108 research outputs found

    Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1016/j.csr.2008.02.002. Licensed CC BY-NC-ND 4.0.Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998ā€“April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6Ɨ106 t yāˆ’1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3Ɨ109 t yāˆ’1). However the net resuspension (erosion/deposition budget) for trawling (0.4Ɨ106 t yāˆ’1) was only one order of magnitude lower than that for waves and currents (9.2Ɨ106 t yāˆ’1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4Ɨ106 t yāˆ’1) was one order of magnitude lower than export associated with natural resuspension (8.5Ɨ106 t yāˆ’1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.</p

    Intraseasonal variability of the South Vietnam upwelling, South China Sea: influence of atmospheric forcing and ocean intrinsic variability

    Get PDF
    The South Vietnam upwelling (SVU) develops off the Vietnamese coast (South China Sea, SCS) during the southwest summer monsoon over four main areas: the northern coastal upwelling (NCU), the southern coastal upwelling (SCU), the offshore upwelling (OFU) and the shelf off the Mekong River mouth (MKU). An ensemble of 10 simulations with perturbed initial conditions were run with the fine-resolution SYMPHONIE model (1ā€‰km inshore) to investigate the daily to intraseasonal variability of the SVU and the influence of the ocean intrinsic variability (OIV) during the strong SVU of summer 2018. The intraseasonal variability is similar for the SCU, MKU and OFU, driven to the first order by the wind variability. The MKU and SCU are induced by stable ocean dynamics (the northeastward then eastward boundary current) and have very little chaotic variability. The OIV has a stronger influence on OFU. In July, OFU mainly develops along the northern flank of the eastward jet. The influence of the OIV is strongest and related to the chaotic variability of the meridional position of the jet. In August, this position is stable and OFU develops mainly in the area of positive wind curl and cyclonic eddies north of the jet. The influence of the OIV, weaker than in July, is related to the organization of this mesoscale circulation. The NCU shows a behavior different from that observed in the other areas. In the heart of summer, a large-scale circulation formed by the eastward jet and eddy dipole is well established with an alongshore current preventing the NCU development. In early and late summer, this circulation is weaker, allowing a mesoscale circulation of strongly chaotic nature to develop in the NCU area. During those periods, the OIV influence on the NCU is very strong and related to the organization of this mesoscale circulation: the NCU is favored (annihilated) by offshore-oriented (alongshore) structures.</p

    Assessing the capability of three different altimetry satellite missions to observe the Northern Current by using a high-resolution model

    Get PDF
    Over the last 3 decades, satellite altimetry has observed sea surface height variations, providing a regular monitoring of the surface ocean circulation. Altimetry measurements have an intrinsic signal-to-noise ratio that limits the spatial scales of the currents that can be captured. However, the recent progress made on both altimetry sensors and data processing allows us to observe smaller geophysical signals, offering new perspectives in coastal areas where these structures are important. In this methodological study, we assess the ability of three altimeter missions with three different technologies to capture the Northern Current (northwestern Mediterranean Sea) and its variability, namely Jason-2 (Ku-band low-resolution-mode altimeter, launched in 2008), SARAL/AltiKa (Ka-band low-resolution-mode altimeter, launched in 2013) and Sentinel-3A (synthetic aperture radar altimeter, launched in 2016). Therefore, we use a high-resolution regional model as a reference. We focus along the French coast of Provence, where we first show that the model is very close to the observations of high-frequency radars and gliders in terms of surface current estimates. In the model, the Northern Current is observed 15ā€“20ā€‰km from the coast on average, with a mean core velocity of 0.39ā€‰mā€‰sāˆ’1. Its signature in terms of sea level consists of a drop whose mean value at 6.14āˆ˜ā€‰E is 6.9ā€‰cm, extending over 20ā€‰km. These variations show a clear seasonal pattern, but high-frequency signals are also present most of the time. In comparison, in 1ā€‰Hz altimetry data, the mean sea level drop associated with the Northern Current is overestimated by 3.0ā€‰cm for Jason-2, but this overestimation is significantly less with SARAL/AltiKa and Sentinel-3A (0.3 and 1.4ā€‰cm respectively). In terms of corresponding sea level variability, Jason-2 and SARAL altimetry estimates are larger than the model reference (+1.3 and +1ā€‰cm respectively), whereas Sentinel-3A shows closer values (āˆ’0.4ā€‰cm). When we derive geostrophic surface currents from the satellite sea level variations without any data filtering, in comparison to the model, the standard deviations of the velocity values are also very different from one mission to the other (3.7 times too large for Jason-2 but 2.4 and 2.9 times too large for SARAL and Sentinel-3A respectively). When low-pass filtering altimetry sea level data with different cutoff wavelengths, the best agreement between the model and the altimetry distributions of velocity values are obtained with a 60, 30 and 40ā€“50ā€‰km cutoff wavelength for Jason-2, SARAL and Sentinel-3A data respectively. This study shows that using a high-resolution model as a reference for altimetry data allows us not only to illustrate how the advances in the performances of altimeters and in the data processing improve the observation of coastal currents but also to quantify the corresponding gain.</p

    Diversity, structure and spatial distribution of megabenthic communities in Cap de Creus continental shelf and submarine canyon (NW Mediterranean)

    Get PDF
    The continental shelf and submarine canyon off Cap de Creus (NW Mediterranean) were declared a Site of Community Importance (SCI) within the Natura 2000 Network in 2014. Implementing an effective management plan to preserve its biological diversity and monitor its evolution through time requires a detailed character ization of its benthic ecosystem. Based on 60 underwater video transects performed between 2007 and 2013 (before the declaration of the SCI), we thoroughly describe the composition and structure of the main mega benthic communities dwelling from the shelf down to 400 m depth inside the submarine canyon. We then mapped the spatial distribution of the benthic communities using the Random Forest algorithm, which incor porated geomorphological and oceanographic layers as predictors, as well as the intensity of the bottom-trawling fishing fleet. Although the study area has historically been exposed to commercial fishing practices, it still holds a rich benthic ecosystem with over 165 different invertebrate (morpho)species of the megafauna identified in the video footage, which form up to 9 distinct megabenthic communities. The continental shelf is home to coral gardens of the sea fan Eunicella cavolini, sea pen and soft coral assemblages, dense beds of the crinoid Leptometra phalangium, diverse sponge grounds and massive aggregations of the brittle star Ophiothrix fragilis. The submarine canyon off Cap de Creus is characterized by a cold-water coral community dominated by the scleractinian coral Madrepora oculata, found in association with several invertebrate species including oysters, brachiopods and a variety of sponge species, as well as by a community dominated by cerianthids and sea urchins, mostly in sedimentary areas. The benthic communities identified in the area were then compared with habitats/biocenoses described in reference habitat classification systems that consider circalittoral and bathyal environments of the Mediterranean. The complex environmental setting characteristic of the marine area off Cap de Creus likely produces the optimal conditions for communities dominated by suspension- and filter-feeding species to develop. The uniqueness of this ecosystem and the anthropogenic pressures that it faces should prompt the development of effective management actions to ensure the long-term conservation of the benthic fauna representative of this marine area3,26

    Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing

    Get PDF
    The Rhodes Gyre is a cyclonic persistent feature of the general circulation of the Levantine Basin in the eastern Mediterranean Sea. Although it is located in the most oligotrophic basin of the Mediterranean Sea, it is a relatively high primary production area due to strong winter nutrient supply associated with the formation of Levantine Intermediate Water. In this study, a 3DĀ coupled hydrodynamicā€“biogeochemical model (SYMPHONIE/Eco3M-S) was used to characterize the seasonal and interannual variability of the Rhodes Gyre's ecosystem and to estimate an annual organic carbon budget over the 2013ā€“2020 period. Comparisons of model outputs with satellite data and compiled inĀ situ data from cruises and Biogeochemical-Argo floats revealed the ability of the model to reconstruct the main seasonal and spatial biogeochemical dynamics of the Levantine Basin. The model results indicated that during the winter mixing period, phytoplankton first progressively grow sustained by nutrient supply. Then, short episodes of convection driven by heat loss and wind events, favoring nutrient injections, organic carbon export, and inducing light limitation on primary production, alternate with short episodes of phytoplankton growth. The estimate of the annual organic carbon budget indicated that the Rhodes Gyre is an autotrophic area, with a positive net community production in the upper layer (0ā€“150ā€‰m) amounting to 31.2ā€‰Ā±ā€‰6.9ā€‰gCm-2yr-1. Net community production in the upper layer is almost balanced over the 7-year period by physical transfers, (1)Ā via downward export (16.8ā€‰Ā±ā€‰6.2ā€‰gCm-2yr-1) and (2)Ā through lateral transport towards the surrounding regions (14.1ā€‰Ā±ā€‰2.1ā€‰gCm-2yr-1). The intermediate layer (150ā€“400ā€‰m) also appears to be a source of organic carbon for the surrounding Levantine Sea (7.5ā€‰Ā±ā€‰2.8ā€‰gCm-2yr-1) mostly through the subduction of Levantine Intermediate Water following winter mixing. The Rhodes Gyre shows high interannual variability with enhanced primary production, net community production, and exports during years marked by intense heat losses and deep mixed layers. However, annual primary production appears to be only partially driven by winter vertical mixing. Based on our results, we can speculate that future increase of temperature and stratification could strongly impact the carbon fluxes in this region.</p

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980ā€“2013 and a detailed multi-indicator description of the period 2007ā€“2013. Then a 1980ā€“2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators: A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive

    Get PDF
    A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to ļ¬ve coupled biogeochemical models from institutes all over Europe were brought together for the ļ¬rst time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as deļ¬ned within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise conļ¬rmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identiļ¬ed, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcom

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes
    • ā€¦
    corecore