33 research outputs found

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop

    A new spectroscopic analysis of the massive O + O type binary HD 54662 AB

    Get PDF
    HD 54662 AB is one of the three O + OB binaries known so far with orbital period longer than 1000 d, offering the opportunity to test scenarios of massive star formation and models of single stellar evolution. Here, we present a detailed study of this system based on new high-resolution spectra and data. A disentangling method is used to recover the individual spectra of the primary and secondary components, which are classified as O6.5 V(n)z and O7.5 Vz, respectively. Combining radial velocity measurements and astrometric data, a new absolute orbit with a period of 2113 ± 9 d and an eccentricity of 0.062 ± 0.008 is determined, confirming previous findings. However, absolute masses of 23.8 ± 1.1 M for the primary and 20.3 ± 1.1 M for the secondary are obtained, differing from previous determinations but in reasonable agreement with the spectral types of the stars. Primary and secondary components show remarkably different projected rotational velocities (160 and 40 km s−1 , respectively), which is probably related to the formation process of the binary. Contrary to previously interpretations, the star with broader spectral features is the most massive object in the system. Stellar and wind parameters of both stars are derived through quantitative spectroscopic analysis of the disentangled spectra using FASTWIND models, and they are consistent with the current calibrations for O-type stars. Evolutionary masses and ages are also computed with the BONNSAI tool. Ages below 2.5 Ma are obtained, in agreement with the youth expected from their Vz nature.Fil: Barba, Rodolfo Héctor. Universidad de La Serena; ChileFil: Sabín Sanjulián, C. Universidad de La Serena; ChileFil: Arias, J. I.. Universidad de La Serena; ChileFil: Gamen, Roberto Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Morrell, Nidia Irene. Observatorio Las Campanas, Carnegie Institution; ChileFil: Ferrero, G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Maíz Apellániz, Jesús. Csic-Inta. Centro de Astrobiología; EspañaFil: Putkuri, C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Simón Díaz, S.. Instituto de Astrofísica de Canarias; EspañaFil: Boyajian, T. S.. Louisiana State University; Estados UnidosFil: Fullerton, A. W.. Space Telescope Science Institute; Estados UnidosFil: McSwain, M. V.. Lehigh University; Estados Unido

    Spectral classification and properties of the O VZ stars in the Galactic O-Star Spectroscopic Survey (GOSSS)

    Get PDF
    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ4471, He ii λ4542, and He ii λ4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    Spectral classification and properties of the O VZ stars in the Galactic O-Star Spectroscopic Survey (GOSSS)

    Get PDF
    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ4471, He ii λ4542, and He ii λ4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    An excess of massive stars in the local 30 Doradus starburst

    Get PDF
    The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 [Formula: see text] and contains 32 ± 12% more stars above 30 [Formula: see text] than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 [Formula: see text], the IMF power-law exponent is [Formula: see text], shallower than the Salpeter value of 2.35

    The VLT-FLAMES Tarantula Survey I: Introduction and observational overview

    Get PDF
    The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution.Comment: Accepted by A&A, 52 pages (main body: 19 pages, supplementary tables: 33 pages), v3: two classifications updated to match a parallel pape

    The VLT-FLAMES Tarantula Survey

    Get PDF
    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at Minit ≳ 25 M⊙. At masses below 60 M⊙, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at Minit ≲ 18 M⊙. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He i absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., νesini < 200kms-1) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3 dex higher than earlier results. For stars brighter than 105 L⊙, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV ~ 1/8 to 1/6

    The VLT-FLAMES Tarantula Survey. XXIX. Massive star formation in the local 30 Doradus starburst

    Get PDF
    The 30 Doradus (30 Dor) nebula in the Large Magellanic Cloud (LMC) is the brightest HII region in the Local Group and a prototype starburst similar to those found in high redshift galaxies. It is thus a stepping stone to understand the complex formation processes of stars in starburst regions across the Universe. Here, we have studied the formation history of massive stars in 30 Dor using masses and ages derived for 452 mainly OB stars from the spectroscopic VLT-FLAMES Tarantula Survey (VFTS). We find that stars of all ages and masses are scattered throughout 30 Dor. This is remarkable because it implies that massive stars either moved large distances or formed independently over the whole field of view in relative isolation. We find that both channels contribute to the 30 Dor massive star population. Massive star formation rapidly accelerated about 8 Myr ago, first forming stars in the field before giving birth to the stellar populations in NGC 2060 and NGC 2070. The R136 star cluster in NGC 2070 formed last and, since then, about 1 Myr ago, star formation seems to be diminished with some continuing in the surroundings of R136. Massive stars within a projected distance of 8 pc of R136 are not coeval but show an age range of up to 6 Myr. Our mass distributions are well populated up to 200 M⊙. The inferred IMF is shallower than a Salpeter-like IMF and appears to be the same across 30 Dor. By comparing our sample of stars to stellar models in the Hertzsprung–Russell diagram, we find evidence for missing physics in the models above log L/L⊙ = 6 that is likely connected to enhanced wind mass loss for stars approaching the Eddington limit. Our work highlights the key information about the formation, evolution and final fates of massive stars encapsulated in the stellar content of 30 Dor, and sets a new benchmark for theories of massive star formation in giant molecular clouds
    corecore