531 research outputs found

    Swift panchromatic observations of the bright gamma-ray burst GRB050525a

    Get PDF
    The bright gamma-ray burst GRB050525a has been detected with the Swift observatory, providing unique multiwavelength coverage from the very earliest phases of the burst. The X-ray and optical/UV afterglow decay light curves both exhibit a steeper slope ~0.15 days after the burst, indicative of a jet break. This jet break time combined with the total gamma-ray energy of the burst constrains the opening angle of the jet to be 3.2 degrees. We derive an empirical `time-lag' redshift from the BAT data of z_hat = 0.69 +/- 0.02, in good agreement with the spectroscopic redshift of 0.61. Prior to the jet break, the X-ray data can be modelled by a simple power law with index alpha = -1.2. However after 300 s the X-ray flux brightens by about 30% compared to the power-law fit. The optical/UV data have a more complex decay, with evidence of a rapidly falling reverse shock component that dominates in the first minute or so, giving way to a flatter forward shock component at later times. The multiwavelength X-ray/UV/Optical spectrum of the afterglow shows evidence for migration of the electron cooling frequency through the optical range within 25000 s. The measured temporal decay and spectral indices in the X-ray and optical/UV regimes compare favourably with the standard fireball model for Gamma-ray bursts assuming expansion into a constant density interstellar medium.Comment: 31 pages, 7 figures, referee comments implemented, typo corrected in author list, accepted by Ap

    Fermi Large Area Telescope Observations of the Crab Pulsar and Nebula

    Get PDF
    We report on gamma-ray observations of the Crab Pulsar and Nebula using 8 months of survey data with the Fermi Large Area Telescope (LAT). The high quality light curve obtained using the ephemeris provided by the Nancay and Jodrell Bank radio telescopes shows two main peaks stable in phase with energy. The first gamma-ray peak leads the radio main pulse by (281 \pm 12 \pm 21) mus, giving new constraints on the production site of non-thermal emission in pulsar magnetospheres. The improved sensitivity and the unprecedented statistics afforded by the LAT enable precise measurement of the Crab Pulsar spectral parameters: cut-off energy at E_c = (5.8 \pm 0.5 \pm 1.2) GeV, spectral index of Gamma = (1.97 \pm 0.02 \pm 0.06) and integral photon flux above 100 MeV of (2.09 \pm 0.03 \pm 0.18) x 10^{-6} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Pulsed gamma-ray photons are observed up to ~ 20 GeV which precludes emission near the stellar surface, below altitudes of around 4 to 5 stellar radii in phase intervals encompassing the two main peaks. The spectrum of the nebula in the energy range 100 MeV - 300 GeV is well described by the sum of two power-laws of indices Gamma_{sync} = (3.99 \pm 0.12 \pm 0.08) and Gamma_{IC} = (1.64 \pm 0.05 \pm 0.07), corresponding to the falling edge of the synchrotron and the rising edge of the inverse Compton components, respectively. This latter, which links up naturally with the spectral data points of Cherenkov experiments, is well reproduced via inverse Compton scattering from standard Magnetohydrodynamics (MHD) nebula models, and does not require any additional radiation mechanism.Comment: 17 pages, 9 figures, Accepted for publications in Astrophysical Journa

    Fermi observations of TeV-selected AGN

    Full text link
    We report on observations of TeV-selected AGN made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGN were selected for study, each being either (i) a source detected at TeV energies (28 sources) or (ii) an object that has been studied with TeV instruments and for which an upper-limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ\gamma-ray spectrum with redshift is presented and discussed in the context of interaction with the EBL.Comment: 51 pages, 6 figures, accepted for The Astronomical Journa

    GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies

    Full text link
    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and spatially resolved models for the high-energy emission, and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the intracluster medium. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter

    PSR J1907+0602: A Radio-Faint Gamma-Ray Pulsar Powering a Bright TeV Pulsar Wind Nebula

    Full text link
    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19h07m547(2), decl. = +06:02:16(2) placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is = 1.76 \pm 0.05 with an exponential cutoff energy E_{c} = 3.6 \pm 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of ~3.4 microJy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 \pm 1.1 cm^{-3}pc. This indicates a distance of 3.2 \pm 0.6 kpc and a pseudo-luminosity of L_{1400} ~ 0.035 mJy kpc^2. A Chandra ACIS observation revealed an absorbed, possibly extended, compact <(4 arcsec) X-ray source with significant non-thermal emission at R.A. = 19h07m54.76, decl. = +06:02:14.6 with a flux of 2.3^{+0.6}_{-1.4} X 10^{-14} erg cm^{-2} s^{-1}. From archival ASCA observations, we place upper limits on any arcminute scale 2--10 keV X-ray emission of ~ 1 X 10^{-13} erg cm^{-2} s^{-1}. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5-0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites

    Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C 454.3

    Full text link
    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7 - October 6, indicate strong, highly variable gamma-ray emission with an average flux of ~3 x 10^{-6} photons cm^{-2} s^{-1}, for energies above 100 MeV. The gamma-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor delta > 8, consistent with the values inferred from VLBI observations of superluminal expansion (delta ~ 25). The observed gamma-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above ~2 GeV, and is well described by a broken power-law with photon indices of ~2.3 and ~3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2 GeV could be due to gamma-ray absorption via photon-photon pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close (less than 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.Comment: Accepted by the Astrophysical Journal; corresponding authors: Greg Madejski ([email protected]) and Benoit Lott ([email protected]

    Fermi detection of delayed GeV emission from the short GRB 081024B

    Full text link
    We report on the detailed analysis of the high-energy extended emission from the short Gamma-Ray Burst (GRB) 081024B, detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 seconds whereas the emission in the Fermi Large Area Telescope lasts for about 3 seconds. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.Comment: 19 pages, 4 figures, 2 tables. Accepted for publication in Ap

    Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C

    Full text link
    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10^4 yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1x10^{36} erg/s given the distance constraint of D>5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral pi-mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to 5x10^{51}(D/6kpc)^2 erg/cm^3. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.Comment: 17 pages, 4 figures, 1 table. Accepted for ApJ Letters. Contact authors: Y. Uchiyama, S. Funk., H. Tajima, T. Tanak

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    corecore