531 research outputs found
Swift panchromatic observations of the bright gamma-ray burst GRB050525a
The bright gamma-ray burst GRB050525a has been detected with the Swift
observatory, providing unique multiwavelength coverage from the very earliest
phases of the burst. The X-ray and optical/UV afterglow decay light curves both
exhibit a steeper slope ~0.15 days after the burst, indicative of a jet break.
This jet break time combined with the total gamma-ray energy of the burst
constrains the opening angle of the jet to be 3.2 degrees. We derive an
empirical `time-lag' redshift from the BAT data of z_hat = 0.69 +/- 0.02, in
good agreement with the spectroscopic redshift of 0.61.
Prior to the jet break, the X-ray data can be modelled by a simple power law
with index alpha = -1.2. However after 300 s the X-ray flux brightens by about
30% compared to the power-law fit. The optical/UV data have a more complex
decay, with evidence of a rapidly falling reverse shock component that
dominates in the first minute or so, giving way to a flatter forward shock
component at later times.
The multiwavelength X-ray/UV/Optical spectrum of the afterglow shows evidence
for migration of the electron cooling frequency through the optical range
within 25000 s. The measured temporal decay and spectral indices in the X-ray
and optical/UV regimes compare favourably with the standard fireball model for
Gamma-ray bursts assuming expansion into a constant density interstellar
medium.Comment: 31 pages, 7 figures, referee comments implemented, typo corrected in
author list, accepted by Ap
Fermi Large Area Telescope Observations of the Crab Pulsar and Nebula
We report on gamma-ray observations of the Crab Pulsar and Nebula using 8
months of survey data with the Fermi Large Area Telescope (LAT). The high
quality light curve obtained using the ephemeris provided by the Nancay and
Jodrell Bank radio telescopes shows two main peaks stable in phase with energy.
The first gamma-ray peak leads the radio main pulse by (281 \pm 12 \pm 21) mus,
giving new constraints on the production site of non-thermal emission in pulsar
magnetospheres. The improved sensitivity and the unprecedented statistics
afforded by the LAT enable precise measurement of the Crab Pulsar spectral
parameters: cut-off energy at E_c = (5.8 \pm 0.5 \pm 1.2) GeV, spectral index
of Gamma = (1.97 \pm 0.02 \pm 0.06) and integral photon flux above 100 MeV of
(2.09 \pm 0.03 \pm 0.18) x 10^{-6} cm^{-2} s^{-1}. The first errors represent
the statistical error on the fit parameters, while the second ones are the
systematic uncertainties. Pulsed gamma-ray photons are observed up to ~ 20 GeV
which precludes emission near the stellar surface, below altitudes of around 4
to 5 stellar radii in phase intervals encompassing the two main peaks. The
spectrum of the nebula in the energy range 100 MeV - 300 GeV is well described
by the sum of two power-laws of indices Gamma_{sync} = (3.99 \pm 0.12 \pm 0.08)
and Gamma_{IC} = (1.64 \pm 0.05 \pm 0.07), corresponding to the falling edge of
the synchrotron and the rising edge of the inverse Compton components,
respectively. This latter, which links up naturally with the spectral data
points of Cherenkov experiments, is well reproduced via inverse Compton
scattering from standard Magnetohydrodynamics (MHD) nebula models, and does not
require any additional radiation mechanism.Comment: 17 pages, 9 figures, Accepted for publications in Astrophysical
Journa
Fermi observations of TeV-selected AGN
We report on observations of TeV-selected AGN made during the first 5.5
months of observations with the Large Area Telescope (LAT) on-board the Fermi
Gamma-ray Space Telescope (Fermi). In total, 96 AGN were selected for study,
each being either (i) a source detected at TeV energies (28 sources) or (ii) an
object that has been studied with TeV instruments and for which an upper-limit
has been reported (68 objects). The Fermi observations show clear detections of
38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources and 29
were not in the third EGRET catalog. For each of the 38 Fermi-detected sources,
spectra and light curves are presented. Most can be described with a power law
of spectral index harder than 2.0, with a spectral break generally required to
accommodate the TeV measurements. Based on an extrapolation of the Fermi
spectrum, we identify sources, not previously detected at TeV energies, which
are promising targets for TeV instruments. Evidence for systematic evolution of
the -ray spectrum with redshift is presented and discussed in the
context of interaction with the EBL.Comment: 51 pages, 6 figures, accepted for The Astronomical Journa
GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies
The detection of diffuse radio emission associated with clusters of galaxies
indicates populations of relativistic leptons infusing the intracluster medium.
Those electrons and positrons are either injected into and accelerated directly
in the intracluster medium, or produced as secondary pairs by cosmic-ray ions
scattering on ambient protons. Radiation mechanisms involving the energetic
leptons together with decay of neutral pions produced by hadronic interactions
have the potential to produce abundant GeV photons. Here, we report on the
search for GeV emission from clusters of galaxies using data collected by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from
August 2008 to February 2010. Thirty-three galaxy clusters have been selected
according to their proximity and high mass, X-ray flux and temperature, and
indications of non-thermal activity for this study. We report upper limits on
the photon flux in the range 0.2-100 GeV towards a sample of observed clusters
(typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and
spatially resolved models for the high-energy emission, and discuss how these
results constrain the characteristics of energetic leptons and hadrons, and
magnetic fields in the intracluster medium. The volume-averaged
relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in
several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
PSR J1907+0602: A Radio-Faint Gamma-Ray Pulsar Powering a Bright TeV Pulsar Wind Nebula
We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR
J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi
result in a precise position determination for the pulsar of R.A. =
19h07m547(2), decl. = +06:02:16(2) placing the pulsar firmly within the TeV
source extent, suggesting the TeV source is the pulsar wind nebula of PSR
J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100
MeV to above 10 GeV. The phase-averaged power-law index in the energy range E >
0.1 GeV is = 1.76 \pm 0.05 with an exponential cutoff energy E_{c} = 3.6 \pm
0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well
as limits on off-pulse emission associated with the TeV source. We also report
the detection of very faint (flux density of ~3.4 microJy) radio pulsations
with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 \pm
1.1 cm^{-3}pc. This indicates a distance of 3.2 \pm 0.6 kpc and a
pseudo-luminosity of L_{1400} ~ 0.035 mJy kpc^2. A Chandra ACIS observation
revealed an absorbed, possibly extended, compact <(4 arcsec) X-ray source with
significant non-thermal emission at R.A. = 19h07m54.76, decl. = +06:02:14.6
with a flux of 2.3^{+0.6}_{-1.4} X 10^{-14} erg cm^{-2} s^{-1}. From archival
ASCA observations, we place upper limits on any arcminute scale 2--10 keV X-ray
emission of ~ 1 X 10^{-13} erg cm^{-2} s^{-1}. The implied distance to the
pulsar is compatible with that of the supernova remnant G40.5-0.5, located on
the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud
on the nearer side which we discuss as potential birth sites
Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C 454.3
This is the first report of Fermi Gamma-ray Space Telescope observations of
the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts
since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7
- October 6, indicate strong, highly variable gamma-ray emission with an
average flux of ~3 x 10^{-6} photons cm^{-2} s^{-1}, for energies above 100
MeV. The gamma-ray flux is variable, with strong, distinct,
symmetrically-shaped flares for which the flux increases by a factor of several
on a time scale of about three days. This variability indicates a compact
emission region, and the requirement that the source is optically thin to
pair-production implies relativistic beaming with Doppler factor delta > 8,
consistent with the values inferred from VLBI observations of superluminal
expansion (delta ~ 25). The observed gamma-ray spectrum is not consistent with
a simple power-law, but instead steepens strongly above ~2 GeV, and is well
described by a broken power-law with photon indices of ~2.3 and ~3.5 below and
above the break, respectively. This is the first direct observation of a break
in the spectrum of a high luminosity blazar above 100 MeV, and it is likely
direct evidence for an intrinsic break in the energy distribution of the
radiating particles. Alternatively, the spectral softening above 2 GeV could be
due to gamma-ray absorption via photon-photon pair production on the soft X-ray
photon field of the host AGN, but such an interpretation would require the
dissipation region to be located very close (less than 100 gravitational radii)
to the black hole, which would be inconsistent with the X-ray spectrum of the
source.Comment: Accepted by the Astrophysical Journal; corresponding authors: Greg
Madejski ([email protected]) and Benoit Lott ([email protected]
Fermi detection of delayed GeV emission from the short GRB 081024B
We report on the detailed analysis of the high-energy extended emission from
the short Gamma-Ray Burst (GRB) 081024B, detected by the Fermi Gamma-ray Space
Telescope. Historically, this represents the first clear detection of temporal
extended emission from a short GRB. The light curve observed by the Fermi
Gamma-ray Burst Monitor lasts approximately 0.8 seconds whereas the emission in
the Fermi Large Area Telescope lasts for about 3 seconds. Evidence of longer
lasting high-energy emission associated with long bursts has been already
reported by previous experiments. Our observations, together with the earlier
reported study of the bright short GRB 090510, indicate similarities in the
high-energy emission of short and long GRBs and open the path to new
interpretations.Comment: 19 pages, 4 figures, 2 tables. Accepted for publication in Ap
Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C
The discovery of bright gamma-ray emission coincident with supernova remnant
(SNR) W51C is reported using the Large Area Telescope (LAT) on board the Fermi
Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10^4 yr) with
intense radio synchrotron emission in its shell and known to be interacting
with a molecular cloud. The gamma-ray emission is spatially extended, broadly
consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in
the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is
greater than 1x10^{36} erg/s given the distance constraint of D>5.5 kpc, which
makes this object one of the most luminous gamma-ray sources in our Galaxy. The
observed gamma-rays can be explained reasonably by a combination of efficient
acceleration of nuclear cosmic rays at supernova shocks and shock-cloud
interactions. The decay of neutral pi-mesons produced in hadronic collisions
provides a plausible explanation for the gamma-ray emission. The product of the
average gas density and the total energy content of the accelerated protons
amounts to 5x10^{51}(D/6kpc)^2 erg/cm^3. Electron density constraints from the
radio and X-ray bands render it difficult to explain the LAT signal as due to
inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds
new light on the origin of Galactic cosmic rays.Comment: 17 pages, 4 figures, 1 table. Accepted for ApJ Letters. Contact
authors: Y. Uchiyama, S. Funk., H. Tajima, T. Tanak
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …