124 research outputs found

    Many Ribosomal Protein Genes Are Cancer Genes in Zebrafish

    Get PDF
    We have generated several hundred lines of zebrafish (Danio rerio), each heterozygous for a recessive embryonic lethal mutation. Since many tumor suppressor genes are recessive lethals, we screened our colony for lines that display early mortality and/or gross evidence of tumors. We identified 12 lines with elevated cancer incidence. Fish from these lines develop malignant peripheral nerve sheath tumors, and in some cases also other tumor types, with moderate to very high frequencies. Surprisingly, 11 of the 12 lines were each heterozygous for a mutation in a different ribosomal protein (RP) gene, while one line was heterozygous for a mutation in a zebrafish paralog of the human and mouse tumor suppressor gene, neurofibromatosis type 2. Our findings suggest that many RP genes may act as haploinsufficient tumor suppressors in fish. Many RP genes might also be cancer genes in humans, where their role in tumorigenesis could easily have escaped detection up to now

    Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma

    Get PDF
    Resistance to chemotherapy in ovarian cancer is poorly understood. Evolutionary models of cancer predict that, following treatment, resistance emerges either because of outgrowth of an intrinsically resistant sub-clone or evolves in residual disease under the selective pressure of treatment. To investigate genetic evolution in high-grade serous (HGS) ovarian cancers, we first analysed cell line series derived from three cases of HGS carcinoma before and after platinum resistance had developed (PEO1, PEO4 and PEO6; PEA1 and PEA2; and PEO14 and PEO23). Analysis with 24-colour fluorescence in situ hybridisation and single nucleotide polymorphism (SNP) array comparative genomic hybridisation (CGH) showed mutually exclusive endoreduplication and loss of heterozygosity events in clones present at different time points in the same individual. This implies that platinum-sensitive and -resistant disease was not linearly related, but shared a common ancestor at an early stage of tumour development. Array CGH analysis of six paired pre- and post-neoadjuvant treatment HGS samples from the CTCR-OV01 clinical study did not show extensive copy number differences, suggesting that one clone was strongly dominant at presentation. These data show that cisplatin resistance in HGS carcinoma develops from pre-existing minor clones but that enrichment for these clones is not apparent during short-term chemotherapy treatment

    The importance of nerve microenvironment for schwannoma development

    Get PDF
    Schwannomas are predominantly benign nerve sheath neoplasms caused by Nf2 gene inactivation. Presently, treatment options are mainly limited to surgical tumor resection due to the lack of effective pharmacological drugs. Although the mechanistic understanding of Nf2 gene function has advanced, it has so far been primarily restricted to Schwann cell-intrinsic events. Extracellular cues determining Schwann cell behavior with regard to schwannoma development remain unknown. Here we show pro-tumourigenic microenvironmental effects on Schwann cells where an altered axonal microenvironment in cooperation with injury signals contribute to a persistent regenerative Schwann cell response promoting schwannoma development. Specifically in genetically engineered mice following crush injuries on sciatic nerves, we found macroscopic nerve swellings in mice with homozygous nf2 gene deletion in Schwann cells and in animals with heterozygous nf2 knockout in both Schwann cells and axons. However, patient-mimicking schwannomas could only be provoked in animals with combined heterozygous nf2 knockout in Schwann cells and axons. We identified a severe re-myelination defect and sustained macrophage presence in the tumor tissue as major abnormalities. Strikingly, treatment of tumor-developing mice after nerve crush injury with medium-dose aspirin significantly decreased schwannoma progression in this disease model. Our results suggest a multifactorial concept for schwannoma formation-emphasizing axonal factors and mechanical nerve irritation as predilection site for schwannoma development. Furthermore, we provide evidence supporting the potential efficacy of anti-inflammatory drugs in the treatment of schwannomas

    Neurofibromatosis: chronological history and current issues

    Full text link

    A highly polymorphic dinucleotide repeat on the proximal short arm of the human X chromosome: linkage mapping of the synapsin I/A-raf-1 genes.

    Get PDF
    A compound (AC)n repeat located 1,000 bp downstream from the human synapsin I gene and within the last intron of the A-raf-1 gene has been identified. DNA data-base comparisons of the sequences surrounding the repeat indicate that the synapsin I gene and the A-raf-1 gene lie immediately adjacent to each other, in opposite orientation. PCR amplification of this synapsin I/A-raf-1 associated repeat by using total genomic DNA from members of the 40 reference pedigree families of the Centre d'Etude du Polymorphisme Humaine showed it to be highly polymorphic, with a PIC value of .84 and a minimum of eight alleles. Because the synapsin I gene has been mapped previously to the short arm of the human X chromosome at Xp11.2, linkage analysis was performed with markers on the proximal short arm of the X chromosome. The most likely gene order is DXS7SYN/ARAF1TIMPDXS255DXS146, with a relative probability of 5 x 10(8) as compared with the next most likely order. This highly informative repeat should serve as a valuable marker for disease loci mapped to the Xp11 region
    corecore