485 research outputs found

    Impact of Food Safety and Standards Regulation on Food Business Operators

    Get PDF
    The main aim of the study is to understand food regulation and food safety in India context and global aspects. It also explains the major health problem and recent past reports of FSSAI. The primary data were collected from food business operators (mobile food vendors, many small scale hotels, and local restaurants). It also helps to ensure the knowledge and awareness level of the food business operators. This study is to understand the view of food-business operators in a B-grade city of India “Salem” in Tamil Nadu about the FSSAI regulations and the status of performance of the food safety department in maintaining safety and quality of food and also to know about the level of awareness among the usage of fortified foods among food-businesses. The Study concludes that the Food and Safety Officers should regularly visit for inspection and monitor the food business operators for the betterment of public health. There should be proper awareness about the ingredients are used in fortified food among food-businesses to eliminate malnutrition and avoid food adulteration. The future rules and regulations of FSSAI should be strictly implementing all over India and properly monitor their activities of food business operators to fulfil the FSSAI standards

    A MARKOVIAN TWO COMMODITY QUEUEING–INVENTORY SYSTEM WITH COMPLIMENT ITEM AND CLASSICAL RETRIAL FACILITY

    Get PDF
    This paper explores the two-commodity (TC) inventory system in which commodities are classified as major and complementary items. The system allows a customer who has purchased a free product to conduct Bernoulli trials at will. Under the Bernoulli schedule, any entering customer will quickly enter an orbit of infinite capability during the stock-out time of the major item. The arrival of a retrial customer in the system follows a classical retrial policy. These two products' re-ordering process occurs under the (s,Q)(s, Q) and instantaneous ordering policies for the major and complimentary items, respectively. A comprehensive analysis of the retrial queue, including the system's stability and the steady-state distribution of the retrial queue with the stock levels of two commodities, is carried out. The various system operations are measured under the stability condition. Finally, numerical evidence has shown the benefits of the proposed model under different random situations

    Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis

    Get PDF
    The physiological role of the mitotic checkpoint protein Bub1 is unknown. To study this role, we generated a series of mutant mice with a gradient of reduced Bub1 expression using wild-type, hypomorphic, and knockout alleles. Bub1 hypomorphic mice are viable, fertile, and overtly normal despite weakened mitotic checkpoint activity and high percentages of aneuploid cells. Bub1 haploinsufficient mice, which have a milder reduction in Bub1 protein than Bub1 hypomorphic mice, also exhibit reduced checkpoint activity and increased aneuploidy, but to a lesser extent. Although cells from Bub1 hypomorphic and haploinsufficient mice have similar rates of chromosome missegregation, cell death after an aberrant separation decreases dramatically with declining Bub1 levels. Importantly, Bub1 hypomorphic mice are highly susceptible to spontaneous tumors, whereas Bub1 haploinsufficient mice are not. These findings demonstrate that loss of Bub1 below a critical threshold drives spontaneous tumorigenesis and suggest that in addition to ensuring proper chromosome segregation, Bub1 is important for mediating cell death when chromosomes missegregate

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations

    Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data

    Get PDF
    Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online. © 2018, International Biometric Society

    The unstable coastline: navigating dispossession and belonging in Colombo

    Get PDF
    This article explores how residents of a small coastal fishing enclave in Colombo live with cumulative waves of dispossession brought on by exclusionary projects of urban development. Drawing on ethnographic fieldwork, I introduce the analytic of navigation to describe how people move, plan and live with both present and future threats of dispossession. Navigation offers a unique perspective on questions of agency and resistance in oppressive conditions. Rather than framing subjects as “resisting” projects of world-class city-making, this analysis shows that urban residents instead engage in complex and occasionally contradictory modes of living with uncertainty. I complicate existing understandings of the term “navigation” by describing how questions of nation and belonging are crucial to comprehending how people navigate. Ultimately, I suggest that expressions of belonging and obligation to an imagined community might not only be strategic, but instead reflect some of the broader social forces which structure possibilities for action

    Senescent cells limit p53 activity via multiple mechanisms to remain viable

    Get PDF
    Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.</p

    Senescent cells limit p53 activity via multiple mechanisms to remain viable

    Get PDF
    Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology

    The Exomars Climate Sounder (EMCS) Investigation

    Get PDF
    The ExoMars Climate Sounder (EMCS) investigation is developed at the Jet Propulsion Laboratory (Principal Investigator J. T. Schofield) in collaboration with an international scientific team from France, the United Kingdom and the USA. EMCS plans to map daily, global, pole-to-pole profiles of temperature, dust, water and CO2 ices, and water vapor from the proposed 2016 ExoMars Trace Gas Orbiter (EMTGO). These profiles are to be assimilated into Mars General Circulation Models (MGCMs) to generate global, interpolated fields of measured and derived parameters such as wind
    corecore