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Abstract 

Purpose: When performing uncertainty propagation, most LCA practitioners choose to represent 

uncertainties by single probability distributions and to propagate them using stochastic methods. 

However the selection of single probability distributions appears often arbitrary when faced with 

scarce information or expert judgement (epistemic uncertainty). Possibility theory has been 

developed over the last decades to address this problem. The objective of this study is to present a 

methodology that combines probability and possibility theories to represent stochastic and 

epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show 

the uncertainty propagation performed with the proposed method and compare it to propagation 

performed using probability and possibility theories alone. 

Methods: Basic knowledge on the probability theory is first recalled, followed by a detailed 

description of epistemic uncertainty representation using fuzzy intervals. The propagation methods 

used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for 

fuzzy intervals. The proposed method (noted IRS) generalizes the process of random sampling to 

probability distributions as well as fuzzy intervals, thus making the simultaneous use of both 

representations possible.  

Results and discussion: The results highlight the fundamental difference between the probabilistic 

and possibilistic representations: while the Monte Carlo analysis generates a single probability 

distribution, the IRS method yields a family of probability distributions bounded by an upper and a 

lower distribution. The distance between these two bounds is the consequence of the incomplete 

character of information pertaining to certain parameters. In a real situation, an excessive distance 

between these two bounds might motivate the decision-maker to increase the information base 

regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not 

ensue from a purely probabilistic calculation based on subjective (postulated) distributions (despite 

lack of information), because there is no way of distinguishing, in the variability of the calculated 

result, what comes from true randomness and what comes from incomplete information.  

Conclusions: The method presented offers the advantage of putting the focus on the information 

rather than deciding a priori of how to represent it. If the information is rich, then a purely 

statistical representation mode is adequate, but if the information is scarce, then it may be better 

conveyed by possibility distributions. 
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1. Introduction 

Life cycle assessment (LCA) aims at modelling complex systems that usually encompass a 

number of compartments of the biosphere and the technosphere. Results rely on several choices 

and large amounts of data are affected by uncertainty. These uncertainties have been described 

extensively, e.g. by Reap et al. (2008) and Williams et al. (2009). Characterising and assessing 

uncertainties is important to make decision support models more transparent, robust and reliable. 

Uncertainty analysis gathers numerous methods with different means and goals from qualitative 

assessment to sensitivity analysis and uncertainty propagation; see Morgan and Henrion (1990) for 

an overview on uncertainty analysis and Clavreul et al. (2012) for a tiered approach to uncertainty 

analysis in LCA applied to waste management.  

The focus of the present study is on uncertainty propagation which aims at quantifying the 

uncertainty of the results of an LCA study. Uncertainty propagation can be performed using 

different uncertainty representations and propagation methods. With respect to parameter 

uncertainty, the common practice in LCA consists in representing uncertain parameters by single 

probability distributions, e.g. a normal distribution characterized by an average and a standard 

deviation. Databases such as the ecoinvent database (Frischknecht et al. 2005) rely increasingly on 

probability distributions to represent parameter uncertainty. The most commonly-used method to 

propagate probability distributions is the Monte Carlo analysis, as shown by Lloyd and Ries 

(2007) who reviewed 24 LCA studies that included uncertainty analysis. This method is 

implemented in many calculation tools and consists in randomly sampling values in the probability 

distributions of input parameters, to obtain the frequency distribution of the calculated results.  

However, a fundamental problem of the probabilistic representation lies in the selection of 

probability distributions when faced with scarce information or expert judgement. The review by 

Lloyd and Ries (2007) showed that the choice of probability distributions is often poorly justified 

and relying on estimations. Yet the result of the uncertainty propagation is totally depending on the 

‘a priori’ defined probability distributions. Bayesian methods (Lindley 1971) could address this 

shortcoming by updating these prior distributions based on new data and Bayes’ theorem of 

conditional probabilities. However this is almost never implemented in LCA due to the 

impossibility of measuring and validating results. This introduces confusion between the two 

distinct natures of uncertainty: truly stochastic uncertainty which refers to variability of data e.g. in 
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time, space and technology, and epistemic uncertainty related to our lack of knowledge e.g. due to 

measurement errors or to an insufficient number of measurements. While classical probability 

theory was developed to address stochastic uncertainty (i.e. related to variability and fluctuations), 

more recent information theories are required to address incomplete/imprecise information 

(Dubois and Prade 2009).  

To address this problem and handle modelling in presence of imprecise information, possibility 

theory has been developed over the last decades (Dubois and Prade 1988). The simplest example is 

the representation of parameters as min-max intervals instead of crisp (precise) numbers, as used 

by Chevalier and Le Téno (1996). The concept can be extended to fuzzy intervals (possibility 

distributions) which express preferences within intervals. More detailed presentation of fuzzy 

intervals is provided in the methods section. Fuzzy intervals have been first applied to the field of 

LCA to save time and costs by avoiding the need for precise quantification of flows e.g. by 

Weckenmann and Schwan (2001) and Gonzàlez et al. (2002). Fuzzy linguistic descriptors have also 

been used to calculate life cycle inventories (LCI) and evaluate data quality (Ardente et al. 2004), 

to normalise and weigh characterised impacts (Guereca et al. 2007) and to support interpretation of 

results and ranking alternatives using multi-criteria analysis (Benetto et al. 2008). Besides, in an 

LCA model dedicated to fuel evaluation (namely POLCAGE), Tan et al. (2004) represented 

parameter uncertainties using possibility distributions and propagated them using fuzzy 

arithmetics. Tan (2008) formalised the integration of fuzzy intervals into a matrix-based LCI 

model, supported later by a mathematical proof by Heijungs and Tan (2010). Finally André and 

Lopes (2012) proposed to enhance the mathematical and physical understanding of the application 

of possibility theory to LCA, by providing clear definitions of terms and comparing the possibility 

and probability representations and propagation results. 

The objective of this study is to present a methodology that combines probability and 

possibility theories to represent stochastic and epistemic uncertainty in a consistent manner, and 

apply it to LCA. The method is compared to uncertainty propagation performed with probability 

and possibility theories alone, using a case study where global warming benefits associated with 

bioenergy from energy crops cultivation are assessed. 
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2. Methods 

This section describes how probability and possibility theories can be used to represent 

uncertainties and propagate them through a model. A joint-propagation method, proposed by 

Baudrit et al. (2006), is presented and applied to a case study. In addition two other propagation 

methods are also applied for the purpose of comparison. 

2.1. Probability theory 

A probability is a measure of the likelihood that an event will occur. A probability distribution 

describes the probabilities of different outcomes of a statistical experience: for a random variable 

X, a probability distribution gives for each value x the probability P(x) that X takes the value x. 

Probabilities follow certain rules: they take only values between 0 and 1 and the sum of the 

probabilities of all possible outcomes is 1. In the case of continuous variables, probability 

distributions are often represented by their cumulative distribution function (cdf), the probability 

that X be less than x: F(X) = P[X≤x]. Another representation, the probability density function 

(noted here pdf), can be obtained by deriving the cdf. It represents the density of probabilities: for 

some small increment ∆x, f(x).∆x is the probability that X falls in the interval of length ∆x around 

x (Morgan and Henrion 1990). In theory, selection of a probability distribution should be based on 

a sufficient amount of data to allow a statistically representative assessment of the parameter’s 

variability. However, in the context of LCA, this is often not technically feasible and the selection 

of a distribution often relies on partial information (scarce measurements) or on expert judgment. 

Uncertainty propagation of probability distributions can be performed by different methods, 

the most common one being the Monte Carlo analysis, as used by e.g. Huijbregts et al. (2003) or 

Sonnemann et al. (2003). In this analysis, a value is randomly sampled for each parameter in its 

distribution and by using the obtained set of values, the model result is calculated. By repeating 

this operation a sufficient number of times, a cdf is obtained for the result. Other sampling 

methods are more adapted to large data sets, such as Latin hypercube, as used by Thabrew et al. 

(2008). Finally, calculations can also be performed analytically using Taylor series expansions to 

approximate the result’s uncertainty, as implemented by Hong et al. (2010). 
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2.2. Epistemic uncertainty representation 

As shown by several authors (e.g. Ferson and Ginzburg 1996), there is a fundamental difference 

between true random variability, as depicted by a single probability distribution, and epistemic 

uncertainty, due to incomplete or imprecise information. Possibility theory (e.g. Dubois and Prade 

2008) provides a framework to address this type of information. Possibility theory assigns degrees 

of likelihood (possibility) to intervals of values rather than precise values, yielding a fuzzy interval 

(or fuzzy number or fuzzy set). The simplest fuzzy interval is the well known min-max interval. If 

the parameters involved in a model are represented by intervals, interval propagation can be 

performed using either interval calculus in the case of simple models or else an optimisation 

algorithm in the case of more complex models. In a Bayesian framework, application of the 

principle of maximum entropy to interval-type information leads to selecting a uniform probability 

distribution between the limits of a min-max interval (e.g. Shulman and Feder 2004). But this 

results in selecting only one amongst all the possible probability distributions of the family defined 

by the following two cumulative distributions: 

Pu(X) = 0 if X < min and Pu(X) = 1 otherwise, 

Pl(X) = 0 if X ≤ max and Pl(X) = 1 otherwise. 

Where Pu and Pl are resp. the upper and lower limits of the family of probability distributions 

defined by the min-max interval. Selecting just one representative of the family of probability 

distributions introduces a bias in the analysis and a confusion between true variability (as depicted 

by a single distribution) and imprecision (as depicted by an interval). 

When richer information is available, the concept of intervals can be extended to fuzzy 

intervals (also called possibility distributions) where preference is given to certain values (see 

Dubois and Prade 1988). In a possibility distribution, degrees of likelihood (possibility) between 0 

and 1 are assigned to specific parameter intervals. In the example depicted in Figure 1, the most 

likely interval (the “core” of the possibility distribution), i.e. values between 18 and 20, is assigned 

a likelihood of unity, while values located outside the “support” of the distribution (i.e. values 

between 14 and 23) are assigned a possibility of zero. Intervals selected at different levels of 

possibility, called alpha-cuts, correspond to confidence intervals with confidence 1-alpha. Thus a 

possibility distribution yields a lower bound (P ≥ 1- ) on the probability that the parameter value 

should lie within a given alpha-cut. As in the case of the simple min-max interval, a fuzzy interval 

can be depicted as a family of probability distributions, limited by an upper and a lower cdf, as 
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shown in Figure 1. While the function presented in Figure 1 is a trapezoidal distribution, more 

complex distributions can be adopted to suit available information (See Dubois and Prade 1988). 

Fuzzy intervals are particularly well suited for representing subjective judgements, commonly 

used in most LCA studies, because they adopt the language of experts, when describing the 

possible values a parameter can take in presence of incomplete information (Dubois 2006). If an 

expert is able to answer the following two questions: (i) can you provide a range within which you 

are confident that the parameter value should lie? and (ii) can you express a preferred value or 

interval of values within this range? Then the provided information can be formalized as a 

possibility distribution. 

2.3. Propagation methods 

The method used to propagate fuzzy intervals in the general case is very analogous to the Monte 

Carlo method using single probability distributions, except that in the case of parameters 

represented by fuzzy intervals, intervals are randomly sampled instead of single values, based on 

α-cuts. As shown above, for a given possibility distribution, an alpha-cut is an interval containing 

all values with a degree of possibility higher than alpha (0 ≤ α ≤ 1). An example of α-cut is 

presented in Figure 1: for alpha=0.6 the α-cut is the interval [16.4; 20.9]. If the model is relatively 

simple and monotonous, propagation of the fuzzy intervals through the model can be performed 

simply using interval calculus on alpha-cuts. For alpha = 0 to 1 with e.g. step = 0.1, the min and 

max values of the model are determined for all values of the alpha-cuts. However, if the model is 

not monotonous, it may not be possible to determine the min and max values of the model based 

solely on the min and max values of the alpha-cuts. In this case it is necessary to use an 

optimization algorithm to find the min and max values of the model for all parameter values within 

the alpha-cuts.  

If certain parameters are represented by fuzzy intervals while others are represented as single 

cdfs, the Monte Carlo method can be used to randomly sample the cdfs, while optimization on the 

alpha-cuts is performed in a second step (see Guyonnet et al. 2003 and Baudrit et al. 2005). 

Baudrit et al. (2006) developed a slightly different method (dubbed the IRS; Independent Random 

Set method), whereby random sampling is performed on both the cdfs and the fuzzy intervals. 

Couso et al. (2000) showed that the IRS method is a systematically conservative counterpart to the 
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calculation with random quantities under stochastic independence (classical Monte Carlo method 

on cdfs). The schematic of the IRS method, used herein, is the following.  

Given an LCA model with n parameters represented by probability distributions and m 

parameters represented by fuzzy intervals, 

1. Generate n + m random numbers between 0 and 1: x1, x2, ...xn+m. 

2. Sample the n probability distributions to obtain n random variables: p1, p2... pn. 

3. Sample the m fuzzy intervals to obtain m intervals: I1, I2... Im. 

4. Calculate the smallest (Inf) and largest (Sup) values of the LCA result obtained for all 

combinations of values contained in the m intervals Ii. 

5. Return to step 1 and repeat ω times. 

6. Obtain the probability bounds of the LCA results from the ω Inf  and Sup values as 

shown below. 

The IRS method yields a random interval made up of  intervals. This random interval is then 

summarized in the form of a pair of upper and lower cdf (see Baudrit et al. 2005) using the 

Plausibility and Belief functions of the theory of evidence (Shafer 1976). This theory assigns 

probability weights (noted m) to intervals (called focal sets; Ai) instead of simply point values (the 

limiting case of a classical probability distribution). Considering the proposal (noted B) “LCA 

result lies below a specified target level”, the probability that this proposal is true is comprised 

between the degree of Plausibility (an upper bound on probability) and the degree of Belief (a 

lower bound on probability) defined by Shafer (1976) as: 

 


BAi i
i

AmBBel
:

)()(  and   


0:
)()(

BAi i
i

AmBPl   (1) 

Bel(B) is thus the sum of the weights of all subsets Ai (i = 1 to n where n is the number of subsets) 

such that Ai is completely included within prescribed set B, while Pl(B) is the sum of the weights 

of all subsets Ai such that the intersection of Ai and B is non empty. In other words, Bel(B) gathers 

the imprecise evidence that asserts B, while Pl(B) gathers the imprecise evidence that does not 

contradict B. The interval [Bel(B), Pl(B)] contains all potential probability values induced by the 

mass function m. In practice, Pl is obtained by ordering the ω Inf values in increasing order, and 

assigning a frequency 1/ω to each value. while Bel is obtained likewise from the Sup values. These 

functions will be depicted graphically in the application section below. 
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2.4. Interpretation of results in a decision-making framework  

If at least one parameter in an e.g. LCA model is represented by a fuzzy interval, the uncertainty 

propagation will result in a family of probability distributions (delimited by the Pl and Bel 

functions described previously), rather than in a unique probability distribution. As suggested by 

Dubois and Guyonnet (2011), this may prove impractical in a decision-making framework. These 

authors therefore propose to compute a single distribution as a weighted average of the upper and 

lower distributions, with the selected weight reflecting the decision-makers attitude with respect to 

risk. The resulting distribution, referred to as a “confidence index” by Dubois and Guyonnet 

(2011), is computed from: 

 f(ai, bi) =  ai +(1 –) bi       (2) 

where ai and bi are the limits of the interval defined at probability level i. 

This approach, which is based on earlier work by Hurwicz (1951), thus computes a single 

indicator as a weighted average of focal element bounds. It achieves a trade-off between optimistic 

and pessimistic estimates. While it is recognized that the choice of weight  is subjective, it should 

be underlined that this subjectivity is only introduced at the decision-making step in the form of a 

single cdf used as a sensible reference displayed along with the pessimistic and optimistic outputs. 

This approach is very different from displaying a single distribution obtained by propagating 

single distributions selected arbitrarily at the beginning of the risk analysis step. 

3. Case study 

3.1. Goal and scope  

The objective of this LCA study is to exemplify and apply uncertainty propagation using different 

hypotheses with respect to input parameter uncertainty, for the purpose of comparison. To this end, 

a specific LCA case study was selected in order to show the differences between the probability 

and possibility theories and how they can be combined in order to better represent uncertainties in 

LCA. The selected case study investigated the environmental sustainability of willow cultivation 

for bioenergy production through co-firing in large-scale combined heat and power (CHP) plants, 

based on results from Tonini et al. (2012) (see section 3.2). Emphasis was placed on how the 

different uncertainties associated with the inventory data can be represented based on available 
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knowledge (e.g. from measurements, literature or expert estimates). The uncertainty associated 

with the environmental impact of the system was quantified with each individual uncertainty 

method to identify the major differences between them and recommend a best practice. The focus 

of this study was on the global warming impact category. The functional unit was the cultivation 

of 1 hectare of Danish land for bioenergy production (CHP). The geographical scope was 

Denmark and the temporal scope 20 years. Figure 2 presents the processes included in the LCA 

system boundary. 

3.2. Background – case study 

Reduction of fossil fuel consumption in the energy sector through increase of fluctuating 

renewable energy sources (e.g. wind energy and hydropower) and bioenergy is a fundamental step 

towards more sustainable energy systems (Tonini and Astrup 2012). However, biomass resources 

available for bioenergy are limited as biomass is already used today for a number of purposes (e.g. 

animal feeding and bedding, improvements of agricultural soil, etc.). Thus cultivation of energy 

crops for bioenergy production may be needed. One of the most critical impacts associated with 

energy crops is related to land use changes (LUC) defined as the consequences determined by the 

conversion of the land from one use to another use (Edwards et al. 2010; Searchinger et al. 2008; 

Searchinger 2010). LUC are distinguished between direct (dLUC) and indirect (iLUC). The dLUC 

impacts are associated with the consequences of cultivating the selected energy crops in place of 

an established food crop. The iLUC impacts are related to the consequences of converting land 

presently not used for crop cultivation to cropland, as a result of the induced demand for the 

initially displaced food crop. In order to evaluate the environmental sustainability of bioenergy 

systems, LCA is often used. For instance, in Tonini et al. (2012), a case study based on cultivation 

of three perennial crops (ryegrass, willow and Miscanthus) in Denmark was presented. The authors 

compared the environmental performance of anaerobic digestion, gasification, direct combustion 

and co-firing. With respect to global warming, co-firing of willow appeared to be the most 

environmentally sound option, though CO2 savings were generally low as a result of LUC. 

3.3. Modelling and data 

The modelling of the bioenergy system (primarily CO2 and N2O flows) was based on the inventory 

data provided by recent studies: Hamelin et al. 2012 (cultivation of willow and of the marginal 
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crop displaced, i.e. spring barley) and Tonini et al. 2012 (storage, pre-treatments, energy 

conversion processes and estimates of iLUC). Spring barley was assumed as the marginal crop, i.e. 

the food crop which would likely react to changes in demand or supply of energy crops (Dalgaard 

et al. 2008; Schmidt 2008; Weidema 2003). Coal-fired power plants and natural gas-fired power 

plants were assumed as the marginal technologies for respectively electricity and heat production 

(Energistyrelsen 2011; Weidema et al. 1999; Weidema 2003). The overall environmental impact 

on global warming was thus calculated as the sum of the following processes (see Appendix for 

further details): 

I. Cultivation of willow; 

II. dLUC, i.e. the impacts/savings associated with the replacement of the marginal crop; 

III. iLUC, estimated after Tonini et al. (2012); 

IV. Storage, pre-treatments: emission of carbon dioxide; 

V. Co-firing: emissions of carbon dioxide; 

VI. Avoided energy production (i.e. avoided emissions of GHGs from fossil fuel 

combustion). 

It was assumed that all carbon degradation during drying, storage and combustion was in the 

form of carbon dioxide (methane emissions were negligible) and machinery-related processes such 

as fertilizer spreading and tillage were not included because they contribute to the results only to a 

minor extend (Tonini et al. 2012).. Selected modelling data (referred to below as ‘parameters’) 

related to CO2 and N2O flows throughout the bioenergy system were associated with uncertainty 

(after Hamelin et al. 2012 and Tonini et al. 2012). The uncertainty representation modes are shown 

in Table 1. For the purpose of comparison, trapezoidal distributions were selected for both 

probability density function and fuzzy interval modes of representations. Their supports and cores 

are respectively delimited by the values [a, d] and [b, c] presented in Table 1, estimated based on 

the different sources presented. The choice between probability and fuzzy interval representations 

was made based on the quantity and quality of data available for each individual parameter. For 

example, Figure 3 shows the 19 values collected in literature and databases for the lower heating 

value (LHV) of willow. This significant amount of data enabled to define a trapezoidal distribution 

and to select a representation with probability distributions in the joint-propagation method. 

Conversely, very scarce information could be found on iLUC; therefore its uncertainty distribution 
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was defined based on expert judgment and the representation using a possibility distribution was 

preferred in the joint-propagation method. 

Further, it is necessary to fix correlations when they are known, in order to avoid non-physical 

combinations of parameter values during random sampling process. Correlations between the 

following parameters were identified and implemented: 

- Cultivation yield and net carbon uptake for willow, 

- Cultivation yield and net carbon uptake for barley, 

- Cultivation yields for willow and barley (as they depend highly on soil and climate 

properties), 

- LHV and carbon content of willow. 

These correlations were implemented by direct linear correlation: the carbon content was 

implemented as a function of LHV while net carbon uptakes for willow and barley and the yield of 

barley cultivation were all implemented as functions of the yield of willow cultivation. Note that a 

fuzzy correlation could also be implemented, whereby the selection of one parameter generates an 

interval for the correlated parameter rather than a precise value (see Guyonnet et al. 2003). 

Heat and electricity recovery are assumed to be independent because the power plants are 

considered as extraction condensing power plants. N2O emissions (both direct and indirect) were 

considered as independent for willow and spring barley because they are linked to fertilizer use. 

4. Results 

Uncertainty propagation was performed using the following three methods: Monte Carlo with 

cdfs, fuzzy calculation and the IRS method. The calculations were performed using MATLAB 7. 

In the 2
nd

 and 3
rd

 uncertainty method, minimum and maximum values were calculated using the 

global search function. The cumulative distribution functions of the calculated results are 

presented in Figure 4. The x-axis shows the impact of the system on global warming: a positive 

result means that the cultivation and co-combustion of willow contributed to more greenhouse 

gases emissions than current practice.  

The distribution obtained with Monte-Carlo simulation (in full line) suggests a 89% 

probability that willow cultivation and combustion was beneficial compared to current practice. 

According to this simulation, the average benefit was -139 Mg CO2-eq ha
-1

 for 20 years, with a 
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standard deviation of 114 Mg CO2-eq ha
-1

, and a 95% confidence interval between -363 and 76 

Mg CO2-eq ha
-1

. 

When implementing the same distributions as fuzzy intervals instead of probability 

distributions, two curves were obtained: a plausibility and a belief distribution (Figure 4). They are 

the respective upper and lower limits of the family of probability distributions obtained with fuzzy 

intervals. In this case study the proposal evaluated was “The impact of willow cultivation for 

bioenergy production on global warming is below a specific target”. Thus the plausibility 

distribution represents here the most “optimistic” probability distribution: it is obtained from the 

most favourable values of input possibility distributions. On the other hand, the belief distribution 

represents the most “pessimistic” outcome achievable: the impact on global warming cannot be 

larger than this distribution, considering the input information. The global warming potentials 

resulting from the fuzzy calculus were between -674 and 290 Mg CO2-eq ha
-1

 (95% confidence 

interval) and most likely between -336 and 14 Mg CO2-eq ha
-1

. These very wide ranges result from 

the fact that the rich information available for some parameters was only modelled as fuzzy 

information in this calculation. 

In the third method, either mode of uncertainty representation was selected, based on available 

information. Two distributions were again obtained, thus defining a family of distributions which 

again encompasses the purely probabilistic result. Note that the distance between the upper and 

lower probability bounds, which directly reflects the incomplete nature of information regarding 

certain parameters, is less than in the case of the purely possibilistic calculation, because in this 

case certain parameters are represented by single cdfs. 

Also depicted in Figure 4 is the confidence index calculated by assigning a weight of 1/3 to 

the “optimistic” IRS result and 2/3 to the “pessimistic” result. Putting all the weight on the 

pessimistic bound would seem exaggerated, as it would be neglecting all information suggesting a 

more favourable outcome, while putting all the weight on the optimistic bound would appear as 

unrealistically biased. The selected weights of 1/3 and 2/3 are proposed as a “reasonably 

conservative” compromise. 
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5. Discussion 

In this study, it was recognized that the level of information was low for 10 out of the 17 

parameters (cf. Table 1). The results highlighted the fundamental difference between the 

probabilistic and possibilistic representations: while the Monte Carlo analysis produces a crisp 

(precise) result on the probability of exceeding the baseline emissions (represented by a global 

warming potential of zero in Figure 4), the IRS method yields a family of distributions. When 

combining all most favourable assumptions for the 10 parameters, the probability of exceeding the 

baseline emissions fell to less than 1%. But when combining all least favourable assumptions, this 

probability rose to 48%. Note that both cases are fully realistic as the modeller had no a priori 

knowledge on the variability of these parameters. The choice of deciding between the optimistic 

and pessimistic assumptions is left to the decision maker at the interpretation stage. 

We see that the Monte Carlo method and the Confidence Index yield very similar results at 

high levels of probability. This is primarily related to the fact that the same distributions were 

selected for the pdfs and the fuzzy intervals. However, what we see with the IRS result is the 

consequence of the incomplete character of information pertaining to certain parameters. This is 

seen in the distance between the upper and lower probability bounds. In a real situation, an 

excessive distance between these two bounds might motivate the decision-maker to increase the 

information base regarding certain critical parameters, in order to reduce the uncertainty. Such a 

decision could not ensue from a purely probabilistic calculation based on subjective distributions 

(despite lack of information), because there is no way of distinguishing, in the variability of the 

calculated result, what comes from true randomness and what comes from incomplete information. 

Considering the considerable sources of uncertainty in LCA, it is felt that it would be more faithful 

to convey, in addition to an indicator for decision-making, an appreciation of the extent of the 

knowledge gaps and their consequences. 

This study used a rather simple case study with only one impact category as the focus was put 

on the methodology. It is acknowledged that the implementation of such a method in complex 

systems and in LCA software would require substantial computation power. Indeed the 

calculations involve an optimisation step over several parameters which required for example in 

this study approximately 10 seconds per run. 
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6. Conclusions 

This paper underlines the difference between different types of uncertainty in the context of LCA 

modelling and illustrates a methodology that allows such uncertainties to be propagated through 

the LCA model. Rather than to arbitrarily select a given mode of uncertainty representation, it is 

proposed that the investigator first considers the information that is available and then selects the 

formalism that seems best suited to convey this information. This sets the focus on available 

information and the importance of gathering information that is both reliable and technically 

feasible, rather than disguising imprecise information as precise variability. If available 

information is rich, then a purely statistical representation mode is in order, but if it is scarce, then 

it may be better conveyed by possibility distributions. The two bounding distributions obtained as 

a result reflect the incomplete character of the information pertaining to certain parameters: one is 

the “optimistic” distribution obtained when using all favourable values of input possibility 

distributions, the other one is the “pessimistic” distribution. Finally, at the interpretation step, a 

single distribution can be computed by assigning weighs to these two bound distributions, 

reflecting the decision maker’s aversion to risk. 
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Tables 

Table 1: Assumed parameter distributions, values rounded to 2 significant digits  

Description Unit Limits of the trapezoidal 

distributions 

Source of information Preferred

represen-

tation 

a b c d   

Net carbon uptake 

from atmosphere, 

willow cultivation 

Mg C  

ha
-1 

yr
-1

 

3 6 6 9 Tonini et al. 2012 Fuzzy 

Net carbon uptake 

from atmosphere, 

barley cultivation 

Mg C  

ha
-1 

yr
-1

 

1 2 2 3 Tonini et al. 2012 Fuzzy 

N2O direct emissions, 

willow cultivation 

kg N   

ha
-1 

yr
-1

 

0.8 1.69 1.69 2.5 Tonini et al. 2012 Fuzzy 

N2O direct emissions, 

barley cultivation 

kg N   

ha
-1 

yr
-1

 

0.9 1.9 1.9 2.9 Tonini et al. 2012 Fuzzy 

N2O indirect 

emissions, willow 

cultivation 

kg N   

ha
-1 

yr
-1

 

0.1 0.22 0.22 0.33 Tonini et al. 2012 Fuzzy 

N2O indirect 

emissions, barley 

cultivation 

kg N   

ha
-1 

yr
-1

 

0.3 0.56 0.56 0.8 Tonini et al. 2012 Fuzzy 

Indirect land use 

change 

Mg CO2-

eq ha
-1

 

185 398 398 614 After Tonini et al. 2012 * Fuzzy 

Yield of cultivation of 

willow 

Mg DM 

ha
-1

 

8.7 12.7 12.7 16.7 Tonini et al. 2012 Proba-

bility 

Yield of cultivation of 

barley 

Mg DM 

ha
-1

 

3.35 4.85 4.85 6.35 Tonini et al. 2012 Proba-

bility 

Carbon content of 

willow 

% DM 0.47 0.48 0.49 0.50 Tonini et al. 2012 ** Proba-

bility 

Loss of carbon during 

storage 

% 0.035 0.048 0.048 0.061 Tonini et al. 2012 Fuzzy 

Lower heating value of 

dry matter (willow) 

GJ Mg
-1

 

DM 

16.7 17.6 19 19.8 Tonini et al. 2012 ** Proba-

bility 

Water content of 

willow after field 

drying 

% 0.15 0.2 0.3 0.35 Tonini et al. 2012 Fuzzy 

Electricity recovery 

from LHV 

% 0.35 0.38 0.38 0.41 Danish Energy Agency 

and energinet.dk (2010) 

Proba-

bility 

Heat recovery from 

LHV 

% 0.44 0.52 0.52 0.6 Danish Energy Agency 

and energinet.dk (2010) 

Proba-

bility 

GHG emissions from 

electricity production 

in DK 

Mg CO2-

eq  

MWh
-1

 

0.66 0.92 0.92 1.05 Personal communication, 

DONG Energy A/S et al. 

(2010) 

Proba-

bility 

GHG emissions from 

heat production in DK 

Mg CO2-

eq GJ
-1

 

0.04 0.05 0.06 0.07 Estimations based on the 

ecoinvent database 

Fuzzy 

* This includes the conversion of land and the effects of cultivating the reacting crop on newly 

converted land. 

**: 19 values extracted from articles and the Phyllis and Biodat databases referenced in Tonini et 

al. 2012. 
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Figure Captions 

Fig. 1 Example of a possibility distribution 

Fig. 2 System boundary of the selected LCA case study (dashed lines: avoided processes) 

Fig. 3 Data collected in 19 studies for LHV of willow 

Fig. 4 Cumulative distribution functions of greenhouse gas emissions of cultivation and co-

combustion of willow (in Mg CO2-eq ha
-1

) obtained with three uncertainty propagation methods: 

Monte Carlo, fuzzy calculus and IRS method (1000 runs) 
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Appendix: Calculation of the global warming (GW) 

impact 

Cultivation and harvest of willow (life-cycle of 21 years) 

12/44*21/)*5*13( __2__2 harvestinncultivatioinyemin CCCCO   [1] 

1000/*28/44*)( 2222 OCFNONONON idem     [2] 

Where: 

CO2_in: yearly (average) CO2 emissions from cultivation of willow   Mg CO2 ha
-1 

yr
-1 

Cin_cultivation: yearly net uptake of carbon during the 13 cultivation years  Mg C ha
-1 

yr
-1

 

Cin_harvest: yearly net uptake of carbon during the 5 harvest years (this parameter being strongly 

correlated to Cin_cultivation it is later replaced by Cin_cultivation - 0.78)  Mg C ha
-1 

yr
-1

 

Cem_yr2: emissions of carbon during year 2 (assumed equal to 5.32)  Mg C ha
-1 

yr
-1

 

N2Oem: yearly emissions of N2O from cultivation of willow   Mg CO2-eq ha
-1 

yr
-1

 

N2Od: yearly direct emissions of N2O from cultivation of willow  Mg N ha
-1 

yr
-1

 

N2Oi: yearly indirect emissions of N2O from cultivation of willow  Mg N ha
-1 

yr
-1

 

N2OCF: characterisation factor of N2O for GW    kg CO2-eq/kg N2O 

 

Cultivation and harvest of barley 

12/44**12/44*__2 bbbinb CYCCO      [3] 

1000/*28/44*)( 2_2_22 OCFNONONON
bibdb    [4] 

Where: 

CO2_b: yearly CO2 emissions from cultivation and harvest of barley  Mg CO2 ha
-1 

yr
-1 

Cin_b: yearly net uptake of carbon during cultivation and harvest of barley Mg C ha
-1 

yr
-1 

Yb: yield of cultivation of barley (at the field gate)     Mg DM ha
-1 

yr
-1 

Cb: carbon content of barley      %DM 

N2Ob: yearly emissions of N2O from cultivation and harvest of barley  Mg CO2-eq ha
-1 

yr
-1

 

N2Od_b: yearly direct emissions of N2O from cultivation and harvest of barley Mg N ha
-1 

yr
-1

 

N2Oi_b: yearly indirect emissions of N2O from cultivation and harvest of barley Mg N ha
-1 

yr
-1 

N2OCF: characterisation factor of N2O for GW    kg CO2-eq/kg N2O 
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Co-firing 

12/44** wCYieldCF        [5] 

Where: 

CF: yearly CO2 emissions from co-firing of willow    Mg CO2 ha
-1 

yr
-1 

Yield: yield of cultivation of willow (at the field gate)    Mg DM ha
-1

 yr
-1 

Cw: carbon content of willow       %DM 

 

Avoided energy production 

)*_*6.3/_(*)*

)1/()1(*(*

2 heatelec GHGrecheatGHGrecelecOheatingH

ntwatercontentwaterconteLossLHVYieldEP




  [6] 

Where: 

EP: yearly avoided GHG emission from energy production   Mg CO2–eq ha
-1 

yr
-1 

Yield: yield of cultivation of willow (at the field gate)    Mg DM ha
-1 

yr
-1 

LHV: lower heating value of willow as dry matter     GJ Mg
-1

 DM 

Loss: loss of carbon during drying and storage of willow    % 

watercontent: water content of willow after field drying    % 

H2Oheating: energy needed for water content evaporation   GJ Mg
-1

 

elec_rec: electricity recovery from LHV     % 

heat_rec: heat recovery from LHV      % 

GHGelec: GHG emissions from electricity production in DK    Mg CO2-eq MWh
-1

 

GHGheat: GHG emissions from heat production in DK   Mg CO2-eq GJ
-1

 

 

Total net impact  

))((*20 2_22_2 EPCFONCOONCOiLUCTNI bbemin   [7] 

Where: 

TNI: total net impact on GW over 20 years     Mg CO2-eq ha
-1 

yr
-1

 

iLUC: indirect land use change      Mg CO2-eq ha
-1 

yr
-1

 

CO2_in: yearly CO2 savings from cultivation and harvest of willow (average) Mg CO2 ha
-1 

yr
-1 

N2Oem: yearly emissions of N2O for willow cultivation   Mg CO2-eq ha
-1 

yr
-1
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CO2_b: yearly CO2 savings from cultivation and harvest of barley  Mg CO2 ha
-1 

yr
-1 

N2Ob: yearly emissions of N2O for barley cultivation    Mg CO2-eq ha
-1 

yr
-1

 

CF: yearly CO2 emissions from co-firing of willow    Mg CO2 ha
-1 

yr
-1 

EP: yearly avoided GHG emission from energy production   Mg CO2–eq ha
-1 

yr
-1 

 


