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Maximum likelihood drift estimation for a threshold diffusion
Antoine Lejay , Paolo Pigato

Abstract

We study the maximum likelihood estimator of the drift parameters of a stochastic differential
equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet
discontinuous at zero. This threshold diffusion is called the drifted Oscillating Brownian motion.
The asymptotic behaviors of the positive and negative occupation times rule the ones of the es-
timators. Differently from most known results in the literature, we do not restrict ourselves to the
ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, tran-
sient or null recurrent. For each regime, we establish whether or not the estimators are consistent;
if they are, we prove the convergence in long time of the properly rescaled difference of the es-
timators towards a normal or mixed normal distribution. These theoretical results are backed by
numerical simulations.

1 Introduction

We consider the process, called a drifted Oscillating Brownian motion (DOBM), which is the solution
to the Stochastic Differential equation (SDE)

ξt = ξ0 +

∫ t

0

σ(ξs) dWs +

∫ t

0

b(ξs) ds, (1)

with

σ(x) =

{
σ+ > 0 if x ≥ 0,

σ− > 0 if x < 0
and b(x) =

{
b+ ∈ R if x ≥ 0,

b− ∈ R if x < 0.
(2)

The strong existence to (1) follows for example from the results of [28]. Separately on R+ and R−, the
dynamics of such process is the one of a Brownian motion with drift, with threshold and regime-switch
at 0, consequence of the discontinuity of the coefficients.

This model can be seen as an alternative to the model studied in [36], which is a continuous time
version of the Self-Exciting Threshold Autoregressive models (SETAR), a subclass of the TAR models
[45,46].

The practical interest of such processes are numerous. In finance, we show in [31] that an exponen-
tial form of this process generalizes the Black & Scholes model in a way to model leverage effects.
Moreover, the introduction of a piecewise constant drift such as the one in (2) is a straightforward
way to produce a mean-reverting process, if b+ < 0 and b− > 0. In [31], we find some evidence
on empirical financial data that this may be the case. This corroborates other studies with different
models [35,38,44].

Still in finance, the solution to (1) models other quantities than stocks. In [13], Eq. (1) with constant
volatility serves as a model for the surplus of a company after the payment of dividends, which are
payed only if the profits of the company are higher than a certain threshold. Similar threshold dividend
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A. Lejay, P. Pigato 2

pay-out strategies are considered in [3]. In these works, the behavior of the process at the discontinuity
is referred to as “refraction”. SETAR models have also applications to deal with transaction costs or
regulator interventions [49], to interest and exchange rates [6,9], ...

More general discontinuous drifts and volatilities arise in presence of Atlas models and other ranks
based models [17]. SDE with discontinuous coefficients have also numerous applications in physics
[39,42], meteorology [15] and many other domains.

In [43, 44], F. Su and K.-S. Chan study the asymptotic behavior of the quasi-likelihood estimator of a
diffusion with piecewise regular diffusivity and piecewise affine drift with an unknown threshold. The
quasi-likelihood they use is based on the Girsanov density where the diffusivity is replaced by 1. In
particular, they construct some hypothesis test to decide whether or not the drift is affine or piecewise
affine in the ergodic situation.

In [26], Y. Kutoyants consider the estimation of a threshold r of a diffusion with a known or unknown
drift switching at r. His results are then specialized to Ornstein-Uhlenbeck type processes. Also this
framework assumes that the diffusion is ergodic.

In the present paper, we derive some maximum likelihood estimators for the drift parameters b− and
b+ from continuous observations. We study their asymptotic behavior as the time tends to infinity
in order to derive some confidence intervals when available. This article completes [30], where we
estimate (σ−, σ+) for high-frequency data. We use our estimators on financial historical data in [31].

Our estimators of b±T are

β±T = ±(±ξT ) ∨ 0− (±ξ0) ∨ 0− LT (ξ)/2

Q±T
,

where Q+
T (resp. Q−T ) is the occupation time of the positive (resp. negative) side of the real axis, and

LT (ξ) is the symmetric local time of ξ at 0. Estimators for Q± and LT (ξ) are quite straightforward
to implement from discrete observations of a trajectory of ξ, and so are estimators for b±. As for the
estimators of (σ−, σ+) in [30], the local time and the occupation times play a central role in the study
of the estimators of (b−, b+).

The long time asymptotic regime of the process depends on the respective signs of the coefficients
(b−, b+). Using symmetries, this leads 5 different cases in which the process may be ergodic, null
recurrent or transient and the estimators have different asymptotic behaviors. In some situations, the
estimators are not convergent. In others, we establish consistency as well as Central Limit Theorems,
with speed T 1/2 or T 1/4, depending again on the signs of b±. We summarize in Table 1 the vari-
ous asymptotic behaviors. We are in a situation close to the one encountered by M. Ben Alaya and
A. Kebaier in [1] for estimating square-root diffusions, where several situations shall be treated. The
work [26, 43, 44] mentioned above only consider ergodic situations. Non-parametric estimation of the
drift in the recurrent case is considered in [4].

Finally, we develop in Section 7.1 a hypothesis test for the value of the drift which is based on the
Wilk’s theorem, which relates asymptotically the log-likelihood to a χ2 distribution with 2 degrees of
freedom. Besides, we show in Section 7.2 the Local Asymptotic Normality (LAN [27, 29]) and the
Local Asymptotic Mixed Normality (LAMN [22]) in the ergodic case and the null recurrent case with
non vanishing drift. These LAN/LAMN properties are related to the efficiency of the operators. The
Wilk’s as well as the LAN/LAMN properties are proved by combining the quadratic nature of the log-
likelihood with our martingale central limit theorems.

Outline. In Section 2, we present the maximum likelihood estimator, which is based on the Girsanov
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Maximum likelihood drift estimation for a threshold diffusion 3

β+
T − b+ β−T − b−

(E) b+ < 0, b− > 0 ergodic ≈ 1√
T

√
1− b+

b−
σ+N ≈ 1√

T

√
1− b−

b+
σ−N

(N0) b+ = 0, b− = 0 null recurrent 1√
T
β+

1
1√
T
β−1

(N1) b+ = 0, b− > 0 null recurrent ≈ 1√
T
σ+N+ ≈ 1

T 1/4σ−

√
b−

√
σ+

N−√
|N |

(T0) b+ > 0, b− ≥ 0 transient ≈ 1√
T
σ+N RT0 as T →∞

(T1) b+ > 0, b− < 0 transient ≈ 1√
T
σ+N R+

T1 as T →∞

Table 1: Asymptotic behavior of estimators, where N , N+ and N− are independent, unit Gaussian
variables. The law of (β−1 , β

+
1 ) in case (N0) is given in (25). The r.v.sRT0 andR+

T1 follow the law in
(22). Results of both sides in (T1) are wrt to P+ (cf. Proposition 6), which intuitively can be thought as
conditioning to the process diverging towards postive infinity.

transform. In Section 3, we characterize the different regimes of the process accordingly to the signs
of the drifts. Our main results are presented in Section 4. The limit theorems that we use are presented
in Section 5. The proofs for each cases are detailed in Section 6. We present the Wilk theorem and
the LAN/LAMN property in Section 7. Finally, in Section 8, we conclude this article with numerical
experiments.

2 The maximum likelihood estimator

In this section, we propose and discuss an estimator for the parameters (b−, b+) of the drift coefficient
of ξ from continuous time observations

Data 1. We observe of a path (ξt)t∈[0,T ] on the time interval [0, T ] of the solution to (1), together with
its negative and positive occupation times

Q−T =

∫ T

0

1ξs<0 ds and Q+
T =

∫ T

0

1ξs>0 ds,

as well as its symmetric local time

LT (ξ) = lim
ε→0

1

2ε

∫ T

0

1−ε≤ξs≤ε ds.

The coefficients (σ−, σ+) are known.

Remark 1. Approximations of (Q−T , Q
+
T , LT (ξ)) are easy to construct from (ξt)t∈[0,T ] so that observ-

ing (ξt)t∈[0,T ] is sufficient to build approximations of our estimator. This is detailed in Section 8.1.

The Girsanov weight of the distribution of (1), with respect to the one of the solution to dξt =
σ(ξt) dW̃ , for a Brownian motion W̃ , is

G(b−, b+) = exp

(∫ T

0

b(ξs)

σ(ξs)
dW̃s −

1

2

∫ T

0

b2(ξs)

σ2(ξs)
ds

)
. (3)

A reasonable way to set up an estimator of (b−, b+) is to consider G(b−, b+) as a likelihood and to
optimize this quantity. This is how estimators for the drift are classically constructed [25,33].
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Notation 1. To avoid confusion with the + and − used as indices, we write LxM+ := max{x, 0} for
the positive part of x and LxM− := max{−x, 0} ≥ 0 for the negative part.

Proposition 1. The likelihood G(b−, b+) is maximal at (β−T , β
+
T ) given by

β±T = ±LξT M± − Lξ0M
± − LT (ξ)/2

Q±T
. (4)

Proof. Let us denote by ξ the canonical process. Let us consider the measure P such that ξ is the
unique solution to dξt = σ(ξt) dW̃t, t ∈ [0, T ] for a Brownian motion W̃ .

Under the distribution Q, with density G(b−, b+) given by (3), with respect to P, the process ξ is
solution to

dξt = σ(ξt) dWt + b(ξt) dt

for W defined by Wt = W̃t −
∫ t

0
b
σ
(ξs) ds. Under Q, the process W is a Brownian motion.

We define γ(x) = b(x)/σ2(x) and F (x) = γ(x)x for x ∈ R. The function F is piecewise linear
with

F ′(x) = γ(x) for x 6= 0 and β = γ(0+)− γ(0−) =
b+

σ2
+

− b−
σ2
−
.

From the Itô-Tanaka formula1 [23, Theorem 7.1, p. 218],

F (ξt)− F (ξ0) =

∫ t

0

F ′−(ξs) dξs +
β

2
Lt(ξ) =

∫ t

0

γ(ξs) dξs +
β

2
Lt(ξ), t ∈ [0, T ].

Since γ(ξs) dξs = b(ξs)/σ(ξs) dW̃s,∫ T

0

b(ξs)

σ(ξs)
dW̃s = F (ξT )− F (ξ0)− β

2
LT (ξ).

Injecting this in the formula (3),

logG(b+, b−) = F (ξT )− F (ξ0)− β

2
LT (ξ)− 1

2

∫ T

0

b2(ξs)

σ2(ξs)
ds

= F (ξT )− F (ξ0)− β

2
LT (ξ)−

b2
+

2σ2
+

Q+
T −

b2
−

2σ2
−
Q−T . (5)

Maximizing (5) over b+ and b− leads to (4).

The proof of the next lemma is a direct consequence of the Itô-Tanaka formula. It is the key to study
the asymptotic behavior of β±.

Lemma 1. For any T ≥ 0,

β±T = b± +
M±

T

Q±T
,

where M± := ±
∫ ·

0
σ±1±ξs≥0 dBs are continuous time martingales with 〈M±〉 = σ2

±Q
± and

〈M+,M−〉 = 0.

The occupation time is non decreasing. For the sake of simplicity, let us write

Q±∞ = lim
T→∞

Q±T ∈ R+ ∪ {∞}.
1Our local time L(ξ) is twice the one that appear in Theorem 7.1 of [23].
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Maximum likelihood drift estimation for a threshold diffusion 5

3 Analytic characterization of the regime of the process

3.1 Scale function and speed measure

A well known fact [19, 23, 41] states that the infinitesimal generator (L,Dom(L)) of the process ξ
solution to (1) may be written as

Lf =
1

2
σ2(x)e−h(x) d

dx

(
eh(x) df(x)

dx

)
with h(x) =

∫ x

0

2b(y)

σ2(y)
dy

for all f ∈ Dom(L) = {f ∈ C0(R) | Lf ∈ C0(R)}.

The process X is fully characterized by its speed measure M with a density m and its scale function
S with

m(x) :=
2

σ(x)2
exp(h(x)) and S(x) :=

∫ x

0

exp(−h(y)) dy. (6)

3.2 The regimes of the process

The diffusion X is either recurrent or transient. If limx→+∞ S(x) = +∞ and limx→−∞ S(x) =
−∞, then the process is (positively or null) recurrent. Otherwise, it is transient [19,23].

When b(x) = b+ for x ≥ 0,

S(x) =


x if b+ = 0,
σ2

+

2b+

(
1− exp

(
−2b+x

σ2
+

))
if b+ > 0,

σ2
+

2|b+|

(
exp

(
2|b+|x
σ2

+

)
− 1

)
if b+ < 0.

Similar formulas hold for b−. Hence, the process ξ is transient if only if b+ > 0 or b− < 0.

A recurrent process is either null recurrent or positive recurrent. The process is positive recurrent if
and only if M(R) :=

∫
Rm(x) dx < +∞, in which case it is actually ergodic. Therefore, the process

ξ is ergodic if and only if b+ < 0 and b− > 0. Otherwise, the process ξ is only null recurrent.

When the process is ergodic (b+ < 0, b− > 0), its invariant measure is

m(x)

M(R)
dx =


b−

b− + |b+|
e
−2x|b+|
σ2+ if x ≥ 0,

|b+|
b− + |b+|

e
2xb−
σ2− if x < 0.

Therefore, the regimes of ξ depends only on the respective signs of b+ and b−. Nine combinations are
possible. As some cases are symmetric, we actually consider five cases exhibiting different asymptotic
behaviors of Q±T , hence of the estimators. This is summarized in Table 2.

These cases are:

E) Ergodic case b+ < 0, b− > 0.
N0) Null recurrent case b+ = 0, b− = 0.
N1) Null recurrent case b+ = 0, b− > 0.

DOI 10.20347/WIAS.PREPRINT.2497 Berlin 2018
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b+ > 0 b+ = 0 b+ < 0

b− > 0 transient T0 null recurrent N1 ergodic E
b− = 0 transient T0 null recurrent N0 null recurrent N1
b− < 0 transient T1 transient T0 transient T0

Table 2: Recurrence and transience properties of ξ.

T0) Transient case b+ > 0, b− ≥ 0.
T1) Transient case b+ > 0, b− < 0.

Case T0 corresponds to two entries of table 2. The case b+ < 0, b− = 0 is symmetric to N1. Case
b+ ≤ 0, b− < 0 is symmetric to T0.

4 Asymptotic behavior of the estimators

In this section, we state our main results on the asymptotic behavior of the occupation times of the
process and the corresponding ones of the estimators, for each of the 5 cases.

Proposition 2 (Ergodic case E). If b+ < 0, b− > 0, then(
Q+
T

T
,
Q−T
T

)
a.s.−−−→
T→∞

(
|b−|

|b−|+ |b+|
,
|b+|

|b−|+ |b+|

)
. (7)

In addition,

(β+
T , β

−
T )

a.s.−−−→
T→∞

(b+, b−)

and

√
T√

|b−|+ |b+|
(β+

T − b+, β
−
T − b−)

law−−−→
T→∞

(
σ+√
|b−|
N+,

σ−√
|b+|
N−
)
,

whereN+ andN− are two independent, unit Gaussian random variables.

Proposition 3 (Null recurrent case with vanishing drift N0). Assume b+ = b− = 0. Assume ξ0 = 0.
Then (

Q+
T

T
,
Q−T
T

)
law
= (Λ, 1− Λ) for all T > 0,

where Λ follows a law of arcsine type with density

pΛ(u) :=
1

π

1√
u(1− u)

σ+/σ−
1− (1− (σ+/σ−)2)u

for 0 < u < 1.

Besides, √
T (β+

T , β
−
T )

law
= (β+

1 , β
−
1 ) (8)

where the explicit joint density of (β+
1 , β

−
1 ) is given by (25) below. In particular, (β+

T , β
−
T ) converges

almost surely to (b+, b−) = (0, 0).
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Maximum likelihood drift estimation for a threshold diffusion 7

Proposition 4 (Null recurrent case with non-vanishing drift N1). Assume b+ = 0, b− > 0. Then

Q+
T

T

a.s.−−−→
T→∞

1 and (β+
T , β

−
T )

a.s.−−−→
T→∞

(b+, b−).

In addition, there exists three independent unit Gaussian random variablesN−,N+ andN such that(
Q−T√
T
,
√
T (β+

T − b+), T 1/4(β−T − b−)

)
law−−−→
T→∞

(
σ+

b−
|N |, σ+N+, σ−

√
b−√
σ+

· N
−√
|N |

)
. (9)

Proposition 5 (Transient case for upward drift T0). Assume b+ > 0, b− ≥ 0 so that the process ξ is
transient and limT→∞ ξT = +∞. Then Q+

T /T converges almost surely to 1 as T →∞ and

β+
T

a.s.−−−→
T→∞

b+ and
√
T (β+

T − b+)
law−−−→
T→∞

σ+N+ (10)

for a unit Gaussian random variableN+. Let `0 be the last passage time to 0, which is almost surely
finite. Assume ξ0 = 0. We have

β−T 1T>`0 = RT01T>`0 and lim
T→∞

β−T = RT0 a.s. withRT0 :=
L∞(ξ)

2Q−`0
=
L∞(ξ)

2Q−∞
. (11)

The density ofRT0 is given by (22) below. The case b+ ≤ 0, b− < 0 is treated by symmetry.

Proposition 6 (Transient case for diverging drift T1). Assume b+ > 0, b− < 0 so that the process ξ
is transient. Assume that ξ0 = 0. Then there exists a Bernoulli random variable B ∈ {0, 1} such that

P(B = 1) = 1− P(B = 0) =
σ−b+

σ+b− + σ−b+

,

P+

(
Q+
T

T
−−−→
T→∞

1

)
= 1 and P−

(
Q−T
T
−−−→
T→∞

1

)
= 1

with P+(·) = P(· | B = 1) and P−(·) = P(· | B = 0).

On the event {B = 1} (resp. {B = 0}), β+
T (resp. β−T ) converges almost surely to b+ (resp. b−) while

β−T − b− (resp. β+
T − b+) is the ratio of two a.s. finite random variables.

In addition, for unit Gaussian random variablesN+ andN−,

√
T (β+

T − b+)
law−−−→
T→∞

σ+N+ under P+, (12)
√
T (β−T − b−)

law−−−→
T→∞

σ−N− under P−. (13)

In addition,

lim
T→∞

β−T = R−T1 a.s. under P+ withR−T1 =
L∞(ξ)

2Q−∞
, (14)

lim
T→∞

β+
T = −R+

T1 a.s. under P− withR+
T1 =

L∞(ξ)

2Q+
∞
. (15)

The distribution ofR−T1 is that of ofR given (22) below. That ofR+
T1 is found by symmetry.
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5 Auxiliary tools

In this section, we give first some results on a martingale central limit theorem that will be used con-
stantly. To deal with the transient or null recurrent cases, we make use of some analytic properties of
one-dimensional diffusions.

5.1 Limit theorems on martingales

The following result follows immediately from [32, Proposition 1, p. 148; Theorem 1, p. 150].

Proposition 7 (A criterion for convergence). Under the true probability P,

(i) as T → ∞, β+
T (resp. β−T ) converges a.s. to b+ (resp. b−) on the event {Q+

∞ = +∞} (resp.
{Q−∞ = +∞}).

(ii) as T → ∞, M+
T (resp. M−

T ) converges a.s. to a finite value on the event {Q+
∞ < +∞} (resp.

{Q−∞ < +∞}). In other words, β±T is not a consistent estimator on {Q±∞ < +∞}.

We now state an instance of a Central Limit theorem for martingales which follows from [7]. This
theorem will be used to deal with the cases E, N1 and T1. Let us start by recalling the notion of stable
convergence introduced by A. Rényi [21,40].

Definition 1 (Stable convergence). A sequence (Xn)n∈N on a probability space (Ω,F ,P) is said to
converge stably with respect to a σ-algebra G ⊂ F if for any bounded, continuous function f and any
bounded, G-measurable random variable Y ,

E(f(Xn)Y ) −−−→
n→∞

E(f(X)Y ).

Proposition 8 (A central limit theorem for martingales). Let (Ω,F ,P) be the underlying probability
space of the process ξ with a filtration (Ft)t≥0. If for some constants c+, c− > 0,

Q+
T

T

P−−−−→
T→+∞

c+ and
Q−T
T

P−−−−→
T→+∞

c−,

then for the martingales M± defined in Lemma 1,(
M+

T√
T
,
M−

T√
T

)
F∞−stably−−−−−−→
T→∞

(σ+
√
c+N+, σ−

√
c−N−), (16)

on a probability space (Ω′,F ′,P′) extending (Ω,F ,P) and containing two independent unit Gaussian
random variablesN+,N−, themselves independent from ξ. In addition,

√
T

(
M+

T

Q+
T

,
M−

T

Q−T

)
F∞−stably−−−−−−→
T→∞

(
σ+√
c+

N+,
σ−√
c−
N−
)
, (17)

Proof. Set

aT :=

[
1/
√
T 0

0 1/
√
T

]
and qT = 〈M,M〉T =

[
σ2

+Q
+
T 0

0 σ2
−Q
−
T

]
.

Thus,

aT qTa
′
T =

[
σ2

+
Q+
T

T
0

0 σ2
−
Q−T
T

]
P−−−→

T→∞

[
c+

c−

]
. (18)

DOI 10.20347/WIAS.PREPRINT.2497 Berlin 2018



Maximum likelihood drift estimation for a threshold diffusion 9

Theorem 2.2 in [7] yields (16). Besides,

√
T
M±

T

Q±T
=

T

Q±T
× M±

T√
T
. (19)

If a sequence (Xn)n converges F∞-stably and a sequence (Yn)n of F∞-measurable random vari-
ables converges in probability, then (Xn, Yn)n converges F∞-stably. Using the property in (19) and
(17) yields (17).

5.2 The fundamental system

Along with the characterization through the scale function and the speed measure, much information
on the process can be read from the so-called fundamental system [11,19,41]: For any λ > 0, there
exists some functions φλ and ψλ such that

� ψλ and φλ are continuous, positive from R to R with φλ(0) = ψλ(0) = 1.
� ψλ is increasing with limx→−∞ ψλ(x) = 0, limx→∞ ψλ(x) = +∞.
� φλ is decreasing with limx→−∞ φλ(x) = +∞, limx→∞ φλ(x) = 0.
� φλ and ψλ are solutions to Lf = λf .

In the case of piecewise constant coefficients with one discontinuity at 0, these solutions may be
computed as linear combinations of the minimal functions for constant coefficients. Using the fact that
φ, φ′, ψ and ψ′ are continuous at 0,

ψλ(x) =


exp

(
x
−b−+
√
b2−+2σ2

−λ

σ2
−

)
if x < 0

κ+ exp

(
x
−b++
√
b2++2σ2

+λ

σ2
+

)
+ δ+ exp

(
x
−b+−
√
b2++2σ2

+λ

σ2
+

)
if x ≥ 0,

(20)

φλ(x) =


κ− exp

(
x
−b−−
√
b2−+2σ2

−λ

σ2
−

)
+ δ− exp

(
x
−b−+
√
b2−+2σ2

−λ

σ2
−

)
if x < 0,

exp

(
x
−b+−
√
b2++2σ2

+λ

σ2
+

)
if x ≥ 0

(21)

with

κ+ :=
−b−σ2

+ + b+σ
2
− + σ2

−
√
b2

+ + 2λσ2
+ + σ2

+

√
b2
− + 2λσ2

−

2σ2
−
√
b2

+ + 2λσ2
+

,

δ+ :=
b−σ

2
+ − b+σ

2
− + σ2

−
√
b2

+ + 2λσ2
+ − σ2

+

√
b2
− + 2λσ2

−

2σ2
−
√
b2

+ + 2λσ2
+

,

κ− :=
−b−σ2

+ + b+σ
2
− − σ2

−
√
b2

+ + 2λσ2
+ + σ2

+

√
b2
− + 2λσ2

−

2σ2
+

√
b2
− + 2λσ2

−
,

δ− :=
b−σ

2
+ − b+σ

2
− + σ2

−
√
b2

+ + 2λσ2
+ + σ2

+

√
b2
− + 2λσ2

−

2σ2
+

√
b2
− + 2λσ2

−
.

We also define the quantities [37]

ψ̂(λ) :=
1

2

ψ′λ(0)

ψλ(0)
=
−b− +

√
b2
− + 2σ2

−λ

2σ2
−

≥ 0

and φ̂(λ) :=−1

2

φ′λ(0)

φλ(0)
=
b+ +

√
b2

+ + 2σ2
+λ

2σ2
+

≥ 0.
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In particular,

ψ̂(0) = 0 and φ̂(0) =
b+

σ2
+

when b− ≥ 0 and b+ ≥ 0.

5.3 Last passage time and occupation time for the transient process

When ξ is a transient process, the last passage time `0 = sup{t ≥ 0 | ξt = 0} of ξ at 0 is almost
surely finite. Its Laplace transform is (See (53) in [37]):

E0[exp(−λ`0)] =
ψ̂(0) + φ̂(0)

ψ̂(λ) + φ̂(λ)
.

Let us now assume that b+ > 0 and b− ≥ 0. This is the transient case T0 where the process ends
up almost surely in the positive semi-axis. Thus, Q−`0 = Q−∞ and L`0(ξ) = L∞(ξ).

Let us write b̂± := b±/σ
2
±. From Corollary 5 in [37],

E0[exp(−αL∞(ξ)− λQ−∞)] =
ψ̂(0) + φ̂(0)

α + φ̂(0) + ψ̂(λ)
=

b̂+

α + b̂+ − b̂−
2

+ 1
2σ2
−

√
b2
− + 2σ2

−λ
.

Let pL∞(ξ)(t) be the density of L∞(ξ). Setting λ = 0, we see that L∞(ξ) is distributed according to

an exponential distribution of rate b̂+. Thus, pL∞(ξ)(t) = b̂+ exp(−b̂+t). A conditioning shows that

E0[exp(−αL∞(ξ)− λQ−∞)] =

∫ +∞

0

exp(−αt)E0

(
exp(−λQ−∞)

∣∣ L∞(ξ) = t
)
pL∞(t) dt.

By inverting the Laplace transform with respect to α, since pL∞(t) = b̂+ exp(−b̂+t),

E0

(
exp(−λQ−∞)

∣∣ L∞(ξ) = t
)

= exp

(
−t

(
− b̂−

2
+

1√
2σ−

√
b2
−

2σ2
−

+ λ

))
.

Inverting the latter Laplace transform with respect to λ, the density pQ−∞(s|t) of Q−∞ given {L∞(ξ) =
t} is

pQ−∞(s|t) =
t

σ−2
√

2πs3/2
exp

(
tb−
2σ2
−
−
b2
−s

2σ2
−
− t2

8σ2
−s

)
.

Hence, the distribution p(Q−∞,L∞(ξ))(s, t) of the pair (Q−∞, L∞(ξ)) is

p(Q−∞,L∞(ξ))(s, t) =
tb+

σ2
+σ−2

√
2πs3/2

exp

((
b−

2σ2
−
− b+

σ2
+

)
t−

b2
−s

2σ2
−
− t2

8σ2
−s

)
.

The density pRT0
(r) of the random variableRT0 := L∞(ξ)/2Q−∞ is then

pRT0
(r) = 2

∫ +∞

0

s · p(Q−∞,L∞(ξ)) (s, 2rs) ds

=
rb+

σ2
+σ−
√

2

(
2rb+

σ2
+

+
(r − b−)2

2σ2
−

)−3/2

, r > 0.
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The distribution of L∞(ξ)/2Q+
∞ when b− < 0, b+ ≤ 0 is found by symmetric arguments.

Let us now assume that b+ > 0 and b− < 0. This is the transient case T1 where the process can end
up in both semi-axis. The Laplace transform is

E0[exp(−αL∞(ξ)− λQ−∞)] =
ψ̂(0) + φ̂(0)

α + φ̂(0) + ψ̂(λ)
=

b̂+ − b̂−
α + b̂+ − b̂−

2
+ 1

2σ2
−

√
b2
− + 2σ2

−λ
.

With analogous computations as before we get that the density pR−T1
(r) ofR−T1 is

pR−T1
(r) =

r

σ−
√

2

(
b+

σ2
+

− b−
σ2
−

)(
2rb+

σ2
+

+
(r − b−)2

2σ2
−

)−3/2

, r > 0.

Considering also the previous case, we can write the following formula, holding for the density of
R = RT0 orR = R−T1 in both cases T0 and T1:

pR(r) =
r

σ−
√

2

(
b+

σ2
+

+
Lb−M

−

σ2
−

)(
2rb+

σ2
+

+
(r − b−)2

2σ2
−

)−3/2

, r > 0. (22)

Notice that this is the density of a positive random variable which is not integrable. This gives the limit
behavior of the estimator β−T of b−. The behavior of β+

T in the corresponding cases can be found by
symmetric arguments.

6 Proofs of the asymptotic behavior of the estimators

6.1 Asymptotic behavior for the ergodic case (E)

The ergodic case is the most favorable one. The process ξ is ergodic, so that for any bounded, mea-
surable function f , 1

T

∫ T
0
f(ξs) ds converges almost surely to

∫
f(x) m(x)

M(R)
dx.

With the explicit expression of M that follows from (6),

M(R+) =
−1

b+

, M(R−) =
1

b−
and M(R) =

|b+b−|
|b−|+ |b+|

.

From the ergodic theorem, since Q±t =
∫ t

0
1±ξs≥0 ds,

Q±T
T

a.s.−−−→
T→∞

M(R±)

M(R)

so that
Q+
T

T

a.s.−−−→
T→∞

|b−|
|b−|+ |b+|

and
Q−T
T

a.s.−−−→
T→∞

|b+|
|b−|+ |b+|

. (23)

The rate of convergence follows from Proposition 8 and (23).
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6.2 Asymptotic behavior for the null recurrent case with vanishing drift (N0)

When b− = b+ = 0, the process ξ is an Oscillating Brownian motion (OBM, introduced first in [24],
see also [30]). Supposing ξ0 = 0, using the scaling relation [30, Remark 3.7], for any T > 0,(

LξT M+

√
T
,
LξT M−√
T
,
LT (ξ)√

T
,
Q+
T

T

)
law
= (Lξ1M

+, Lξ1M
−, L1(ξ), Q+

1 ).

Therefore,

√
T

(
β+
T

β−T

)
=


LξT M+/

√
T − 1

2
LT (ξ)/

√
T

Q+
T /T

1
2
LT (ξ)/

√
T − LξT M−/

√
T

Q−T /T

 law
=

(
β+

1

β−1

)
=


Lξ1M

+ − 1
2
L1(ξ)

Q+
1

1
2
L1(ξ)− Lξ1M

−

Q−1

 .

We recall now that X = Φ(ξ) := ξ/σ(ξ) is a Skew Brownian motion [10, 30]. An explicit formula
for the density for the position a Skew Brownian motion, its local time and its occupation time is
known [2, 12]. Since the transform Φ is piecewise linear, one easily recover the one of an OBM, its
local and occupation times. Hence, the density of (ξ1, L1(ξ), Q+

1 (ξ)) is

p(ξ1,L1(ξ),Q+
1 )(ρ, λ, τ)

=


(λ/2 + ρ)λ/2

2πσ−σ3
+(1− τ)3/2τ 3/2

exp

(
− (λ/2)2

2σ2
−(1− τ)

− (λ/2 + ρ)2

2σ2
+τ

)
for ρ ≥ 0,

(λ/2− ρ)λ/2

2πσ+σ3
−(1− τ)3/2τ 3/2

exp

(
−(λ/2)2

2σ2
+τ
− (λ/2− ρ)2

2σ2
−(1− τ)

)
for ρ < 0.

(24)

The change of variable in the density suggested by

(β+
1 , β

−
1 , Q

+
1 ) =

(
Lξ1M

+ − L1(ξ)/2

Q+
1

,
L1(ξ)/2− Lξ1M

−

1−Q+
1

, Q+
1

)
gives

p(β+
1 ,β
−
1 ,Q

+
1 )(a, b, δ)

= 2δ(1− δ)p(ξ1,L1(ξ),Q+
1 )(aδ + b(1− δ), |aδ + b(1− δ)| − aδ + b(1− δ), δ)

and then, since Q+
1 ∈ [0, 1],

p(β+
1 ,β
−
1 )(a, b)

=

∫ 1

0

2δ(1− δ)p(ξ1,L1(ξ),Q+
1 )(aδ + b(1− δ), |aδ + b(1− δ)| − aδ + b(1− δ), δ) dδ. (25)

6.3 Asymptotic behavior for the null recurrent case with non-vanishing drift
(N1)

We consider b+ = 0, b− > 0. The particle is then pushed upward when its position is negative. Yet
the process is only null recurrent. The measure M satisfies

M(R−) =
1

b−
and M(R+) = +∞. (26)
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Using 9) in [19, Section 6.8, p. 228] or [34,47], with (26),

Q−T
T

a.s.−−−→
T→∞

M(R−)

M(R)
= 0.

Since Q+
T +Q−T = T , it holds that Q+

T /T converges almost surely to 1.

Using Proposition 8 on M+ only, we obtain that

M+
T√
T

law−−−→
T→∞

σ+N+ (27)

for a Gaussian random variableN+ ∼ N (0, 1) and then that
√
T (β+

T − b+)
law−−−→
T→∞

σ+N+.

The asymptotic behavior of Q−T is more delicate to deal with as the process ξ is only null recurrent.
For this, we use the results of [14] which extends the one of D.A. Darling and M. Kac [8] on additive
and martingale additive functionals.

The Green kernel with respect to the invariant measure M of L is given by [11,19,41]

gλ(x, y) :=
1

Wλ

{
ψλ(x)φλ(y) if x < y,

φλ(x)ψλ(y) if x ≥ y
with Wλ =

ψ′λ(0)φλ(0)− ψλ(0)φ′λ(0)

S ′(0)
.

The Wronskian Wλ is then equal to

Wλ =

√
2λ

σ+

+

√
b2
− + 2λσ2

−

σ2
−

− b−
σ2
−
.

In particular, Wλ/
√
λ converges to

√
2/σ+ as λ converges to 0.

On the other hand, it follows from (20) and (21) that

ψλ(x) −−→
λ→0

ψ0(x) := 1 and φλ(x) −−→
λ→0

φ0(x) := 1 when x > 0

while
ψλ(x) = exp(x

√
2λ) −−→

λ→0
ψ0(x) := 1 and φλ(x) = φ0(x) := 1 when x ≥ 0.

For a measurable function f : R → R+ such that
∫
R f dM < +∞, the above convergence results

imply that
√
λ

∫
R
gλ(x, y)f(x)m(y) dy −−→

λ→0

σ+√
2

∫
R
f(y)m(y) dy, ∀x ∈ R.

We then define `(λ) :=
√

2/σ+ which is a constant function, and α := 1/2, the exponent of λ.

Let (Mt)t≥0 be a Mittag-Leffler process of index 1/2 (it is the inverse of an increasing stable process
of index 1/2). The process 2−1/2M is equal in distribution to the running maximum of a Brownian
motion, or equivalently, to the local time of a Brownian motion [14, Remark 2.9, p. 21].

From Theorem 3.1 and Corollary 3.2 in [14, p. 26], since 〈M−〉t = σ2
−Q
−
t , t ≥ 0 and M is continu-

ous, (√
`(n)

M−
nt

n1/4
, `(n)

Q−nt√
n

)
t∈[0,1]

law−−−→
n→∞

(
σ−
√
νB−(Mt), νMt

)
t∈[0,1]

(28)
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with respect to the uniform topology, where B is a Brownian motion independent fromM and

ν =

∫
R
m(y)Ey

(∫ 1

0

1ξs≤0 ds

)
dy = M(R−) =

1

b−
.

From the reflection principle, the distribution of M1 is the same as the one of a truncated normal
distribution

√
2T where T := |G| with G ∼ N (0, 1). Setting t = 1 in (28) and using the scaling

property of the Brownian motion B−,(
M−

T

T 1/4
,
Q−T
T 1/2

)
law−−−→
T→∞

(
σ−

√
σ+√
b−

√
T · N−, σ+

b−
T

)

for a Gaussian random variableN− ∼ N (0, 1) independent from T .

It remains to show the independence ofN+,N− and T .

Since 〈M±〉t = σ2
±Q
±
t and 〈M+,M−〉t = 0 for any t ≥ 0, the Knight theorem [18, Theo-

rem 7.3’, p. 92] implies that there exists on an extension of (Ω,F ,P) a 2-dimensional Brownian
motion (B+, B−) such that M±

t = B±(σ2
±Q
±
t ) for any t ≥ 0. Let us set B+

n (t) = n−1/2B+(nt)
andB−n (t) = n−1/4B−(

√
nt) for any integer n and any t ≥ 0. From the scaling property, (B+

n , B
−
n )

is still a 2-dimensional Brownian motion which converges in distribution to a 2-dimensional Brownian
motion (B+

∞, B
−
∞) in the space C([0, 1],R2) of continuous functions.

For any 0 ≤ s ≤ t ≤ 1, Q+
nt − Q+

ns ≤ n(t − s) so that (Q+
nt/n)t∈[0,1] is tight in the space of

continuous functions. Hence, (Q+
nt/n)t∈[0,1] converges in probability to the identity map t 7→ t in the

space of continuous function C([0, 1],R).

Combining this result with (28), it holds that
(
B+
n (t), B−n (t), n−1Q+

nt, n
−1/2Q−nt

)
t∈[0,1]

is tight in

C([0, 1],R4) and then necessarily(
B+
n (t), B−n (t),

Q+
nt

n
,
Q−nt√
n

)
t∈[0,1]

law−−−→
n→∞

(B+
∞(t), B−∞(t), t, νMt)t∈[0,1]

in the space of continuous functions C([0, 1],R4). Being the inverse of a 1/2-stable process, hence
a pure jump process,M is independent from (B+

∞, B
−
∞) for the arguments presented in [14, p. 38]

or [18, Theorem 6.3, p. 77].

For any t ∈ [0, 1], it holds that

M+
nt√
n

=
1√
n
B+(σ2

+Q
+
nt) = B+

n

(
σ2

+

Q+
nt

n

)
and

M−
nt

n1/4
=

1√
n
B−(σ2

−Q
−
nt) = B+

n

(
σ2
−
Q+
nt√
n

)
.

Using (n−1Q+
nt)t∈[0,1] and (n−1/2Q−nt)t∈[0,1] as random time changes, we deduce from the results

in [5, p. 144] that(
M+

nt

n1/2
,
M−

nt

n1/4
,
Q+
nt

n
,
Q−nt√
n

)
t∈[0,1]

law−−−→
n→∞

(B+(σ2
+t), B

−(σ2
−νMt), t, νMt)t∈[0,1].

By settingN+ :=B+(σ2
+)/σ+ in (27), T :=M1/

√
2 andN− :=B−(σ2

−ν)/σ−
√
ν, this proves (9)

using t = 1 in the above limit.
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6.4 Asymptotic behavior for the transient case (T0)

We recall that we consider only b+ > 0 and b− ≥ 0.

It is known that the last passage time `0 to 0 is almost surely finite so that Q−∞ < ∞ almost surely.
Since Q+

T = T − Q−T , we obtain that Q+
T /T converges almost surely to 1. The convergence results

regarding β+
T follows from Proposition 8 applied only to one component.

The asymptotic behavior of β+
T follows from Proposition 7(ii).

When T > `0 and ξ0 = 0, then ξT > 0 and thus β−T = LT (ξ)/2Q−T . Yet the local time LT (ξ)
and the occupation times Q−T are constant when T > `0. The result follows by the computations of
Section 5.3.

6.5 Asymptotic behavior for the transient case generated by diverging drift
(T1)

When b− < 0 and b+ > 0, the process is also transient as S(+∞) < +∞ and S(−∞) >
−∞. The scale function S map R to (−γ−, γ+) with γ± = |σ2

±|2b±. From the Feller test [23,
Theorem 5.29], the process does not explode. Thus, as ξ0 = 0, it follows from [48] or [23, Proposition
5.5.22, p. 354] that

p := P
(

lim
T→∞

ξT = +∞
)

= 1− P
(

lim
T→∞

ξT = −∞
)

=
γ−

γ− + γ+

=
σ2
−b+

σ2
+b− + σ2

−b+

.

Then event that {limT→∞|ξT | = +∞} arise when the process starts an excursion with infinite
lifetime, thus after the last passage time to 0. We denote by A± the event {limT→∞Q

±
T /T = 1}, so

that A+ ∩ A− = ∅. Hence, P(A+) = 1− P(A−) = p.

Using the same arguments as in the case T0, given A±, β±T converges almost surely to b± while
β∓T = ±L∞(ξ)/Q∓`0 .

For the Central Limit Theorem, we apply Corollary 2.3 in [7] on M+
T /
√
T . As Q+

T > 0 a.s. as soon as
T > 0 since ξ0 = 0 and

{B = p} = A+, a.s. for p = 0, 1,

it follows that for a normal distributionN ,√
T

σ2
+Q

+
T

· MT√
T

F∞−stably−−−−−−→
N→∞

N under P(· | B = 1).

It follows that

β+
T − b+ =

√
T
MT

Q+
T

= σ+

√
T

Q+
T

√
T

σ2
+Q

+
T

MT√
T

F∞−stably−−−−−−→
N→∞

σ+N under P(· | B = 1).

Hence the result.

7 Wilk’s theorem and LAN property

Owing to the quadratic nature of the log-likelihood, we easily deduce both a Wilk theorem, on which
a hypothesis test may be developed, as well as the Local Asymptotic Normality (LAN) property, which
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proves that our estimators are asymptotically efficient.

7.1 Wilk’s theorem and a hypothesis test

The log-likelihood logG(b+, b−) can be computed from the data using (5). Moreover, this function is
quadratic in b+ and b−. We have then

D(b+, b−) :=∇ logG(b+, b−) =

 LξT M+

σ2
+
− Lξ0M+

σ2
+
− 1

2σ2
+
LT (ξ)− b+

σ2
+
Q+
T

− LξT M−

σ2
−

+ Lξ0M−

σ2
−

+ 1
2σ2
−
LT (ξ)− b−

σ2
−
Q−T


and H(b+, b−) := Hess logG(b+, b−) =

−Q+
T

σ2
+

0

0 −Q−T
σ2
−

 .
Therefore, around any point (b+, b−),

logG(b+ + ∆b+, b− + ∆b−) = logG(b+, b−)

+D(b+, b−) ·
[
∆b+

∆b−

]
− Q+

T

2σ2
+

∆b2
+ −

Q−T
2σ2
−

∆b2
−. (29)

In particular, we prove a result in the asymptotic behavior of the log-likelihood for the ergodic case E or
the null recurrent case N1. A similar result can be given for the null recurrent cases N0 with a different
limit distribution that can be identified with the density given in Section 6.2.

Proposition 9 (Wilk’s theorem; Ergodic case E or null recurrent case N1). Denote by (btrue
+ , btrue

− ) be
the real parameters. Then

−2 logG(btrue
+ , btrue

− )
law−−−→
T→∞

χ2 := (N+)2 + (N−)2 under P(btrue+ ,btrue− ) (30)

for two independent, unit Gaussian random variables N+ and N−. Besides, when (b+, b−) 6=
(btrue

+ , btrue
− ), then

− logG(b+, b−)
a.s.−−−→
T→∞

+∞ under P(btrue+ ,btrue− ). (31)

Proof. Considering (29) at (b+, b−) = (β+
T , β

−
T ) since D(β+

T , β
−
T ) = (0, 0), for any parameter

(b+, b−) and any α+, α− > 0,

logG(b+, b−) = − Q+
T

2Tα+σ2
+

(
T
α+
2 (b+ − β+

T )
)2 − Q−T

2Tα−σ2
−

(
T
α−
2 (b− − β−T )

)2
.

When the process is ergodic (Case E), we set (α+, α−) = (1, 1). It follows from Proposition 2 that
(30) holds. When (b+, b−) 6= (btrue

+ , btrue
− ), then β±T − b± does not converge to 0 whileQ+

T converges
a.s. to infinity. This proves (31). The result is similar in the case N1 with (α+, α−) = (1, 1/2).

A hypothesis test can be developed from Proposition 9. The null hypothesis is (b+, b−) = (b0
+, b

0
−)

for a given drift (b0
+, b

0
−) while the alternative hypothesis is (b+, b−) 6= (b0

+, b
0
−).

Using (5), we compute logG(b0
+, b

0
−). The null hypothesis is rejected with a confidence level α if

− logG(b0
+, b

0
−) > qα where qα is the α-quantile P[χ2 ≤ qα] = α while χ2 follows a χ2 distribution

with 2 degrees of freedom.
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7.2 The LAN property

The LAN (local asymptotic normal) property, introduced by L. Le Cam in [29], characterizes the effi-
ciency of the estimator (See also [16,27] among many other references). It was extended as the LAMN
(local asymptotic mixed normal) to deal with a mixed normal limits by P. Jeganathan in [22].

The quadratic nature of the log-likelihood as well as our limit theorems implies that the LAN (resp.
LAMN) property is verified in the ergodic case E (resp. null recurrent case N1).

Proposition 10 (LAN property; Ergodic case E). In the ergodic case E, the LAN property holds for
the likelihood at (btrue

+ , btrue
− ) with rate of convergence (σ2

+/
√
T , σ2

−/
√
T ) and asymptotic Fisher

information

Γ :=
1

|b−|+ |b+|

[
σ2

+|b−| 0
0 σ2

−|b+|

]
.

Proof. At (btrue
+ , btrue

− ), the gradient may be written

D(btrue
+ , btrue

− ) =

 Q+
T√
Tσ2

+

√
T (β+

T − btrue
+ )

Q−T√
Tσ2
−

√
T (β−T − btrue

− )

 .
Using (29),

R(T ) := log
G
(
btrue

+ + σ2
+

∆b+√
T
, btrue
− + σ2

−
∆b−√
T

)
G(btrue

+ , btrue
− )

=

[
Q+
T (β+

T − btrue
+ )

Q−T (β−T − btrue
− ).

]
·
[
∆b+

∆b−

]
−
σ2

+Q
+
T

2T
∆b2

+ −
σ2
−Q
−
T

2T
∆b2
−

=
1√
T

[
M+

T

M−
T

]
·
[
∆b+

∆b−

]
− 1

2T

[
∆b+

∆b−

]
· 〈M+,M−〉T

[
∆b+

∆b−

]
(32)

With c = |b+| + |b−|, Proposition 2 implies that (T−1/2M+,−1/2M−) converges in distribution to
G ∼ N (0,Γ) and T−1〈M+,M−〉T converges to the diagonal, definite positive matrix Γ. This proves
the LAN property.

Proposition 11 (LAMN property; Null recurrent case N1). In the null recurrent case N1, the LAMN
property holds for the likelihood at (btrue

+ , btrue
− ) with rate of convergence (σ2

+/T
1/2, σ2

−/T
1/4) and

asymptotic (random) Fisher information

Γ :=

[
σ2

+ 0
0 σ2

−
σ+
b−
|N |

]
for a normal random variableN ∼ N (0, 1).

8 Simulation study

8.1 From continuous to discrete data

In this section, we apply the estimator (4) to simulated processes. We test whether the results are
good or not depending on sign and magnitude of involved quantities (cf. [36, Section 4.1]).
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Estimator (4) involves (ξ0, ξT ) which are observable, as well as (LT (ξ), Q−T , Q
+
T ) which are not.

Imagine that we observe ξt on a discrete time grid {kT/n; k = 0, . . . , n}. The time step between
two observations is ∆t = T/n. In [30] we discuss, in the case of the Oscillating Brownian Motion, the
estimator for the occupation time Q+

T given the Riemann sums:

Q̂+
T,n = ∆t

n∑
k=1

1ξkT/n≥0.

We proved that the speed of convergence is strictly better than
√
n, meaning that

√
n(Q̂+

T,n −
Q+
T )

P−−−→
n→∞

0. This result can be extended to the drifted process ξ via the Girsanov theorem.

Again in [30], we propose the following approximation of the local time of ξ at 0

L̂T,n

=
−3

2

√
π

2∆t

σ+ + σ−
σ+σ−

n∑
k=1

(
LξkT/nM

+ − Lξ(k−1)T/nM
+) · (LξkT/nM− − Lξ(k−1)T/nM

−). (33)

Up to some constants, this is essentially an approximation of the covariation between LξtM
+ and LξtM

−.
In [30] we also proved the consistence of such estimator. For the Brownian motion, this estimator
converges at speed n1/4. The proof has not been adapted to our case because of the technical
difficulties due to the discontinuity of the coefficients in 0. Anyway we conjecture a rate of 1/4. An
alternative estimator can be constructed counting the number of crossings, as in [20]. We use (33) for
empirical reasons, since it performs better on simulated trajectory.

At this point, we also notice that estimator (33) involves σ±, which are quantities not directly observable
on the trajectory; let us mention that the same is true for the classic estimator of local time for SDEs
with differentiable coefficients [20]. Therefore, if σ± are known a priori, (33) can be implemented using
such quantities. Otherwise, σ± must be estimated on discrete time observations of ξ as well, a problem
which has been thoroughly investigated in [31].

We do not push further in the present paper the theoretical discussion on the quality of these dis-
crete time approximations. Some more insights, based on numerical results, are given in the following
section.

8.2 Implementation and simulation

The aim of the following section is to show on figures the numerical evidence of the central limit
theorems stated in Section 4. We also mean to say something more on the choice of the step of the
time grid in relation to the quality of the estimation of the local time. The code used for the following
simulations have been implemented using the software R. We will consider time grids of the type
{0, T/N, 2T/N, . . . , T} ⊂ N, so with N ∈ N, and use as approximation of local and occupation
time the following:

L̂T,N and Q̂+
T := Q̂+

T,N .

Summing up, as estimators of b± we use the approximation

b̂±T,N = ±LξT M± − Lξ0M
± − L̂T,N/2

Q̂±T,N
. (34)
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These are our discrete times approximations of the continuous time estimators for which the conver-
gence results have been proved. In practice, in some cases the estimator does not really depend on
the local time, but is essentially determined by the final value of the process and the occupation times.
In those cases, the quality of the discrete time approximation of the local time does not really matter,
and therefore we can take N = 1. In most cases, anyway, a good approximation of the local time is
needed in order to observe on simulations the theoretical central limit behavior expected from Section
4. In these cases N ∈ N must be taken large enough.

In what follows, the choice of the parameters is detailed for every figure. The diffusion parameter is
taken constant σ+ = σ− = 0.01, the same one for all the different simulations, and supposed known
a priori. In such manner the CLTs that we want to test can be better observed. To use estimator (34)
on real data, with σ± not known, one must first use the estimators for σ± in [31] and then use such
estimations in the estimator (33) for the local time. We indicate with [+] and [−] estimation on positive
and negative semiaxis, e.g. (N1)[+] stands for “estimation of b+” in case N1.

−0.04 0.00 0.04

0
5

10
15

20
25

30

(E)[+]

T
(β

T+
−

b +
)

−0.06 −0.02 0.02 0.06

0
5

10
15

20
25

(E)[−]

T
(β

T−
−

b −
)

Figure 1: (E). SDE parameters: σ± = 0.01, b− = 0.004, b+ = −0.003. Simulation parameters:
T = 1000, N = 100 000. We show both sides (positive and negative) of the estimation, displaying
the density of

√
T (β±T − b±). The CLT in Proposition (7) is accurate for large T and time step T/N

small, since the quality of the estimation of the local time is key in this case. The limit behavior is
Gaussian.
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Figure 2: (N1)[+], (T0)[+], (T1)[+] w.r.t P+, (T1)[−] w.r.t P−. SDE parameters: σ± = 0.01; in case
N1: b− = 0.004, b+ = 0; in case T0: b− = 0.004, b+ = 0.006; in case T1: b− = −0.004, b+ =
0.003. Simulation parameters: T = 1000, N = 1000. We display the density of

√
T (β+

T − b+) in
cases N1 and T0. We also show

√
T (β±T − b±) in case T1, but the density is w.r.t P± (cf. (6)). This

is approximated computing the estimator on trajectories such that ξT is larger or respectively smaller
than 0. In all these cases the CLT is Gaussian and we do not need to have a fine discretisation/time
grid, since the local time is asymptotically negligible and the quantities which matter in the estimator
are ξT and the occupation times. This accounts of (9)-positive part, (10), (12) and (13).
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Figure 3: (N1)[−]. SDE parameters: σ± = 0.01; in case N1: b− = 0.004; b+ = 0. Simulation
parameters: T = 1000, N = 100 000. The CLT in (9)-negative part, is accurate for large T and time
step T/N small, since the quality of the estimation of the local time is key in this case. Remark that in
this case (null recurrent), the CLT has speed of convergence T 1/4 and the limit law is not Gaussian.
This accounts of (9)-negative part.
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Figure 4: (T0)[−], (T1)[+] w.r.t to P− and (T1)[−] w.r.t to P+. SDE parameters: σ± = 0.01; in
case T0: b− = 0.004, b+ = 0.003; in case T1: b− = −0.003, b+ = 0.01. In case T0: simulation
parameters: T = 20, N = 1000. We display the density of β−T . In case T1: simulation parameters:
T = 20, N = 3×107. We display the density of β±T w.r.t P∓ (cf. (6)). This is approximated computing
the estimator on trajectories such that ξT is smaller or respectively larger than 0. In these cases
the estimator is not consistent, so what we show is not actually a CLT but the convergence of the
estimators towards the law (22) (cf. results (11), (14), (15)). This convergence is accurate for large T
but also depends on the time step T/N . Moreover, we see that the theoretical distribution of β−T in
case T1 is almost singular at the origin, and therefore the exact behavior near the origin is hard to
catch on simulated trajectories. This can be improved using different kernels (instead of the Gaussian
one) in the estimation of the density. This can be easily done with the function “density” in R. The limit
behavior is better approximated when b+ and b− have similar magnitude. We chose here to display
the case b− = −0.003; b+ = 0.01 to mention this critical behavior. Anyway, this feature does not
really matter in statistical application, because in this case the estimator not only is not consistent, but
does not even guess the correct sign of the parameter. Indeed, we are here in the very critical case of
a transient process generated by diverging drift T1.
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Figure 5: (N0). SDE parameters: σ± = 0.01, b− = 0 b+ = 0;. Simulation parameters: T = 10, N =
1000; T = 100, N = 10 000; T = 1000, N = 100 000. Differently from before, we do not show
the convergence to the scaled limit law (25), but the scaling relation (8), for three different final times.
We show it on both positive and negative semiaxes. Because of the estimation of the local time, this
also depends on the choice of N .
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