry Analyses Following Allogeneic Stem Cell Transplantation for B-Cell Malignancies

    Get PDF
    Rituximab (R) is increasingly incorporated in reduced intensity conditioning (RIC) regimens for allogeneic hematopoietic cell transplantation (alloHCT) in patients with B-cell malignancies, not only to improve disease control, but also to prevent graft-versus-host disease (GVHD). There are no randomized prospective data to validate this practice, although single center data and the CIBMTR analysis have shown promising results. We aimed at validation of these findings in a large registry study. We conducted a retrospective analysis using the EBMT registry of 3,803 adult patients with B-cell malignancies undergoing alloHCT (2001–2013) with either rituximab (R-RIC-9%) or nonrituximab (RIC-91%) reduced intensity regimens respectively. Median age and median follow up were 55 years (range 19.1–77.3) and 43.2 months (range 0.3–179.8), respectively. There was no difference in transplant outcomes (R-RIC vs RIC), including 1-year overall survival (69.9% vs 70.7%), 1-year disease-free survival (64.4% vs 62.2%), 1-year non-relapse mortality (21% vs 22%), and day-100 incidence of acute GVHD 2-4° (12% vs 12%). In summary, we found that addition of rituximab in RIC regimens for B-cell malignancies had no significant impact on major transplant outcome variables. Of note, data on chronic GVHD was not available, limiting the conclusions that can be drawn from the present study

    CD4CD8αα Lymphocytes, A Novel Human Regulatory T Cell Subset Induced by Colonic Bacteria and Deficient in Patients with Inflammatory Bowel Disease

    Get PDF
    It has become evident that bacteria in our gut affect health and disease, but less is known about how they do this. Recent studies in mice showed that gut Clostridium bacteria and their metabolites can activate regulatory T cells (Treg) that in turn mediate tolerance to signals that would ordinarily cause inflammation. In this study we identify a subset of human T lymphocytes, designated CD4CD8αα T cells that are present in the surface lining of the colon and in the blood. We demonstrate Treg activity and show these cells to be activated by microbiota; we identify F. prausnitzii, a core Clostridium strain of the human gut microbiota, as a major inducer of these Treg cells. Interestingly, there are fewer F. prausnitzii in individuals suffering from inflammatory bowel disease (IBD), and accordingly the CD4CD8αα T cells are decreased in the blood and gut of patients with IBD. We argue that CD4CD8αα colonic Treg probably help control or prevent IBD. These data open the road to new diagnostic and therapeutic strategies for the management of IBD and provide new tools to address the impact of the intestinal microbiota on the human immune system

    Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults; a review of the literature and a survey of practice within EBMT centres on behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP)

    Get PDF
    Introduction: Secondary haemophagocytic lymphohistiocytosis (sHLH) or Macrophage Activation Syndrome (MAS) is a life-threatening hyperinflammatory syndrome that can occur in patients with severe infections, malignancy or autoimmune diseases. It is also a rare complication of haematopoetic stem cell transplantation (HSCT), with a high mortality. It may be associated with graft vs. host disease in the allogeneic HSCT setting. It is also reported following CAR-T cell therapy, but differentiation from cytokine release syndrome (CRS) is challenging. Here, we summarise the literature and present results of a survey of current awareness and practice in EBMT-affiliated centres of sHLH/MAS following HSCT and CAR-T cell therapy. Methods: An online questionnaire was sent to the principal investigators of all EBMT member transplant centres treating adult patients (18 years and over) inviting them to provide information regarding: number of cases of sHLH/MAS seen in their centre over 3 years (2016–2018 inclusive); screening strategies and use of existing diagnostic/classification criteria and treatment protocols. Results: 114/472 centres from 24 different countries responded (24%). We report estimated rates of sHLH/MAS of 1.09% (95% CI = 0.89–1.30) following allogeneic HSCT, 0.15% (95% CI = 0.09–5.89) following autologous HSCT and 3.48% (95% CI = 0.95–6.01) following CAR-T cell therapy. A majority of centres (70%) did not use a standard screening protocol. Serum ferritin was the most commonly used screening marker at 78% of centres, followed by soluble IL-2 receptor (24%), triglycerides (15%), and fibrinogen (11%). There was significant variation in definition of “clinically significant” serum ferritin levels ranging from 500 to 10,000 μg/mL. The most commonly used criteria to support diagnosis were HLH-2004 (43%) and the H score (15%). Eighty percent of responders reported using no standard management protocol, but reported using combinations of corticosteroids, chemotherapeutic agents, cytokine blockade, and monoclonal antibodies. Conclusions: There is a remarkable lack of consistency between EBMT centres in the approach to screening, diagnosis and management. Further research in this field is needed to raise awareness of and inform harmonised, evidence-based approaches to the recognition and treatment of sHLH/MAS following HSCT/CAR-T cell therapy

    CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian carcinoma (OvCa) is the most lethal gynecological malignancy among women and its poor prognosis is mainly due to metastasis. Chemokine receptor CCR9 is primarily expressed by a small subset of immune cells and its only natural ligand, CCL25, is largely expressed in the thymus, which involutes with age. Other than the thymus, CCL25 is expressed by the small bowel. Interactions between CCL25 and CCR9 have been implicated in leukocyte trafficking to the small bowel, a frequent metastatic site for OvCa cells. The current study shows OvCa tissue and cells significantly express CCR9, which interacts with CCL25 to support carcinoma cell migration and invasion.</p> <p>Methods</p> <p>RT-PCR and flow cytometry techniques were used to quantify the expression CCR9 by OvCa cells. OvCa tissue microarrays (TMA) was used to confirm CCR9 expression in clinical samples. The Aperio ScanScope scanning system was used to quantify immunohistochemical staining. Cell invasion and migration assays were performed using cell migration and matrigel invasion chambers. Matrix metalloproteinase (MMP) mRNAs were quantified by RT-PCR and active MMPs were quantified by ELISA.</p> <p>Results</p> <p>Our results show significantly (<it>p </it>< 0.001) higher expression of CCR9 by mucinous adenocarcinoma, papillary serous carcinoma, and endometriod ovarian carcinoma cases, than compared to non-neoplastic ovarian tissue. Furthermore, CCR9 expression was significantly elevated in OvCa cell lines (OVCAR-3 and CAOV-3) in comparison to normal adult ovarian epithelial cell mRNA. OvCa cells showed higher migratory and invasive potential towards chemotactic gradients of CCL25, which was inhibited by anti-CCR9 antibodies. Expression of collagenases (MMP-1, -8, and -13), gelatinases (MMP-2 and -9), and stromelysins (MMP-3, -10, and -11) by OvCa cells were modulated by CCL25 in a CCR9-dependent fashion.</p> <p>Conclusions</p> <p>These results demonstrate both biological significance and clinical relevance of CCL25 and CCR9 interactions in OvCa cell metastasis.</p

    Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-β and Retinoic Acid

    Get PDF
    BACKGROUND: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naïve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naïve CD4+ cells suboptimally activated with IL-2 and TGF-β enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naïve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-β enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-β-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1β and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. CONCLUSIONS/SIGNIFICANCE: We have developed a methodology that induces human CD4(+) cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways

    Retinoic Acid and Rapamycin Differentially Affect and Synergistically Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells

    Get PDF
    Natural T regulatory cells (Tregs) are challenging to expand ex vivo, and this has severely hindered in vivo evaluation of their therapeutic potential. All trans retinoic acid (ATRA) plays an important role in mediating immune homeostasis in vivo, and we investigated whether ATRA could be used to promote the ex vivo expansion of Tregs purified from adult human peripheral blood. We found that ATRA helped maintain FOXP3 expression during the expansion process, but this effect was transient and serum-dependent. Furthermore, natural Tregs treated with rapamycin, but not with ATRA, suppressed cytokine production in co-cultured effector T cells. This suppressive activity correlated with the ability of expanded Tregs to induce FOXP3 expression in non-Treg cell populations. Examination of CD45RA+ and CD45RA− Treg subsets revealed that ATRA failed to maintain suppressive activity in either population, but interestingly, Tregs expanded in the presence of both rapamycin and ATRA displayed more suppressive activity and had a more favorable epigenetic status of the FOXP3 gene than Tregs expanded in the presence of rapamycin only. We conclude that while the use of ATRA as a single agent to expand Tregs for human therapy is not warranted, its use in combination with rapamycin may have benefit

    Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes : a retrospective multicenter study of the European Society of Blood and Marrow Transplantation

    Get PDF
    The aim of this study was to determine the impact of the revised 5-group International Prognostic Scoring System cytogenetic classification on outcome after allogeneic stem cell transplantation in patients with myelodysplastic syndromes or secondary acute myeloid leukemia who were reported to the European Society for Blood and Marrow Transplantation database. A total of 903 patients had sufficient cytogenetic information available at stem cell transplantation to be classified according to the 5-group classification. Poor and very poor risk according to this classification was an independent predictor of shorter relapse-free survival (hazard ratio 1.40 and 2.14), overall survival (hazard ratio 1.38 and 2.14), and significantly higher cumulative incidence of relapse (hazard ratio 1.64 and 2.76), compared to patients with very good, good or intermediate risk. When comparing the predictive performance of a series of Cox models both for relapse-free survival and for overall survival, a model with simplified 5-group cytogenetics (merging very good, good and intermediate cytogenetics) performed best. Furthermore, monosomal karyotype is an additional negative predictor for outcome within patients of the poor, but not the very poor risk group of the 5-group classification. The revised International Prognostic Scoring System cytogenetic classification allows patients with myelodysplastic syndromes to be separated into three groups with clearly different outcomes after stem cell transplantation. Poor and very poor risk cytogenetics were strong predictors of poor patient outcome. The new cytogenetic classification added value to prediction of patient outcome compared to prediction models using only traditional risk factors or the 3-group International Prognostic Scoring System cytogenetic classification.Peer reviewe
    corecore