83 research outputs found

    Signature of the Overhauser field on the coherent spin dynamics of donor-bound electron in a single CdTe quantum well

    Full text link
    We have studied the coherent spin dynamics in an oblique magnetic field of electrons localized on donors and placed in the middle of a single CdTe quantum well, by using a time-resolved optical technique: the photo-induced Faraday rotation. We showed that this dynamics is affected by a weak Overhauser field created via the hyperfine interaction of optically spin-polarized donor-bound electrons with the surrounding nuclear isotopes carrying non-zero spins. We have measured this nuclear field, which is on the order of a few mT and can reach a maximum experimental value of 9.4 mT. This value represents 13 % of the maximal nuclear polarization, and corresponds also to 13 % of maximal electronic polarization.Comment: 15 pages, 4 figure

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    Hole spin dephasing time associated to hyperfine interaction in quantum dots

    Full text link
    The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants of the electron-nuclear interaction. We also study, theoretically, the hole spin dephasing of an ensemble of quantum dots via the hyperfine interaction in the framework of frozen fluctuations of the nuclear field, in absence or in presence of an applied magnetic field. We also discuss experiments which could evidence the dipole-dipole hyperfine interaction and give information on hole mixing.Comment: 35 pages, 7 figures and 2 table

    Enhancement of the electron spin memory by localization on donors in a quantum well

    Full text link
    We present easily reproducible experimental conditions giving long electron spin relaxation and dephasing times at low temperature in a quantum well. The proposed system consists in an electron localized by a donor potential, and immerged in a quantum well in order to improve its localization with respect to donor in bulk. We have measured, by using photoinduced Faraday rotation technique, the spin relaxation and dephasing times of electrons localized on donors placed in the middle of a 80A CdTe quantum well, and we have obtained 15ns and 18ns, respectively, which are almost two orders of magnitude longer than the free electron spin relaxation and dephasing times obtained previously in a similar CdTe quantum well (J. Tribollet et al. PRB 68, 235316 (2003)).Comment: 15 pages, 4 figure

    Structural and magnetic properties of molecular beam epitaxy (MnSb2Te4)x(Sb2Te3)1-x topological materials with exceedingly high Curie temperature

    Full text link
    Tuning magnetic properties of magnetic topological materials is of interest to realize elusive physical phenomena such as quantum anomalous hall effect (QAHE) at higher temperatures and design topological spintronic devices. However, current topological materials exhibit Curie temperature (TC) values far below room temperature. In recent years, significant progress has been made to control and optimize TC, particularly through defect engineering of these structures. Most recently we showed evidence of TC values up to 80K for (MnSb2Te4)x(Sb2Te3)1-x, where x is greater than or equal to 0.7 and less than or equal to 0.85, by controlling the compositions and Mn content in these structures. Here we show further enhancement of the TC, as high as 100K, by maintaining high Mn content and reducing the growth rate from 0.9 nm/min to 0.5 nm/min. Derivative curves reveal the presence of two TC components contributing to the overall value and propose TC1 and TC2 have distinct origins: excess Mn in SLs and Mn in Sb2-yMnyTe3QLs alloys, respectively. In pursuit of elucidating the mechanisms promoting higher Curie temperature values in this system, we show evidence of structural disorder where Mn is occupying not only Sb sites but also Te sites, providing evidence of significant excess Mn and a new crystal structure:(Mn1+ySb2-yTe4)x(Sb2-yMnyTe3)1-x. Our work shows progress in understanding how to control magnetic defects to enhance desired magnetic properties and the mechanism promoting these high TC in magnetic topological materials such as (Mn1+ySb2-yTe4)x(Sb2-yMnyTe3)1-x

    Isotope sensitive measurement of the hole-nuclear spin interaction in quantum dots

    Full text link
    Decoherence caused by nuclear field fluctuations is a fundamental obstacle to the realization of quantum information processing using single electron spins. Alternative proposals have been made to use spin qubits based on valence band holes having weaker hyperfine coupling. However, it was demonstrated recently both theoretically and experimentally that the hole hyperfine interaction is not negligible, although a consistent picture of the mechanism controlling the magnitude of the hole-nuclear coupling is still lacking. Here we address this problem by performing isotope selective measurement of the valence band hyperfine coupling in InGaAs/GaAs, InP/GaInP and GaAs/AlGaAs quantum dots. Contrary to existing models we find that the hole hyperfine constant along the growth direction of the structure (normalized by the electron hyperfine constant) has opposite signs for different isotopes and ranges from -15% to +15%. We attribute such changes in hole hyperfine constants to the competing positive contributions of p-symmetry atomic orbitals and the negative contributions of d-orbitals. Furthermore, we find that the d-symmetry contribution leads to a new mechanism for hole-nuclear spin flips which may play an important role in hole spin decoherence. In addition the measured hyperfine constants enable a fundamentally new approach for verification of the computed Bloch wavefunctions in the vicinity of nuclei in semiconductor nanostructures

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore