680 research outputs found

    Negative mass corrections in a dissipative stochastic environment

    Full text link
    We study the dynamics of a macroscopic object interacting with a dissipative stochastic environment using an adiabatic perturbation theory. The perturbation theory reproduces known expressions for the friction coefficient and, surprisingly, gives an additional negative mass correction. The effect of the negative mass correction is illustrated by studying a harmonic oscillator interacting with a dissipative stochastic environment. While it is well known that the friction coefficient causes a reduction of the oscillation frequency, we show that the negative mass correction can lead to its enhancement. By studying an exactly solvable model of a magnet coupled to a spin environment evolving under standard non-conserving dynamics we show that the effect is present even beyond the validity of the adiabatic perturbation theory.We are grateful to M Kolodrubetz for the careful reading of the manuscript and helpful comments. This work was partially supported by BSF 2010318 (YK and AP), NSF DMR-1506340 (LD and AP), AFOSR FA9550-10-1-0110 (LD and AP), ARO W911NF1410540 (LD and AP) and ISF grant (YK). LD acknowledges the office of Naval Research. YK is grateful to the BU visitors program. (2010318 - BSF; DMR-1506340 - NSF; FA9550-10-1-0110 - AFOSR; W911NF1410540 - ARO; ISF grant)Accepted manuscrip

    A Keplerian Disk around the Herbig Ae star HD169142

    Full text link
    We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.Comment: 10 pages, 2 figures, accepted by A

    The effect of the regular solution model in the condensation of protoplanetary dust

    Full text link
    We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The chemistry of forsterite and enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature. In the low temperature regions (T < 600 K) a range of iron compounds and sulfides form. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model In particular, we find that the turning point in which forsterite replaces enstatite in the low temperature region is sensitive to the solution model. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model, and suggest that this model should provide a more realistic condensation sequence.Comment: MNRAS: Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 2

    Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf

    Full text link
    We present observations of a circumstellar disk that is inclined close to edge-on around a young brown dwarf in the Taurus star-forming region. Using data obtained with SpeX at the NASA Infrared Telescope Facility, we find that the slope of the 0.8-2.5 um spectrum of the brown dwarf 2MASS J04381486+2611399 cannot be reproduced with a photosphere reddened by normal extinction. Instead, the slope is consistent with scattered light, indicating that circumstellar material is occulting the brown dwarf. By combining the SpeX data with mid-IR photometry and spectroscopy from the Spitzer Space Telescope and previously published millimeter data from Scholz and coworkers, we construct the spectral energy distribution for 2MASS J04381486+2611399 and model it in terms of a young brown dwarf surrounded by an irradiated accretion disk. The presence of both silicate absorption at 10 um and silicate emission at 11 um constrains the inclination of the disk to be ~70 deg, i.e. ~20 deg from edge-on. Additional evidence of the high inclination of this disk is provided by our detection of asymmetric bipolar extended emission surrounding 2MASS J04381486+2611399 in high-resolution optical images obtained with the Hubble Space Telescope. According to our modeling for the SED and images of this system, the disk contains a large inner hole that is indicative of a transition disk (R_in~58 R_star~0.275 AU) and is somewhat larger than expected from embryo ejection models (R_out=20-40 AU vs. R_out<10-20 AU).Comment: The Astrophysical Journal, in pres

    Adiabatic perturbation theory and geometry of periodically-driven systems

    Full text link
    We give a systematic review of the adiabatic theorem and the leading non-adiabatic corrections in periodically-driven (Floquet) systems. These corrections have a two-fold origin: (i) conventional ones originating from the gradually changing Floquet Hamiltonian and (ii) corrections originating from changing the micro-motion operator. These corrections conspire to give a Hall-type linear response for non-stroboscopic (time-averaged) observables allowing one to measure the Berry curvature and the Chern number related to the Floquet Hamiltonian, thus extending these concepts to periodically-driven many-body systems. The non-zero Floquet Chern number allows one to realize a Thouless energy pump, where one can adiabatically add energy to the system in discrete units of the driving frequency. We discuss the validity of Floquet Adiabatic Perturbation Theory (FAPT) using five different models covering linear and non-linear few and many-particle systems. We argue that in interacting systems, even in the stable high-frequency regimes, FAPT breaks down at ultra slow ramp rates due to avoided crossings of photon resonances, not captured by the inverse-frequency expansion, leading to a counter-intuitive stronger heating at slower ramp rates. Nevertheless, large windows in the ramp rate are shown to exist for which the physics of interacting driven systems is well captured by FAPT.The authors would like to thank M. Aidelsburger, M. Atala, E. Dalla Torre, N. Goldman, M. Heyl, D. Huse, G. Jotzu, C. Kennedy, M. Lohse, T. Mori, L. Pollet, M. Rudner, A. Russomanno, and C. Schweizer for fruitful discussions. This work was supported by AFOSR FA9550-16-1-0334, NSF DMR-1506340, ARO W911NF1410540, and the Hungarian research grant OTKA Nos. K101244, K105149. M. K. was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are pleased to acknowledge that the computational work reported in this paper was performed on the Shared Computing Cluster which is administered by Boston University's Research Computing Services. The authors also acknowledge the Research Computing Services group for providing consulting support which has contributed to the results reported within this paper. The study of the driven non-integrable transverse-field Ising model was carried out using QuSpin [185] - an open-source state-of-the-art Python package for dynamics and exact diagonalization of quantum many body systems, available to download here. (FA9550-16-1-0334 - AFOSR; DMR-1506340 - NSF; W911NF1410540 - ARO; K101244 - Hungarian research grant OTKA; K105149 - Hungarian research grant OTKA; DE-AC02-05CH11231 - Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab)https://arxiv.org/pdf/1606.02229.pd

    Optical and Radio monitoring of S5 1803+74

    Get PDF
    The optical (BVRI) and radio (8.4 GHz) light curves of S5 1803+784 on a time span of nearly 6 years are presented and discussed. The optical light curve showed an overall variation greater than 3 mag, and the largest changes occured in three strong flares. No periodicity was found in the light curve on time scales up to a year. The variability in the radio band is very different, and shows moderate oscillations around an average constant flux density rather than relevant flares, with a maximum amplitude of \sim30%, without a simultaneous correspondence between optical and radio luminosity. The optical spectral energy distribution was always well fitted by a power law. The spectral index shows small variations and there is indication of a positive correlation with the source luminosity. Possible explanations of the source behaviour are discussed in the framework of current models.Comment: 25 pages, 12 figure

    Performance of Dairy Goats to Alfalfa Silage Based Diets Supplemented with Different Sources of Carbohydrates

    Get PDF
    Lactating Saanen dairy goats fed alfalfa silage (AS) based diets in four 4x4 Latin Square designed experiment were studied for the effects of supplementation of three different type of carbohydrates (wheat grain, (W); sorghum grain, (SG) and dry citrus pulp, (DCP)) on milk yield, composition and chewing activities. Sixteen does (45± 10 DIM and 2.016 kg ± 0.48 4% FCM) housed indoors in individual pens in a four 4x4 experiment were fed four diets 1) AS (33.9%DM, 19.9%CP, 44.01%NDF); 2) ASW (52.4%DM, 19.8%CP, 33.7%NDF); 3) ASSG (50.9%DM, 17.9%CP, 37%NDF), 4) ASDCP (52.5%DM, 16.12%CP, 39.1%NDF) with forage-to-concentrate ratios of 100:0 or 65:35, 67:33 and 64:36 respectively. Intake of AS DM (2.78%BW) was different (P\u3c 0.05) from the other treatments (average 3.53 ±0.07 %BW). Chewing efficiency (min/g NDF per kg BW 0.75) decrease (P\u3c 0.05) as a result of AS substitution or concentrate supplementation without effect (P\u3e 0.05) of carbohydrate type or dietary level of NDF. Milk, 4%FCM and fat-protein-corrected milk yield was affected (P\u3c 0.05) by concentrate supplementation. Either milk protein content (g/l) or yield (g/day) were not affected by treatments. Body weight changes appeared related to concentrate supplementation. Supplementation increase total DM intake, decrease forage DM intake and chewing efficiency and increase producing performance without changing milk composition

    PAH emission from Herbig AeBe stars

    Full text link
    We present spectra of a sample of Herbig Ae and Be (HAeBe) stars obtained with the Infrared Spectrograph on the Spitzer Space Telescope. All but one of the Herbig stars show emission from polycyclic aromatic hydrocarbons (PAHs) and seven of the spectra show PAH emission, but no silicate emission at 10 microns. The central wavelengths of the 6.2, 7.7--8.2, and 11.3 micron emission features decrease with stellar temperature, indicating that the PAHs are less photo-processed in cooler radiation fields. The apparent low level of photo processing in HAeBe stars, relative to other PAH emission sources, implies that the PAHs are newly exposed to the UV-optical radiation fields from their host stars. HAeBe stars show a variety of PAH emission intensities and ionization fractions, but a narrow range of PAH spectral classifications based on positions of major PAH feature centers. This may indicate that, regardless of their locations relative to the stars, the PAH molecules are altered by the same physical processes in the proto-planetary disks of intermediate-mass stars. Analysis of the mid-IR spectral energy distributions indicates that our sample likely includes both radially flared and more flattened/settled disk systems, but we do not see the expected correlation of overall PAH emission with disk geometry. We suggest that the strength of PAH emission from HAeBe stars may depend not only on the degree of radial flaring, but also on the abundance of PAHs in illuminated regions of the disks and possibly on the vertical structure of the inner disk as well.Comment: 52 pages, 12 figure

    On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    Full text link
    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1 km-size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of MM_{\oplus} of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2_2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.Comment: Accepted by ApJ. 55 pages including 24 figures. In response to comments from the referee, we have included a new simulation with km-size objects and have revised some discussions and interpretations. Major conclusions remain unchanged, and new conclusions have been added in response to the new ru
    corecore