20 research outputs found

    FarR Regulates the farAB-Encoded Efflux Pump of Neisseria gonorrhoeae via an MtrR Regulatory Mechanism

    No full text
    The farAB operon of Neisseria gonorrhoeae encodes an efflux pump which mediates gonococcal resistance to antibacterial fatty acids. It was previously observed that expression of the farAB operon was positively regulated by MtrR, which is a repressor of the mtrCDE-encoded efflux pump system (E.-H. Lee and W. M. Shafer, Mol. Microbiol. 33:839-845, 1999). This regulation was believed to be indirect since MtrR did not bind to the farAB promoter. In this study, computer analysis of the gonococcal genome sequence database, lacZ reporter fusions, and gel mobility shift assays were used to elucidate the regulatory mechanism by which expression of the farAB operon is modulated by MtrR in gonococci. We identified a regulatory protein belonging to the MarR family of transcriptional repressors and found that it negatively controls expression of farAB by directly binding to the farAB promoter. We designated this regulator FarR to signify its role in regulating the farAB operon. We found that MtrR binds to the farR promoter, thereby repressing farR expression. Hence, MtrR regulates farAB in a positive fashion by modulating farR expression. This MtrR regulatory cascade seems to play an important role in adjusting levels of the FarAB and MtrCDE efflux pumps to prevent their excess expression in gonococci

    The transposon-like correia elements encode numerous strong promoters and provide a potential new mechanism for phase variation in the meningococcus

    Get PDF
    Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted

    Neisserial Correia Repeat-Enclosed Elements Do Not Influence the Transcription of pil Genes in Neisseria gonorrhoeae and Neisseria meningitidis ▿ †

    No full text
    Two human-specific neisserial pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, require the expression of type IV pili (tfp) for initial attachment to the host during infection. However, the mechanisms controlling the assembly and functionality of tfp are poorly understood. It is known that the gonococcal pilE gene, encoding the major subunit, is positively regulated by IHF, a multifunctional DNA binding protein. A neisserial specific repetitive DNA sequence, termed the Correia repeat-enclosed element (CREE) is situated upstream of three pil loci: pilHIJKX (pilH-X), pilGD, and pilF. CREEs have been shown to contain strong promoters, and some CREE variants contain a functional IHF binding site. CREEs might therefore be involved in the regulation of tfp biogenesis in pathogenic Neisseria. Site-directed and deletion mutagenesis on promoter::cat reporter constructs demonstrated that transcription of pilH-X and pilGD is from a σ70 promoter and is independent of the CREE. The insertion of a CREE in the pilF promoter region in N. meningitidis generated a functional σ70 promoter. However, there is also a functional promoter at this position in N. gonorrhoeae, where there is no CREE. These results suggest CREE insertion in these three pil loci does not influence transcription and that IHF does not coordinately regulate tfp biogenesis
    corecore