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Abstract

Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost
2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining
eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter
system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by
a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive
transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three
meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular
locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new
allele is available to spread through the population by natural transformation. This process may represent a hitherto
unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the
Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects
within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends,
we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.
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Introduction

Neisseria meningitidis is an encapsulated Gram-negative diplococ-

cus commensal of the human nasopharyngeal tract. Although

carried asymptomatically by 10–15% of the population, it

occasionally crosses the epithelial cell barrier, causing bacterial

meningitis and septicemia. Vaccination against serogroup A and C

strains limits the impact of the disease in developed countries.

However, the disease remains a significant problem in the

meningitis belt of sub-Saharan Africa, where epidemics begin at

the start of the dry season and may affect up to 1% of the

population [1,2]. Even in the UK there are about 3000 cases each

year. The disease has a rapid onset and is almost always fatal if

untreated.

The N. meningitidis genome contains a relatively large amount of

repetitive DNA. The repeats range in size from single nucleotide

homopolymeric tracts, which mediate antigenic phase variation, to

larger repeats of unknown or uncertain function [3–6]. One of the

most abundant repeats is a miniature inverted-repeat transpos-

able-element (MITE) first identified by Correia and colleagues in

1986 [7,8]. We refer to the repeat as the Correia element (CE), but

it has also been known as NEMIS (Neisseria miniature insertion

sequence) and CREE (Correia repeat enclosed element).

The archetypal genome sequences for the serogroup A, B and C

strains of N. meningitidis (Z2491, MC58 and FAM18, respectively)

each contain about 250 intact CEs [3,5,6]. Insertion of the

element is accompanied by duplication of a TA dinucleotide at the

target site [9]. This is the hallmark of the mariner transposons,

represented in the eubacteria by the IS630 family [10–13].

Short dispersed repeats, such as the CE, are dispersed and

amplified by transposition and DNA recombination. However,

their persistence in large populations of free-living bacteria, where

natural selection is strong, has prompted frequent speculation that

they directly benefit their hosts eg. [14]. Early chemostat

experiments, in which strong nutritional selection was applied,

revealed that most successful mutations were not in structural

genes, but in their regulatory regions [15]. Many of these changes

were due to transposons. This phenomenon is not restricted to

bacteria: for example, transposon insertions upstream of the

Cyp6g1 gene in Drosophila melanogaster have spread to high frequency

in response to the use of insecticides [16].

There are a number of ways in which transposons can change

the pattern of gene expression and alter host cell physiology

[15,17]. In the simplest case, an insertion may inactivate the gene

encoding a transcriptional inducer or repressor. Insertions may

also increase the distance between regulatory elements, interfering

with activation or relieving repression. Transposons also have

more direct mechanisms to control transcription. Many have

constitutive promoters that drive transcription outwards from one

end of the element [18–21]. Indeed, it is transposon-encoded
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promoter activity that is responsible for the successful chemostat

take-over events and the spread of Cyp6g1 alleles in Drosophila

mentioned above.

CEs appear to influence their hosts in multiple ways. At the

DNA-level, CEs are hotspots for DNA recombination and

rearrangement [9,22]. At the RNA-level, CEs that are co-

transcribed with adjacent genes are often targets for cleavage by

RNase III [23–25]. Such processing may either stabilize or

destabilize transcripts, potentially altering gene expression levels.

CEs have also been proposed to act as transcriptional terminators,

a consequence of their stem-loop structures and frequent presence

near the 39 end of genes [26]. The Correia terminal inverted

repeat (TIR) also contains a sequence resembling a 235 box for

the s70 class of promoters located 17 nucleotides upstream of a

TATA sequence that forms at the end of the element as a result of

insertion into a target site (Figure 1) [9,27]. Consequently, CEs

have the potential to form outward-facing promoters at their

insertion sites. In fact, CEs have been shown to contribute to the

transcription of the meningococcal lst and hemO genes and the

gonococcal uvrB gene [27–29]. Although such studies have

identified transcripts emanating from individual CEs, a detailed

examination of CE transcription, taking into account the variation

that exists amongst copies, has not hitherto been performed.

The large number of CEs in the genome, their potential to

influence gene expression patterns, and the variation in their

complement between different strains, raises the question as to

whether they are significant determinants of meningococcal

physiology. This is important because most cases of meningococcal

disease are caused by a few persistent hyper-invasive lineages and

the physiological differences between these strains remain unclear.

Bioinformatic analysis alone is not sufficient to settle such

questions. We have therefore taken an experimental approach

by measuring the strength of the promoters encoded by the CEs.

We identify eight different subtypes, some of which have much

higher promoter activity than others. The activity of the strongest

promoter is dictated by a recurrent single polymorphism in the

235 box of the TIR. We present a genome-wide analysis of the

elements with the strongest activity, focusing on their flanking

sequences and distribution in the population.

Results

The eight subtypes of Correia elements
Prior to embarking on an experimental analysis of putative CE

promoters, we extended our previous bioinformatic analysis,

significantly revising our classification of Correia subtypes and

refining their nomenclature (Figure 1A). We searched for CEs

using FASTA as described in the Materials and Methods section.

In total we identified a set of 343 ‘almost-perfect’ elements, most of

which are less than 2% divergent from their respective consensus

sequences (Figure 1C). This set represents about half of the total

number of CEs in the three genomes, the others having been

excluded because of indels or other rearrangements. With some

manual intervention, necessitated by the structure of the TIRs, the

CEs were sorted into the eight sequence subtypes. Consensus

sequences for each of the subtypes are shown in Figure 1A.

As noted previously [8,9,22,25], the CEs have a unique central

region and two different types of TIRs, which we refer to as alpha

(a) and beta (b) (Figure 1A, 1B). The a and b ends differ by three

point mutations and a single-nucleotide indel. The precise

boundary of the TIR is somewhat arbitrary and depends upon

how many mismatches are tolerated. We propose to allow an

inverted repeat that is 25 and 26 bp long for the a and b repeats,

respectively (Figure 1B). The TIRs can be further categorized

according to whether they are at the left or right end of the CE.

The left and right TIRs, whether a or b, differ from each other at

two positions (Figure 1B). The distinction between the two ends is

important because one of the variable positions is within the

predicted 235 box.

Since CEs were almost certainly amplified by a transposition

mechanism, we follow a numbering convention that excludes the

target site duplication from the size of the transposon. Thus, the b-

b element is the longest CE with a length of 153 bp. Nucleotide

positions for all of the other element subtypes are based on their

alignment with this element (Figure 1A). Predicted 210 and 235

transcriptional start signals are indicated at the bottom of the

alignment (Figure 1A). Note, however, that the 235 box is shifted

one nucleotide further from the end of the element than proposed

previously [9], for reasons that are explained below.

During our previous analysis of the CEs we identified a binding

site for the IHF protein near the middle of the full-length element

[9]. However, many CEs lack the IHF binding site due to a 50 bp

deletion spanning this region. In our nomenclature we designate

these elements using the prime symbol (9).

Sequence variations within a subtype
The alignments reveal that most point mutations are scattered

randomly across the CEs (not shown). However, the alignments

also reveal two recurrent mutations, which are not random. The

base at position 52 can be either A or G (A<G; denoted by R),

while the base at position 128 is either C or T (C.T; denoted by

Y). Henceforth, we will refer to these positions as polymorphisms.

The significance of the polymorphism at position 52 is unknown.

However, the polymorphism at position 128 is within the putative

235 box, and will be shown to control the strength of the CE

promoter (see below). Note that although the polymorphism at

position 128 may be present within the a or b end, it is unique to

the right TIR of the CE.

Using the set of 121 Correia a-a elements, we determined the

number of single nucleotide variants per element relative to the

consensus (Figure 1C). For this analysis the polymorphisms R52

Author Summary

Transposons are mobile DNA elements that can jump from
one location in the genome to another. They have had a
profound influence on the evolutionary history of most, if
not all, organisms by rearranging the order of genes and
changing their expression patterns. The mariner family of
transposons is probably the most successful group if
judged by the breadth and depth of its phylogenetic
distribution. One example is the Correia element, which
has been amplified to a few hundred copies in Neisseria
meningitidis. Transposons often encode promoters that
drive the expression of adjacent genes. This raises the
question of whether the large numbers of Correia
elements in N. meningitidis have a significant genome-
wide role in the control of gene expression. This is an
interesting issue because N. meningitidis has evolved
recently, having been first recognized in the 19th century,
and is probably undergoing a period of rapid adaptation.
Here we present a systematic analysis that defines eight
sub-classes of Correia elements. We show that two
subtypes encode strong promoters. The differential
distribution of the strongest Correia promoter in the three
strains provides a snapshot of evolution in action and
sheds new light on the role of dispersed repeats in
bacterial genomes.

Dispersed Repeats in the Meningococcal Genome
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and Y128 were ignored. The number of elements in each class

decreases rapidly between zero and 5 mutations. However, the

decline is more gradual than the exponential decay expected if

point mutations accumulate randomly. Inspection of the align-

ment reveals that identical point mutations occur repeatedly. For

example, there are only 15 different point mutations amongst the

29 CEs with a single difference from the consensus. In our sample,

point mutations that are observed more than once are always from

elements of the same strain. This distribution is likely to be the

result of gene conversion, in which a mutation is copied from one

CE to another within a genome. There are also more elements

than expected with 10 or more point mutations (Figure 1C). Many

Figure 1. The eight classes of the consensus CE. (A) Nucleotide sequence alignment of the 8 CE consensus subtypes. Dashes within the
alignment indicate gaps. Asterisks mark the positions of the R and Y nucleotides where the consensus sequence is polymorphic. ‘‘R’’ represents either
A or G, with adenosine more frequently present at this position. ‘‘Y’’ represents T, or more frequently C. Nucleotides are colored according to their
identity except for the two polymorphisms and the flanking TA dinucleotide repeats, which are black. The CE 210 and 235 transcriptional start
sequences and the equivalent sequences for the consensus E. coli s70 promoter are indicated below the alignment. The total number of elements of
each subclass within the N. meningitidis Z2491, MC58 and FAM18 genomes is indicated beside the alignment. These numbers represent
approximately half of the total number of elements present in the 3 genomes. (B) Alignment of the a and b TIRs from the left and right ends of the
CE. Asterisks mark the 2 nucleotides within the inverted repeat that differ between the left and right ends. The CE 210 and 235 transcriptional start
sequences are underlined. For comparison purposes, the 210 and 235 transcriptional start sequences of the consensus E. coli s70 promoter are
provided below the alignment. Also given are the mutated 210 and 235 sequences constructed to replace the wild-type sequences in the Correia
end-lacZ reporter plasmids in Table 1. (C) A graphical illustration of sequence variation, relative to the consensus sequence, within the set of 121 a-a
CEs.
doi:10.1371/journal.pgen.1001277.g001
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of these mutations are tightly grouped, often at adjacent positions.

These clusters of mutations were probably created during a single

mutagenic episode, perhaps during natural transformation,

double-strand break repair or imprecise gene conversion.

Correia repeats drive transcription
We began our study of CE transcription by assessing the

promoter activity of isolated CE ends. Consensus sequences for six

ends, including both Y128 variants, were cloned upstream of a

promoterless lacZ gene in a low copy plasmid. The strength of

transcription was measured using Miller’s colorimetric assay for b-

galactosidase activity (Table 1). The Correia a-right, b-right and

the b-left sequences produced significant levels of b-galactosidase

activity (75, 86 and 97 Miller Units [MU], respectively) compared

to the empty vector (7 MU). In contrast, the a-left and the a-

rightY128T sequences were much more active, producing 540 MU

and 670 MU of activity, respectively. The Y128T polymorphism

had a particularly strong effect in the context of the a-right repeat

where it increases activity almost 9-fold.

To confirm the position of the promoters we mutated the

predicted 210 and 235 boxes of the a-rightY128T and b-

rightY128T ends (Figure 1B and Table 1). Alteration of either

sequence dramatically reduced the activity of a-rightY128T. The

mutations attenuated transcription from the b-rightY128T repeat

less severely. This suggests that the b-right repeat may provide an

additional source of transcriptional activity. Inspection of the b
repeat revealed a sequence, TGgTTTAAA, that is similar to an

‘‘extended 210 promoter.’’ These promoters require no 235 box

and have the consensus TGnTATAAT [30–32].

These results show that the CE TIRs possesses promoter

activity, but that the activity varies considerably depending on the

class of CE in question. Mutational analysis demonstrates that the

210 and 235 transcriptional start signals predicted by visual

inspection constitute the primary promoter of the Correia repeats.

The Correia a-left and a-rightY128T ends display the strongest

transcriptional activity, a somewhat unexpected finding consider-

ing that the a-a element is the most common class of CE in N.

meningitidis.

Transcription from intact CEs
To assess the role of the IHF binding site and the potential for

the promoters to interfere with each other, we measured

transcription from intact CEs (Table 2). The eight consensus

CEs, as well as two elements incorporating both polymorphic

variants (R52G and Y128T), were generated by PCR and

inserted, in both orientations, upstream of a promoterless lacZ

gene. For transcriptional analyses, chromosomal reporters are

considered more reliable than multicopy plasmids. Therefore, we

transferred the 21 reporter cassettes to bacteriophage lambda,

which was subsequently used to make single copy phage insertions

in the Escherichia coli chromosome.

Reporter assays performed with a strain lacking a CE insertion

upstream of lacZYA produce negligible b-galactosidase activity (0.6

MU) (Table 2). The spectrum of promoter activity for the CEs is

broadly similar to that obtained from the isolated Correia repeats.

Most of the a-right and b-right ends generate low levels of b-

galactosidase activity (20–31 MU). The a-left end, on the other

hand, generates moderately high activity whether in the context of

the a-a or a-b element (116 MU or 168 MU respectively).

Interestingly, the right end of the a-b element (full-length or prime)

was twice as active as the right end of the b-b end (61–65 MU

versus 20–31 MU). This may be an example of an interaction

between promoters, whereby the activity of b-right is modulated

by one adjacent promoter (a-left) but not by a different promoter

(b-left).

The Y128T polymorphism has a relatively small stimulatory

effect (,2 fold) on the promoter activity of the b-right end

(Table 2). It has a much larger effect on the a-right end, raising b-

galactosidase levels more than 23-fold. a-rightY128T generates 469

MU of activity and is the strongest CE promoter tested. In

contrast, the R52G mutation has little effect on transcriptional

activity from either the a or b left end.

Table 1. b-galactosidase reporter assays for consensus Correia ends.

Plasmid Description1 Miller units2 Standard error3 Fold difference4

- lac2 host strain 0.54 0.11 -

pRC746 vector control 7.4 0.28 1.0

pRC759 a-left 540 5.0 73

pRC748 a-right5 75 7.2 10

pRC750 a-rightY128T 670 22 90

pRC761 a-rightY128T; 210 box altered6 19 0.98 2.6

pRC779 a-rightY128T; 235 box altered6 46 1.9 6.3

pRC760 b-left 97 8.8 13

pRC749 b-right5 86 6.1 12

pRC751 b-rightY128T 140 7.4 19

pRC762 b-rightY128T; 210 box altered6 51 4.3 6.8

pRC781 b-rightY128T; 235 box altered6 89 7.8 12

1The consensus CE ends shown in Figure 1B (along with 4 nucleotides immediately upstream of the Correia repeat and the downstream flanking dinucleotide ‘‘AT’’)
were cloned into a low-copy lacZ reporter plasmid (pRC746). Details are provided in Table S1. The E. coli host strain is MC4100.
2b-galactosidase activity is measured in Miller units. The following formula was used to calculate Miller units: [(spectrophotometer reading at 420 nm
wavelength)61000]/[(spectrophotometer reading at 600 nm wavelength)6(cell volume (mls))6(time (mins))].
3Based on results from 3 independent experiments.
4Relative to vector control (pRC746).
5Unless designated otherwise, the base at position 128 is cytosine.
6Altered 210 and 235 box sequences are shown in Figure 1B.
doi:10.1371/journal.pgen.1001277.t001
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A comparison of the full-length and prime elements indicates

that there is little effect of the internal rearrangement on promoter

activity (Table 2). We found this surprising because we expected to

see a substantial effect from the deletion of the IHF binding site.

To evaluate the effect of IHF more carefully, we used P1

transduction to disrupt IHF expression in all 21 of our

chromosomal CE-lacZ reporter strains. This had minimal effect

on the transcriptional activity of the elements (Table 2).

The concentration of IHF in E. coli is growth-phase dependent

[33,34]. Transcription from a subset of the CEs was therefore

measured in stationary phase cells where the concentration of IHF

is elevated (Table 3). The transcriptional profile of the selected

elements was again very similar in wild-type and strains lacking

IHF. We can therefore conclude that IHF binding does not

significantly affect transcription from the CEs.

Identification of the Correia element transcriptional start
point

The transcriptional start points of the CE promoters were

mapped by primer extension (Figure 2A). A radiolabeled

oligonucleotide primer, designed to anneal downstream of the

expected start point, was hybridized to the RNA and extended by

AMV reverse transcriptase. The resulting cDNA products were

analyzed on a denaturing polyacrylamide gel. The 12 selected

promoters produce virtually identical patterns of extension

products. The most prominent band corresponds to the transcrip-

tional start point predicted by the 210 box at the end of the CE.

The shorter products presumably represent degradation products

or premature termination of reverse transcription, perhaps due to

secondary structure, which is strong in this region. Further analysis

of the prominent band on a high resolution DNA sequencing gel

revealed that it is a doublet (not shown). The two bands of the

doublet represent products starting 10 and 13 nucleotides

downstream of the CE end (Figure 2B). The initiation point

10 bp downstream of the TATA box is the more prominent of the

two bands, and is identical to that identified by Black et al. (1995) in

their transcriptional analysis of a CE upstream of the gonococcal

uvrB gene [27].

These results demonstrate that the previously identified

transcriptional start sequences at the end of the CE constitute

the primary promoter of the element. Moreover, the same

promoter appears to be utilized at both the a and b TIRs.

Detection of Correia element-derived RNA transcripts in
N. meningitidis

To provide direct evidence that CEs drive transcription in N.

meningitidis we used RT-PCR to analyze three a-rightY128T

containing loci in Z2491 (Figure 3).

One Correia end is located 42 bp upstream of, and in tandem

orientation with, the NMA0074 ORF, which encodes GidA, a

protein involved in tRNA modification. There is no obvious

transcriptional terminator between the CE and the gene, so, if

functional, the Correia a-rightY128T promoter is likely to

contribute substantially to the transcription of the gene. The

other two a-rightY128T ends are also in intergenic regions but are

directed towards strong predicted transcriptional terminators. If

functional, they would generate short non-coding RNA transcripts

(NMA0530 and NMA0059 loci).

Three primers were used for the analysis of each locus (Figure 3).

A reverse primer (primer I) that annealed 100–200 nucleotides

downstream of the CE promoter was used to generate cDNA

during the reverse transcription step. In the subsequent PCR step,

the reverse primer was combined with one of two forward primers:

one corresponding to the predicted transcriptional start point

(primer II), and another immediately upstream, spanning the

junction between the CE and the flanking DNA (primer III). If the

promoter at the CE terminus drives transcription at these loci, we

would expect a PCR product with primers I and II, but not with

primers I and III.

Table 2. b-galactosidase reporter assays for chromosomally
integrated Correia elements in log phase cultures.

Correia
element1 wild-type strain2 hipA::cat strain Fold difference3

r R
r
reverse

R
forward

r
reverse

R
forward

r
reverse

R
forward

aL - aR 12065.54 2060.8 14064.2 2060.6 0.8 1.0

aL - aR9 20067.1 2161.3 20066.4 1960.3 1.0 1.1

aLR52G -
aRY128T

9761.0 470624 11065.4 59067.3 0.9 0.8

bL - bR 3965.3 2460.2 3860.5 2960.3 1.1 0.8

bL - bR9 4460.8 3160.6 4560.7 3160.8 1.0 1.0

bLR52G-
bRY128T

2660.3 5564.4 3160.3 8061.1 0.8 0.7

aL - bR 17067.9 6761.5 12065.4 7362.4 1.4 0.9

aL - bR9 13060.9 6261.0 140612 5261.6 0.9 1.2

bL - aR 3261.2 2460.7 3660.4 2460.3 0.9 1.0

bL - aR9 7560.8 3161.9 7260.8 2760.8 1.0 1.1

vector 0.660.05 0.660.01 1.0

1Unless designated otherwise, the bases at positions 52 and 128 of the CE are
adenine and cytosine, respectively.
2E. coli strain NR289.
3IHF+/IHF2.
4The units of measurement, Miller units, are calculated using the formula
provided in Table 1. For each construct, the mean Miller unit measurement and
the standard error from at least three independent experiments are provided.
doi:10.1371/journal.pgen.1001277.t002

Table 3. b-galactosidase reporter assays for chromosomally
integrated Correia elements in stationary phase cultures.

Correia
element1 wild-type strain2 hipA::cat strain Fold difference3

r R
r
reverse

R
forward

r
reverse

R
forward

r
reverse

R
forward

aL - aR 17063.24 2461.6 17065.5 2661.7 1.0 0.9

aL - aR9 28062.0 2761.3 28064.1 2561.9 1.0 1.1

aLR51G -
aRY128T

13062.1 660626 14064.2 670641 0.9 1.0

bL - bR 4162.3 2761.7 4763.0 3262.6 0.9 0.8

bL - bR9 5762.5 3262.7 5761.8 3463.1 1.0 0.9

bLR52G-
bRY128T

3662.1 8069.6 4163.0 100611 0.9 0.8

vector 0.660.02 0.560.02 1.2

1Unless designated otherwise, the bases at positions 52 and 128 of the CE are
adenine and cytosine, respectively.
2E. coli strain NR289.
3IHF+/IHF2.
4The units of measurement, Miller units, are calculated using the formula
provided in Table 1. For each construct, the mean Miller unit measurement and
the standard error from at least three independent experiments are provided.
doi:10.1371/journal.pgen.1001277.t003
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RT-PCR products of the correct size were obtained from the

three loci with primers I and II (Figure 3). Small amounts of

product were also obtained with primers I and III. This product

was most abundant for the NMA0059 locus and indicates that a

small amount of transcription originates upstream of the predicted

start point. Control reactions were also performed with genomic

DNA as the template (Figure 3). These reactions provide size

standards for the respective RT-PCR products and demonstrate

that the various pairs of primers perform with equal efficiency.

Genomic distribution of the a-rightY128T repeat
We wished to determine the distribution of the a-rightY128T

repeats in the three N. meningitidis genomes (Z2491, MC58 and

FAM18) and identify loci where they might be involved in the

transcriptional regulation of nearby genes. We focused our

attention on the a-rightY128T repeat because it provides the

strongest transcription of the Correia ends tested in this study.

However, many other CE ends drive significant levels of

transcription and warrant further investigation.

We performed whole-genome comparisons of the a-rightY128T

repeats using two different approaches as detailed in the Materials

and Methods section. Each approach yielded identical results. The

distribution of the a-rightY128T repeat in the three N. meningitidis

strains is shown in Figure 4. There are a total of 114 repeats, with

almost 40 in each genome. Leftward and rightward facing repeats

are indicated by their respective positions above and below the

lines that denote each genome. Also indicated are the dinucleo-

tides immediately flanking the TATA sequence at the end of each

repeat. These dinucleotides constitute part of the 210 box of the

promoter and may have an effect on transcription depending on

their divergence from the consensus (AT).

In pair-wise comparisons, less than two-thirds of the a-

rightY128T repeats were found to have a counterpart in the other

genome (Figure 4). The synteny between pairs confirms that they

are true homologs (Figure S1). For those a-rightY128T repeats that

are missing a counterpart, an examination of the homologous loci

indicates that the counterpart is missing for one of three reasons:

In a minority of cases the locus in question is absent, presumably

because it has suffered a deletion. In others, the locus is present but

unoccupied by a CE. In the majority of cases, however, the a-

rightY128T repeat has been replaced by a different type of Correia

end. The most common substitution occurs when the a-rightY128T

is replaced by an a-rightY128C repeat. However, there are cases

where the a end is replaced by a b end. For example, the a-

rightY128T repeat at bp 1237645 in Z2491 (line 26 in Table 4) is

replaced by a-rightY128C in FAM18 and by b-rightY128T in MC58.

Since these are clearly identical CE insertions at the same

dinucleotide target site, gene conversion events must account for

the differences.

Genomic context of the a-rightY128T repeats in Z2491
To understand the genomic context within which the repeats are

found, and to identify genes that might be transcribed by the

Correia promoter, we inspected the sequences downstream of the a-

rightY128T repeats in strain Z2491 (Table 4). Of the 39 a-rightY128T

ends, 7 lie within or are directed towards sequence repeat arrays

(either RS-dRS3 repeats, also known as NIMEs, or ATR repeats:

Table 4). For the remaining 32 repeats, the nearest significant

features are ORFs, which are located up to 304 bp from the Correia

end, but are often much closer. At two of these loci, the Correia end

overlaps with an ORF (ORFs NMA1111 and NMA1960).

Approximately two-thirds (22 of 34) of the ORFs represent

hypothetical genes, genes of unknown function or probable

pseudogenes (Table 4). The remaining ORFs code for proteins

with diverse biological roles, including roles in metabolic processes,

transcription, translation, ribosome synthesis and transport.

Many of the same ORFs are present downstream of the a-

rightY128T repeats in MC58 and FAM18 (Tables S3 and S4).

However, these strains also have copies of a-rightY128T not found in

Z2491. Included amongst the ORFs downstream of these repeats

are ones coding for bicyclomycin resistance (NMB0445), a TonB

receptor (NMB1497), FrpA (NMB0585) and FrpC (NMB1415,

NMC0527) virulence factors, a serine peptidase (NMB1998,

NMC1974), and the pilus assembly protein PilG (NMC1839).

In Z2491, 18 of the 32 a-rightY128T repeats driving transcription

towards nearby ORFs are located in tandem to the ORF in

question and will therefore produce sense transcripts (Table 4).

The TransTermHP server [35] was consulted to check for the

presence of rho-independent transcriptional terminators between

the 18 CEs and their adjacent ORFs, but none were found. This

indicates that transcription from these a-rightY128T repeats is likely

to contribute to the transcription of the downstream ORFs.

The 14 remaining elements are convergent, driving transcrip-

tion towards the 39 end of the nearest ORF. Each of them will

produce an antisense transcript unless transcription is halted by a

terminator located between the CE and adjacent ORF. The

TransTermHP server indicated that nine of the 14 loci had strong

terminators within 300 bp of the a-rightY128T repeats (Trans-

TermHP confidence level .80%; see Footnote 4 in Table 4).

These RNA transcripts fulfill two key criteria used for the

identification of short non-coding regulatory RNAs (sRNA) in

bacteria [36–40]. However, unlike the promoters of many bona

Figure 2. Transcript mapping by primer extension. (A) Primer
extension analysis was performed with 20 mg of RNA and 5 pmoles of
radiolabeled primer, as described in the Materials and Methods. RNA
was prepared from E. coli MC4100 strains harboring lacZ reporter
plasmid pRS415 [52] and derivatives containing the CEs indicated at the
top of the gel. Reaction products were electrophoresed on a denaturing
8% polyacrylamide gel. The primary primer extension products and free
primer are indicated beside the gel. (B) Nucleotide sequence of the
Correia a-rightY128T repeat and downstream sequences highlighting the
transcriptional start points observed in (A).
doi:10.1371/journal.pgen.1001277.g002
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fide sRNAs, the CE promoters are probably not tightly regulated.

Perhaps, in these examples we are witnessing the evolutionary

birth of new sRNAs.

The remaining five a-rightY128T repeats lack downstream

terminators and would be expected to drive transcription into

the 39-end of adjacent ORFs. One of these ORFs is a pseudogene

(NMA0823) and another overlaps with the CE itself (NMA1111).

The remaining three ORFs encode a metR family transcriptional

activator, a phase variable lipoprotein and a hypothetical protein

(NMA0381, NMA0277 and NMA2029, respectively).

Whole-genome comparisons and Correia element
annotations

During the course of this work we annotated the a-rightY128T

and a-left repeats, which provide the strongest promoters, and

generated repeat density plots and the six pair-wise comparisons

between the three meningococcal genomes. This information is

provided in a format that can be viewed in the Artemis genome

browser (Materials and Methods, Dataset S1 and Text S1 for

simplified instructions). This will be a useful resource for future

investigations. For example, a recent survey reported that

meningococcal strains deleted for the CE upstream of mtrCDE

did not have a reduced level of drug resistance [41]. This would

have been anticipated by our result, which shows that the a-

rightY128C repeat (the relevant Correia end in this example) has

low promoter activity (Table 2)

Discussion

The large number of CEs in the N. meningitidis genome means

that it can be difficult to identify common biological themes from

the analysis of individual elements. Therefore, we began our

transcriptional analysis by classifying the CEs from the Z2491,

MC58 and FAM18 genomes into 8 distinct subgroups and

generating a consensus sequence for each subtype. Further

examination of these subtypes established that the Correia a-

rightY128T TIR contains by far the strongest promoter (Table 2).

Architecture of the CE promoters
The promoter activity of the a-rightY128T repeat is 10 to 20-fold

higher than that of a-rightY128C (Table 1 and Table 2). The

thymidine responsible for this dramatic difference is also present

within the a-left end and it seems likely to contribute to the strong

transcription from this end as well. In previous studies, the putative

235 box was positioned one nucleotide closer to the end of the CE

[9,28]. However, the large effect of the Y128 polymorphism on

transcription argues in favor of the new position illustrated in

Figure 1. Interestingly, the Y128T mutation in the b TIR does not

raise promoter activity as much as it does at the a TIR. This

difference is probably due to the greater spacing between the 210

and 235 boxes of the b end relative to the a end (18 versus 17

nucleotides).

Black and colleagues predicted a stationary-phase, sS (rpoS)-

dependent ‘‘gearbox’’ promoter in the prime version of the CE,

but not in the full-length version, where a 50 bp insertion

separates the 210 and 235 boxes [27]. Subsequent genome

sequencing revealed that rpoS is absent in the meningococcus and

the gonococcus [6,42]. However, a gearbox promoter could have

affected our transcriptional analysis in E. coli, which does encode

rpoS. This does not appear to be the case because a comparison of

transcription from the right end of the full-length and prime

elements shows no discernable effect of the putative gearbox

promoter on the activity of any of the reporter constructs (Table 2).

An intriguing aspect of the structure of the CE is the presence of

an IHF binding site in the full-length element. IHF is a histone-like

protein which bends DNA by 180u upon binding [43]. In E. coli, it

Figure 3. Transcriptional analysis of three loci containing CEs. (A) Schematic diagram of the region between the NMA0073 and NMA0074
ORFs showing the location of primers I, II and III (sequences given in Table S2) used in the accompanying PCR analysis. The solid black arrows denote
genes. The hatched box represents a strong predicted transcriptional terminator, with the arrow(s) indicating its polarity: in this case, the terminator
is predicted to function in both directions. The CE inverted repeats are indicated by grey arrowheads and the direction of transcription from the a-
rightY128T repeat is indicated by a bent arrow. Primer I was used for reverse transcription (RT). The subsequent PCR step was performed with the
indicated pairs of primers and analyzed on an ethidium bromide-stained 3% Metaphor agarose TAE gel (right panels). Results from the RT-PCR are
shown in the middle panel and those from the genomic DNA PCR are shown on the far right. The latter provides molecular weight standards for the
RT-PCR products and a control for the efficiency of the various primer pairs. (B) The region between NMA0057 and NMA0059 is shown. Annotations
are as in (A). The inverted repeats of an ATR element are depicted as black arrowheads. (C) The region between NMA0530 and NMA0531 is shown.
The short NMA0530A ORF is not likely to code for a protein and has been omitted from the schematic. Annotations are as in (A).
doi:10.1371/journal.pgen.1001277.g003
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has a role as an accessory protein in a variety of cellular processes

including replication, recombination and transcription [44]. The

Correia IHF-binding site has been shown to bind IHF protein

from E. coli and N. gonorrhoeae in gel shift mobility assays [9,45].

Consequently, we hypothesized that IHF might modulate the

activity of the Correia promoter. However, b-galactosidase assays

performed with CE-lacZ reporter constructs indicated that IHF

has no significant effect on CE transcription (Table 2 and Table 3).

We therefore wonder whether the primary effect of IHF may be

on genomic architecture and compaction of the nucleoid. In this

capacity, it may alter the expression of genes at a distance by

bringing distil regulatory elements together.

A potential mechanism for phase variation
A comparison of CEs from Z2491, MC58 and FAM18 reveals

several conversion events in which one class of Correia repeat at a

given locus is replaced by another. For example, the aL-aRY128T

element in Z2491 on line 3 of Table 4 has been converted to aL-

aRY128C in MC58. This should have the effect of reducing CE-

driven transcription of the adjacent threonine tRNA gene in

MC58. Clearly, Correia end subtype switching has the potential to

act as a mechanism for phase variation, in which the transcription

of genes under the influence of a CE is modulated by the

recombination-mediated switching of Correia promoters. Indeed,

we have surveyed CE class switching in the meningococcal

reference collection and find that the differences are highly

correlated with the various clonal complexes (to be presented

elsewhere). Class switching also has the potential to affect gene

expression by altering the sensitivity of CE-containing transcripts

to cleavage by RNase III. RNase III targets CE-derived stem-loop

structures in transcripts, and is sensitive to point mutations that

enhance or diminish the stem-loop [24].

In our analysis of the Z2491 genome we focused on the a-

rightY128T repeat, which provides the strongest promoter activity

in our assay (Table 2). However, one should note that other classes

of element, particularly the a-left repeat, also provide significant

promoter activity and may be linked to important functions. In

each of the three strains studied there are over 100 a-rightY128T

Figure 4. Distribution of the Correia a-rightY128T repeats in the N. meningitidis Z2491, MC58, and FAM18 genomes. Horizontal black
lines represent the N. meningitidis genomes. Colored triangles represent the a-rightY128T promoters, of which there are almost 40 in each genome.
The letters above or below each triangle refer to the dinucleotides flanking the TATA sequence at the end of each repeat. Correia ends represented
above and below the line drive transcription to the right and left, respectively. The grey lines between genomes connect Correia a-rightY128T repeats
inserted at homologous positions in their respective genomes. The synteny of loci was established first by using a 20 bp sequence tag, and then by
examining the ORF landscape surrounding each element (see Figure S1). The diagram is drawn to scale.
doi:10.1371/journal.pgen.1001277.g004
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Table 4. Correia a-rightY128T repeat distribution in the genome of N. meningitidis serogroup A strain Z2491.

Nucleotide sequence of the
Correia element end (29 bp)1

Adjacent ORF or other
feature (downstream of
Correia promoter)2

Distance of
nearest ORF to
Correia element
(bp)

Direction of
transcription3

Description of putative gene
product

1 TGTACTGGTTTTTGTTAATCCACTATAaa ATR repeat followed by NMA00594 176 convergent modification methylase (probable
pseudogene)

2 ---------------------------aa NMA0074 (gidA) 42 tandem tRNA uridine 5-carboxymethyl
aminomethyl modification enzyme

3 -------------------T-------cc thr tRNA gene & NMA00795 69 tandem threonine tRNA & putative integral
membrane protein5

4 ---------------------------at NMA0277 155 convergent putative lipoprotein

5 ---------------------G-----tt RS-dRS3 repeat array

6 ---------------------------ca NMA0381 (metR) 42 convergent putative transcriptional activator

7 ---------------------------aa single RS-dRS3 repeat followed by
NMA0402 (truA)

218 tandem tRNA pseudouridine synthase

8 ---------------------------aa NMA04124 79 convergent putative glucokinase

9 ---------------------------aa NMA0434 30 tandem hypothetical inner membrane
protein

10 ---------------------------ga RS-dRS3 repeat array & another CE

11 ---------------------------ca NMA0495 (rpmE) 107 tandem 50S ribosomal protein L31

12 ---------------------------gt NMA0530A & NMA05314,5 259 convergent possible pseudogene & putative
transposase5

13 ---------------------------ac NMA0590 282 tandem hypothetical protein

14 ---------------------------aa ATR repeats

15 ---------------------------tt NMA07884 127 convergent putative secreted toxin (probable
pseudogene)

16 ---------------------G-----tt RS-dRS3 repeat array

17 ---------------------------aa NMA0823 28 convergent putative transposase (probable
pseudogene)

18 ---------------------G-----tt RS-dRS3 repeat array

19 ------------------A--------ag RS-dRS3 repeat array

20 ---------------------------tt NMA0940 118 tandem putative membrane protein

21 ---------------------------gt inserted within another CE; nearest
ORF is NMA0975

274 tandem putative integral membrane protein

22 ---------------------------tt NMA0975 175 tandem putative integral membrane protein

23 ---------------------------ta NMA1079 55 tandem hypothetical protein

24 ---------------------------aa NMA1111 CE end lies within
ORF

convergent hypothetical protein

25 ---------------------------tc RS-dRS3 repeat array

26 ---------------------------aa NMA1331 105 tandem ABC transporter ATP-binding protein
(probable pseudogene)

27 ---------------------------aa NMA1411 95 tandem hypothetical protein

28 ---------------------------cg NMA1414 131 tandem putative periplasmic protein

29 ---------------------------tc NMA1588 (truB)4 41 convergent tRNA pseudouridine synthase B

30 ---------------G-----------tt NMA16264 124 convergent putative RTX-family exoprotein

31 ---------------------------at NMA1696 (gabD) 304 tandem succinate semialdehyde
dehydrogenase

32 ---------------------------aa NMA1808 (metZ) 55 tandem O-succinylhomoserine sulfhydrolase

33 ---------------------------tt NMA1935 & NMA1934 (gcvP)4,5 24 convergent hypothetical protein & glycine
dehydrogenase5

34 ---------------------------tt NMA1954 42 tandem putative integral membrane protein

35 -----------------G--T------ca NMA1960 & NMA1959 (rfaK)4,5 CE end lies within
ORF

convergent hypothetical protein & a 1,2 N-
acetylglucosamine transferase5

36 -------------------T-------ac NMA2029 79 convergent hypothetical protein

37 ---------------------------aa single RS-dRS3 repeat followed by
NMA2051

283 tandem conserved hypothetical protein
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and a-left promoters. Could they substantially impact gene

expression in the organism? We provide evidence for the

transcription of gidA, a tRNA modification gene, from a nearby

a-rightY128T promoter (Figure 3). gidA mutants have pleiotropic

effects in bacteria and include virulence defects in Streptococcus

pyogenes and Aeromonas hydrophila. [46,47]. In this example, the a-

rightY128T end is retained in all three meningococcal strains

(Table 4, line 2; Table S3, line 1; Table S4, line 2). However, it

will undoubtedly be of much interest to consider whether natural

variation in the distribution of CEs contributes to the development

or persistence of hypervirulent lineages that are the source of most

global meningococcal disease.

Potential regulatory RNAs
During our analysis of Correia a-rightY128T ends in Z2491, we

observed that several Correia promoters oriented towards the 39-

end of adjacent ORFs were located within short distance of a

downstream transcriptional terminator. RT-PCR analysis detect-

ed RNA transcripts from two of the promoters. N. meningitidis does

not have an extensive protein-based regulatory network for

transcription and small non-coding RNAs might play a role in

helping to bolster or expand this relatively skeletal network.

Certain CEs might also produce transcripts that read into the

39-end of genes at some loci. These ‘‘antisense’’ transcripts could

act in cis to modulate expression of the adjacent gene(s). Although

cis-acting regulatory RNAs in bacteria are typically associated with

extra-chromosomal and mobile elements [48], the plasticity of the

meningococcal genome may favor this type of regulation.

Snapshot of evolution
CEs are not simply the degenerate remnants of transposition

events that have accumulated over long periods of time. The

homogeneity of CE sequences suggests that they were created

relatively recently in a burst of transposition. It is not possible at

present to say whether the transposition events took place in a

single lineage, and were spread subsequently by genetic exchange,

or whether they are the result of separate amplification events in

multiple lineages. The picture is further complicated by the

evidence for gene conversion between elements, as exemplified by

the inter-conversion of different subtypes of CEs. These issues

make it difficult to know whether CEs are under selection or

evolving neutrally. However, under any model, functional

elements may arise occasionally by chance. In identifying the

strongest CE promoters the present work provides a way to assess

the potential importance of specific CEs at loci of interest.

Materials and Methods

Bacterial strains
The following E. coli strains were used in this study: DH5a

[endA1 hsdR17 glnV44 thi-1 recA1 gyrA relA1 D(lacIZYA-argF)U169

deoR (w80dlacD(lacZ)M15)]; MC4100 [F2 araD139 D(argF-lac)U169

rspL150 relA1 flbB5301 fruA25 deoC1 ptsF25] (a kind gift from Ben

Berks, University of Oxford); NR289 [MC4100 nadA::Tn10 D(gal-

att-bio)] (a kind gift from Natacha Ruiz, Princeton University);

AB1157 [F2 thr-1 leuB6 hisG4 thi-1 araC14 D(gpt-proA)62 lacY1 tsx-

33 glnV44 galK2 rfbC1 rpoS396 mtl-1 rpsL31 xylA5 mgl-51 argE3

kdgK51] (a gift from David Sherratt, University of Oxford);

RC5001 [ = MM294 (F2 supE hsdR endA1 pro thi)]; RC5006

[ = NK9140 = MM294 hip::CAT]. The N. meningitidis strains used in

this study for experimental and/or computational analyses are as

follows: Z2491, serogroup A, NC_003116 [5]; MC58, serogroup

B, NC_003112, [6]; FAM18, serogroup C, NC_008767, [3].

Plasmids
A list of plasmids used in this study and the details of their

construction are presented in Table S1.

Bioinformatic analysis
In Figure 1 we present the consensus sequences and total

numbers of almost-perfect CEs in the N. meningitidis serogroup A, B

and C genome sequences (NC_003116, NC_003112 and

NC_008767). We used the European Bioinformatics Institute

(EBI) FASTA server to search the three genomes using our

previous consensus sequences for CEs [9]. Visual inspection of the

alignments revealed the existence of the eight discreet classes of

CE represented in Figure 1. The elements were sorted manually

into their respective groups and used to build eight new consensus

sequences using the EBI ClustalX server. These eight ‘first-round’

consensus sequences were then used in a new round of FASTA

searches of the three genomes. This yielded a set of 343 ‘almost-

perfect’ elements, which excludes a number of degenerate

remnants and fragments that were eliminated from the analysis

by the FASTA mismatch and gap penalties. During this second

round of searching, it was again necessary to manually sort some

of elements into their respective groups. This is because some CEs

have as many differences in their central region as between their

respective a and b repeats, and this leads to inconsistencies in the

FASTA output. After sorting, a new set of second-round ClustalX

consensus sequences was constructed from each of the groups

(Figure 1A). As can be seen from the plot in Figure 1C, the great

Nucleotide sequence of the
Correia element end (29 bp)1

Adjacent ORF or other
feature (downstream of
Correia promoter)2

Distance of
nearest ORF to
Correia element
(bp)

Direction of
transcription3

Description of putative gene
product

38 ---------------------------tc NMA2108 (hemN)4 138 convergent oxygen-independent co-
proporphyrinogen III oxidase

39 ---------------------------ac NMA2205 108 tandem hypothetical protein

1Sequences are listed in order of ascending genome coordinate (coordinates not shown).
2‘‘NMA’’ refers to open reading frames (ORFs) in N. meningitidis Z2491; the numbers indicate the physical order of the ORFs within the genome.
3Direction of transcription from the Correia a-rightY128T end relative to that of the nearest ORF.
4Locus where a rho-independent transcriptional terminator is present no more than 300 bp from a Correia a-rightY128T.
5The thr tRNA gene and NMA0530A, NMA1935 and NMA1960 ORFs are very small (75 bp, 84 bp, 147 bp, and 171 bp, respectively), so the name and description of the
next ORF is given as well.
doi:10.1371/journal.pgen.1001277.t004

Table 4. Cont.

Dispersed Repeats in the Meningococcal Genome

PLoS Genetics | www.plosgenetics.org 10 January 2011 | Volume 7 | Issue 1 | e1001277



majority of the elements differ from their respective consensus

sequences by less than 2%.

The three-way whole-genome comparison of the a-rightY128T

repeats presented in Figure 4 was performed using two different

methods, each of which gave identical results. Method 1: A

BLAST search recovered a total of 114 a-rightY128T repeats in the

three genomes. Many of these were excluded from the set of 343

almost-perfect elements (Figure 1) because of indels or other

rearrangements elsewhere in the element, but which are not

expected to alter transcriptional activity from the ends. The 20 bp

sequence flanking each of the 114 a-rightY128T repeats was

extracted and used as a sequence tag. Since a 20 bp tag is expected

to be unambiguous in a 2 MB chromosome, it can be used to

identify the genomic context of each element, and to evaluate the

three genomes for the presence or absence of ‘‘homologous’’ a-

rightY128T sequences. Coordinates for the set of 114 a-rightY128T

repeats, along with the corresponding 20 bp flanking sequence

tags, are provided in Table 4 and Tables S3, S4 and S5.

Method 2: CEs were extracted from the three genomes

(AL157959, AE002098 and AM421808) with RepeatMasker

(unpublished, www.repeatmasker.org), using the a-a consensus

sequence shown in Figure 1 as a reference, under stringent

parameters (-e wublast -dir. -nolow -no_is -gff -s -pa 2 -cutoff 300).

The RepeatMasker output was converted to the Genbank format

with a simple python script. A similar process was carried out for

dSR3 and ATR repeats. Syntenic regions between N. meningitidis

strains Z2491, MC58 and FAM18 were identified by ‘all versus all’

BLAST comparisons of these genomes. BLAST results are in

tabular format (-m 8 option) and can be directly visualized with the

Artemis Comparison Tool (ACT) (Dataset S1). The repeat density

plots were generated by comparing each genome against itself,

using BLAST (Dataset S1). Output data were parsed with a

custom python script and BLAST hits (High Scoring Pairs [HSP])

with a score below 25 bits were discarded. The repeat density plot

corresponds to the number of HSPs overlapping each genomic

position and helps to quickly identify regions composed primarily

of repetitive sequences. CEs with an a-right end were identified by

successive pair-wise alignment to each of the four types of CE end,

and the alignment with the best score was retained. This

procedure was automated using a python script and uses the

Waterman-Eggert alignment aligorithm implemented in the

MATCHER software provided by the EMBOSS toolkit. The a-

rightY128T polymorphism was scored by directly assessing position

128. Dataset S1 can be visualized in Artemis and ACT using the

simplified instructions provided in Text S1.

Integration of reporter constructs in the E. coli
chromosome

The strategy outlined below for generating chromosomal

insertions is based on the procedure detailed by Hand and Silhavy

(2000) [49]. E. coli RC5001 cells harboring pRS415 or one of

twenty plasmid derivatives containing CE insertions were infected

with bacteriophage lRZ-5 and phage lysates were harvested. Each

lysate contains a small fraction of recombinant phage molecules in

which homologous recombination has occurred between the

lacZYA and bla gene sequences on pRS415 (or derivatives) and

homologous sequences on lRZ-5 resulting in a phage that

contains the CE–lacZ reporter construct. The phage lysates were

used to infect E. coli AB1157 and lysogens were selected on

ampicillin-containing medium. To ensure that the lysogens

contain only one prophage, P1 transduction was employed to

transduce the locus (the recombinant phage and flanking

chromosomal markers) to E. coli NR289. The recipient strain

was screened for the presence of the correct markers and for

immunity to l infection.

E. coli strains lacking IHF were constructed by P1 transduction

of the 21 NR289 strains containing chromosomally-integrated CE-

lacZ reporter constructs with phage lysates prepared from E. coli

RC5006, a strain carrying a cat (chloramphenicol acetyltransfer-

ase) gene insertion in the hip (himD) gene (which encodes the b
subunit of IHF).

b-galactosidase assays
The b-galactosidase detection assay was performed similarly to

that first described by Jeffrey Miller (1972) [50]. E. coli strains were

grown overnight at 37uC, diluted 1:100 in fresh LB broth and

grown to mid-log phase (optical density at 600 nm of 0.5–0.7).

Cells were pelleted by centrifugation, and resuspended in an equal

volume of Z-buffer. Various amounts of the cell suspension were

mixed with Z-buffer to a final volume of 1 ml. Cells were lysed

with the addition of 50 ml chloroform and 25 ml 0.1% SDS. b-

galactosidase activity was measured by recording the time the

samples took to develop a yellow colour at 30uC after the addition

of ONPG (2-Nitrophenyl b-D-galactopyranoside). Once a yellow

colour was observed, reactions were stopped with 500 ml 1 M

Na2CO3. Cell debris was removed by centrifugation and the

optical density of each sample at 420 nm was measured with a

spectrophotometer.

For convenience these experiments were performed in E. coli.

The s70 promoter consensus for Neisseria sp. has not been defined

rigorously. However, promoters from N. meningitidis and E. coli

function well in each other. Sequences similar to the E. coli

consensus are usually evident upstream of meningococcal genes

and have been shown to drive comparable rates of transcription in

the two organisms eg. [31,51].

Transcript mapping
The TRIzol method (Invitrogen) was employed to extract total

RNA from mid-log phase E. coli MC4100 cells harboring pRS415

or a derivative containing one of 12 full-length or prime (D50bp)

CEs inserted upstream of lacZYA (plasmids pRC661–pRC666 and

pRC675–pRC680). 20 mg aliquots of the RNA preparations were

stored at 280uC. Prior to use, the RNA samples were treated with

TURBO DNase (Ambion), extracted with phenol/chloroform/

isoamyl alcohol and precipitated with ethanol to remove trace

amounts of genomic DNA.

Primer extension reactions were performed with 20 mg of

cellular RNA mixed with 5 pmoles of 59 end-labeled PAGE-

purified primer (59-GGTCATAGCTGTTTCCTGTGTG-39) in

30 ml of hybridization buffer (40 mM PIPES (pH 6.4), 1 mM

EDTA (pH 8.0), 400 mM NaCl, 80% deionized formamide). The

samples were heated to 85uC for 10 minutes, then slowly cooled to

45uC and maintained at that temperature overnight. The RNA

was precipitated with ethanol and resuspended in a primer

extension buffer (50 mM Tris-HCl (pH 8.3), 50 mM KCl, 10 mM

MgCl2, 10 mM DTT, 1 mM each dNTP, 0.5 mM spermidine

and 2.8 mM sodium pyrophosphate) to which AMV reverse

transcriptase (Promega) was added. The reactions were incubated

at 42uC for 90 min, stopped with the addition of formamide-

containing RNA loading buffer, boiled for 5 min, then loaded and

run on a denaturing polyacrylamide gel.

Other procedures
All strains were grown on Luria-Bertani (LB) media at 37uC.

The following antibiotics were used at the indicated concentra-

tions: ampicillin, 50 mg/ml; kanamycin, 50 mg/ml; spectinomycin,

50 mg/ml. Manipulations using DNA restriction and modification

Dispersed Repeats in the Meningococcal Genome

PLoS Genetics | www.plosgenetics.org 11 January 2011 | Volume 7 | Issue 1 | e1001277



enzymes were performed according to the manufacturers’

recommendations. Most of these enzymes were obtained from

New England Biolabs. PCR was performed either with Vent DNA

polymerase or Phusion High-Fidelity DNA polymerase (both from

New England BioLabs). Sequences of all cloned PCR products

were confirmed by nucleotide sequencing. Reverse transcription

was performed with Superscript III reverse transcriptase (Invitro-

gen) and 100 ng of N. meningitidis Z2491 RNA as template (the

RNA was kindly provided by Chris Tang at Imperial College,

London). The genomic locations and nucleotide sequences of the

primers used for the RT-PCR reactions are provided in Figure 3

and Table S2.

Supporting Information

Dataset S1 Genome annotation files for viewing in Artemis and

ACT genome browsers.

Found at: doi:10.1371/journal.pgen.1001277.s001 (25.93 MB

ZIP)

Figure S1 Synteny diagrams of the ORF landscapes surround-

ing each of the 114 a-rightY128T repeats. The ORF landscape

surrounding each of the 114 a-rightY128T repeats in strains Z2491,

MC58, and FAM18 are shown. On each page the target element,

or bait, is shown in the middle together with a repeat density track.

The homologous loci in the other two strains are illustrated above

and below. Pages 1–38 illustrate the 39 a-rightY128T repeats in

Z2491: pages 39–56 illustrate those a-rightY128T repeats in MC58

that are not present in Z2419; pages 57 to 61 illustrate those a-

rightY128T repeats in FAM18 not present in either of the other two

strains.

Found at: doi:10.1371/journal.pgen.1001277.s002 (1.94 MB PDF)

Table S1 Plasmids used in this study.

Found at: doi:10.1371/journal.pgen.1001277.s003 (0.06 MB PDF)

Table S2 Primers for RT-PCR.

Found at: doi:10.1371/journal.pgen.1001277.s004 (0.03 MB PDF)

Table S3 Correia aY128T right repeat distribution in the genome

of N. meningitidis serogroup B strain MC58.

Found at: doi:10.1371/journal.pgen.1001277.s005 (0.07 MB PDF)

Table S4 Correia aY128T right repeat distribution in the genome

of N. meningitidis serogroup C strain FAM18.

Found at: doi:10.1371/journal.pgen.1001277.s006 (0.06 MB PDF)

Table S5 The coordinates and sequences of the 20 bp sequence

tags flanking each of the 114 a-rightY128T repeats in strains Z2491,

MC58, and FAM18.

Found at: doi:10.1371/journal.pgen.1001277.s007 (0.10 MB PDF)

Text S1 Instructions for loading Dataset S1 into Artemis and

ACT.

Found at: doi:10.1371/journal.pgen.1001277.s008 (0.03 MB PDF)
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