774 research outputs found
Energy efficiency (EE) and cost-effective means to increase EE and to mitigate the climate change of pork and broiler meat production in five European countries
Production of pork and broiler meat in the European Union (EU) has increased by 7.8
and 16.1%, respectively, in the period of 2001 – 2011. At that time pork and broiler
meat produced, amounted together to over four times the cattle meat. Meat is an important
protein source in human diet, but on the other hand, livestock uses globally
30% of ice-free terrestrial land and produces 18% of global greenhouse gas (GHG)
emissions. This exceeds the global emissions of the transport sector. Furthermore,
energy ratio (output/input) for meat production is less than 1.0 in general and it is
much lower than that of plant production. This paper presents cost-effectiveness of
EE measures in pork and broiler meat production and it is based on the results of the
Agriculture and Energy Efficiency Project (www.AGREE.aua.gr).
The structure of the energy input appeared to be very similar in pork and broiler meat
production. Feed was found to be the major indirect energy input. Its contribution to
the total energy demand varied from 51% to 82% in pork production and from 55% to
94% in broiler meat production. The percentage of feed was the lowest in the Northern
European countries and the highest in the south. This difference was mainly attributable
to the demand for heating of animal houses during the winter period. Differences
could also be found in the absolute energy input of feed. It indicated that
there may be possibilities to improve feeding strategies or feed conversation rate of
animals. In pork production, the energy input of feed was 12.5 GJ t-1 (live weight) in
average and 8.6 GJ t-1 (live weight) in broiler production. The difference between pork
and broiler meat is a consequence of the higher feed conversation rate of broilers in
contrast to pigs. The category “Other energy use” was the second highest energy input and it consisted of energy input for ventilation, illumination, feeding, and heating
of animal houses. In pork production, the input of this category was 4.7 GJ t-1 (live
weight) in average (25% from the total energy input) and 2.4 GJ t-1 (live weight) in
broiler meat production (22% from the total energy input). The specific energy input
in pork production was the lowest in The Netherlands ( 14.5 GJ t-1) and that of broiler
meat production in Germany (9.8 GJ t-1).
Case studies analysed in five participating countries demonstrated EE measures capable
to reduce costs, to increase EE, and to cut GHG emissions at the same time.
Proposed EE measures were related to ventilation, heating, feeding, animal bedding,
energy generation from manure, and feed production. As an example, an airtight
grain storage met all three goals at the same time. Investment costs were lower than
those for a grain dryer, no energy was needed for drying, and no GHG emissions
were generated because no gas or oil was needed for drying. All suggested EE
measures were not as successful. They might appear negative for costs but positive
for EE and GHG reduction, resulting in a trade-off situation. An approach like this
helps to rank potential EE measures in terms of their cost-effectiveness and capability
to cut GHG emissions
Review of biorthogonal coupled cluster representations for electronic excitation
Single reference coupled-cluster (CC) methods for electronic excitation are
based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in
terms of excited CC states, also referred to as correlated excited (CE) states,
and an associated set of states biorthogonal to the CE states, the latter being
essentially configuration interaction (CI) configurations. The bCC
representation generates a non-hermitian secular matrix, the eigenvalues
representing excitation energies, while the corresponding spectral intensities
are to be derived from both the left and right eigenvectors. Using the
perspective of the bCC representation, a systematic and comprehensive analysis
of the excited-state CC methods is given, extending and generalizing previous
such studies. Here, the essential topics are the truncation error
characteristics and the separability properties, the latter being crucial for
designing size-consistent approximation schemes. Based on the general order
relations for the bCC secular matrix and the (left and right) eigenvector
matrices, formulas for the perturbation-theoretical (PT) order of the
truncation errors (TEO) are derived for energies, transition moments, and
property matrix elements of arbitrary excitation classes and truncation levels.
In the analysis of the separability properties of the transition moments, the
decisive role of the so-called dual ground state is revealed. Due to the use of
CE states the bCC approach can be compared to so-called intermediate state
representation (ISR) methods based exclusively on suitably orthonormalized CE
states. As the present analysis shows, the bCC approach has decisive advantages
over the conventional CI treatment, but also distinctly weaker TEO and
separability properties in comparison with a full (and hermitian) ISR method
Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore
Aid to conflict-affected countries : lessons for donors
The first section looks at the implications of conflict for aid effectiveness and selectivity. We argue that, while aid is generally effective in promoting growth and by implication reducing poverty, it is more effective in promoting growth in post-conflict countries. We then consider the implications of these findings for donor selectivity models and for assessment of donor performance in allocating development aid among recipient countries. We argue that, while further research on aid effectiveness in post-conflict scenarios is needed, existing selectivity models should be augmented with, inter alia, post-conflict variables, and donors should be evaluated on the basis, inter alia, of the share of their aid budgets allocated to countries experiencing post-conflict episodes. We also argue for aid delivered in the form of projects to countries with weak institutions in early post-conflict years. The second section focuses on policies for donors operating in conflict-affected countries. We set out five of the most important principles: (1) focus on broad-based recovery from war; (2) to achieve a broad-based recovery, get involved before the conflict ends; (3) focus on poverty, but avoid ‘wish lists’; (4) help to reduce insecurity so aid can contribute more effectively to growth and poverty reduction; and (5) in economic reform, focus on improving public expenditure management and revenue mobilisation. The third section concludes by emphasising the fact that there is no hard or fast dividing line between ‘war’ and ‘peace’ and that it may take many years for a society to become truly ‘post’-conflict’. Donors, therefore, need to prepare for the long haul.<br /
Gradient microfluidics enables rapid bacterial growth inhibition testing
Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)
Repeated evolution of self-compatibility for reproductive assurance
Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes evolutionary mechanisms such as hermaphroditism and self-fertilisation have repeatedly evolved. Combining insight from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes were readily evolving under selection in experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions governing the evolution of self-compatibility
Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogels in grape juice
Pimaricin-loaded poly(N-isopropylacrylamide) nanohydrogels with and without acrylic acid, were evaluated as food-spoilage inhibitors in a model system and a real food product: grape juice. Pimaricin was proposed as a non-allergenic alternative to sulphites for protecting juices against recontamination. However, pimaricin may degrade under conditions and treatments (heating, acidification, lighting) commonly applied in producing fresh juices. Nanohydrogel encapsulation may be a feasible procedure to avoid pimaricin degradation, improving its antimicrobial activity. Pimaricin-free nanohydrogels did not affect the growth of the indicator yeast either in the food model system or in grape juice. Conversely, pimaricin-loaded nanohydrogels effectively inhibited the growth of the indicator yeast. In some cases, the inhibition was extended even further than using free pimaricin. For instance, in the food model system, pimaricin-loaded nanohydrogels with acrylic acid (NPPNIPA-20AA(5)) prevented the yeast growth for more than 81 h while free pimaricin was only effective for 12 h. Despite pimaricin-loaded nanohydrogels without acrylic acid (NPPNIPA(5)) were able to reduce maximum yeast growth, as in all treatments with pimaricin, the extent of the inhibitory effect was not significantly (p>0.05) different to that achieved with free pimaricin. In grape juice, both free pimaricin and NPPNIPA-20AA(5) treatment completely inhibited the growth of the indicator yeast until the end of the bioassay. However, the latter provided similar inhibition levels using a smaller amount of pimaricin due to PNIPA-20AA(5) protection and its controlled release from the nanohydrogel. Therefore, nanohydrogel encapsulation may help to optimise antifungal treatments and decrease the incidence of food allergies.Funded by grant (MAT 2006-11662-CO3-CO2-C01/MAT 2010-21509-C03-01/EUI 2008-00115) from the “Ministerio de Educación y Ciencia” (Spain). Grant (SFRH/BPD/87910/2012) from the Fundação para a Ciência e Tecnologia (FCT, Portugal). Marie Curie COFUND Postdoctoral Research Fellow
Stochastic and epistemic uncertainty propagation in LCA
Purpose: When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). Possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone. Methods: Basic knowledge on the probability theory is first recalled, followed by a detailed description of hal-00811827, version 1- 11 Apr 2013 epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible
Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor
The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT
- …
