1,411 research outputs found

    The Rotating Mass Matrix, the Strong CP Problem and Higgs Decay

    Full text link
    We investigate a recent solution to the strong CP problem, obtaining a theta-angle of order unity, and show that a smooth trajectory of the massive eigenvector of a rank-one rotating mass matrix is consistent with the experimental data for both fermion masses and mixing angles (except for the masses of the lightest quarks). Using this trajectory we study Higgs decay and find suppression of Γ(Hccˉ)\Gamma(H\to c\bar{c}) compared to the standard model predictions for a range of Higgs masses. We also give limits for flavour violating decays, including a relatively large branching ratio for the τμ+\tau^-\mu^+ mode.Comment: 15 pages, 6 figures; improvements to introduction and preliminarie

    Mass Hierarchy, Mixing, CP-Violation and Higgs Decay---or Why Rotation is Good for Us

    Get PDF
    The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution of the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.Comment: 47 pages, 9 figure

    High Density out-of-Plane Microprobe Array

    Get PDF
    MEMS technology has been developed rapidly in the last few years. More and more special micro structures were discussed in several publications. However, all of the structures were produced by consist of the three fundamental structures, which included bridge, cantilever and membrane structures. Even the more complex structures were no exception. The cantilever with the property of simple design and easy fabrication among three kinds of fundamental structure, therefore, it was popular used in the design of MEMS device.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    A Nonabelian Yang-Mills Analogue of Classical Electromagnetic Duality

    Get PDF
    The classic question of a nonabelian Yang-Mills analogue to electromagnetic duality is here examined in a minimalist fashion at the strictly 4-dimensional, classical field and point charge level. A generalisation of the abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the abelian theory. For example, there is a dual potential, but it is a 2-indexed tensor TμνT_{\mu\nu} of the Freedman-Townsend type. Though not itself functioning as such, TμνT_{\mu\nu} gives rise to a dual parallel transport, A~μ\tilde{A}_\mu, for the phase of the wave function of the colour magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard colour (electric) charge itself is found to be a monopole of A~μ\tilde{A}_\mu. At the same time, the gauge symmetry is found doubled from say SU(N)SU(N) to SU(N)×SU(N)SU(N) \times SU(N). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a `universal' principle, namely the Wu-Yang (1976) criterion for monopoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov (1980).Comment: We regret that, due to a technical hitch, parts of the reference list were mixed up. This is the corrected version. We apologize to the authors whose papers were misquote

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Identification of Impact Craters in Foils from the Stardust Interstellar Dust Collector

    Get PDF
    The Stardust Interstellar Dust Collection tray provides the first opportunity for the direct laboratory-based measurement of contemporary interstellar dust. The total exposed surface of the tray was approximately 0.1 square meters, including 153 square centimeters of Al foil in addition to the silica aerogel tiles that are the primary collection medium. Preliminary examination of aerogel tiles has already revealed 16 tracks from particle impacts with an orientation consistent with an interstellar origin, and to date four of the particles associated with these tracks have a composition consistent with an extraterrestrial origin. Tentative identification of impact craters on three foil samples was also reported previously. Here we present the definitive identification of 20 impact craters on five foils

    EZH2 Modulates the DNA Methylome and Controls T Cell Adhesion Through Junctional Adhesion Molecule A in Lupus Patients

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141024/1/art40338_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141024/2/art40338.pd
    corecore