354 research outputs found

    Unfinished Revolution

    Get PDF

    Skin friction blistering: computer model

    Full text link
    BACKGROUND/PURPOSE: Friction blisters, a common injury in sports and military operations, can adversely effect or even halt performance. Given its frequency and hazardous nature, recent research efforts appear limited. Blistering can be treated as a delamination phenomenon; similar issues in materials science have been extensively investigated in theory and experiment. An obstacle in studying blistering is the difficulty of conducting experiment on humans and animals. Computer modeling thus becomes a preferred tool. METHOD: This paper used a dynamic non-linear finite-element model with a blister-characterized structure and contact algorithm for outer materials and blister roof to investigate the effects on deformation and stress of an existing blister by changing the friction coefficient and elastic modulus of the material in contact with the blister. RESULTS: Through the dynamics mode and harmonic frequency approach, we demonstrated that the loading frequency leads to dramatic changes of displacement and stress in spite of otherwise similar loading. Our simulations show that an increased friction coefficient does not necessarily result in an increase in either the stress on the hot spot or blister deformation; local maximum friction stress and Von Mises stress exist for some friction coefficients over the wide range examined here. In addition, the stiffness of contact material on blistering is also investigated, and no significant effects on deformation and Von Mises stress are found, again at the range used. The model and method provided here may be useful for evaluating loading environments and contact materials in reducing blistering incidents. CONCLUSION: The coupling finite-element model can predict the effects of friction coefficient and contacting materials' stiffness on blister deformation and hot spot stress

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change : UNEP Environmental Effects Assessment Panel, Update 2020

    Get PDF
    This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.Peer reviewe

    Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change : UNEP Environmental Effects Assessment Panel, Update 2021

    Get PDF
    The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.Peer reviewe

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe

    Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?

    Get PDF
    The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors
    • …
    corecore