59 research outputs found

    Borders and boundaries in the lives of migrant agricultural workers

    Get PDF
    In 2018, roughly 72%of the 69,775 temporary migrant agricultural labourers arriving in Canada participated in the Seasonal Agricultural Workers Program (SAWP). Despite having legal status in Canada, these individuals are often systematically excluded from community life and face barriers when accessing health and social services. SAWP workers’ exclusion from many public spaces and their incomplete access to the benefits of Canadian citizenship or residency provide us a unique opportunity to examine social and political mechanisms that construct(in)eligibility for health and protection in society.As individuals seeking to care for the sick and most marginalized, it is important for nurses to understand how migrant agricultural workers are positioned and imagined in society. We argue that the structural exclusion faced by this population can be uncovered by examining:(1)border politics that inscribe inferior status onto migrant agricultural workers;(2) nation-state borders that promote racialized surveillance, and;(3) everyday normalization of exclusionary public service practices. We discuss how awareness of these contextual factors can be mobilized by nurses to work towards a more equitable health services approach for this population

    Linking high-frequency DOC dynamics to the age of connected water sources

    Get PDF
    Acknowledgments The authors would like to thank our NRI colleagues for all their help with field and laboratory work, especially Audrey Innes, Jonathan Dick, and Ann Porter. We would like to also thank Iain Malcolm (Marine Scotland Science) for providing AWS data and the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project. Please contact the authors for access to the data used in this paper. We would also like to thank the Natural Environment Research Council NERC (project NE/K000268/1) for funding.Peer reviewedPublisher PD

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.Peer reviewe

    Bessycamac documentation, pt 1

    No full text

    Documentation Bessycamac, Pt 1

    No full text

    Filling holes in regional carbon budgets: Predicting peat depth in a north-temperate lake district

    No full text
    [1] Peat deposits contain on the order of 1/6 of the Earth's terrestrial fixed carbon (C), but uncertainty in peat depth precludes precise estimates of peat C storage. To assess peat C in the Northern Highlands Lake District (NHLD), a $7000 km 2 region in northern Wisconsin, United States, with 20% peatland by area, we sampled 21 peatlands. In each peatland, peat depth (including basal organic lake sediment, where present) was measured on a grid and interpolated to calculate mean depth. Our study addressed three questions: (1) How spatially variable is peat depth
    • 

    corecore